Optimization

Marc Castella marc.castella@telecom-sudparis.eu

Télécom SudParis
September 7, 2023

Part I

Introduction

Topics in the course

- Introduction and generalities about optimization
- Notions of convexity
- Convex sets and functions
- Separation theorem
- Optimization problems
- (Convex optimizations problems: LP, QP, SOCP, SDP)
- Optimality conditions
- Duality
- Lagrange duality
- Conjugate function and Fenchel duality
- Karush-Kuhn-Tucker optimality conditions
- Algorithms
- Notions on unconstrained optimization (gradient, Newton)
- Notions on constrained optimization (interior points)
- Basic introduction to proximal methods

Optimization softwares

Many free and commercial softwares exist for optimization:

- optimization solvers: SeDuMi, SDPT3, CPLEX, Gurobi, Mosek, ...
- high level modelling languages and parsers: CVX, YALMIP, ...
but many algorithms are not that complicated and can be programmed (e.g. with Matlab/Scientific Python)!

Useful references

Convex optimization:

- Boyd and Vandenberghe, Convex Optimization (Cambridge University Press)
- http://stanford.edu/~boyd/
- Borwein and Lewis, Convex Analysis and Nonlinear Optimization, Theory and Examples (Canadian Mathematical Society)
Proximal algorithms:
- N. Parikh and S. Boyd, Proximal Algorithms (Foundations and Trends in Optimization, 1(3):123-231, 2014)
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers (Foundations and Trends in Machine Learning, $3(1): 1-122,2011$.)

Some notations

\mathbb{R}^{2}	real numbers
\mathbb{R}_{+}	nonnegative (≥ 0) numbers \mathbb{R}_{++} \mathbb{S}^{n} $\mathbb{S}_{+}^{n} / \mathbb{S}_{++}^{n}$
A^{\top}	$n \times n$ resitive (>0) numbers

Optimization problems

Unconstrained optimization problem
Given a function $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, find $x^{\star} \in \mathbb{R}^{n}$ such that:

$$
\forall x \in \mathbb{R}^{n}: \quad f_{0}\left(x^{\star}\right) \leq f_{0}(x)
$$

Constrained optimization problem
Given functions $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $i=1, \ldots, m$, find x^{\star} such that:

$$
\begin{aligned}
& f_{i}\left(x^{\star}\right) \leq 0, i=1, \ldots, m \\
& f_{0}\left(x^{\star}\right) \leq f_{0}(x), \quad \forall x \in \mathbb{R}^{n} \text { such that } f_{i}(x) \leq 0, i=1, \ldots, m
\end{aligned}
$$

Discrete optimization (not covered in this course):
f_{0} and f_{i} are functions $\mathcal{D} \rightarrow \mathbb{R}$ with:

- \mathcal{D} finite : combinatorial optimization problem
- $\mathcal{D}=\mathbb{Z}$: integer programming

Optimization problem

$$
\left\{\begin{aligned}
\min . & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{aligned}\right.
$$

- $x=\left(x_{1}, \ldots, x_{n}\right)^{\top}$: optimization variables
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$: constraint functions

Optimal value: $p^{\star}:=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0\right.$, for $\left.i=1, \ldots, m\right\}$
Optimal solution: x^{\star} satisfies $f_{i}\left(x^{\star}\right) \leq 0, i=1, \ldots, m$ and:

$$
f_{0}\left(x^{\star}\right) \leq f_{0}(x) \text { for all } x \text { that satisfy } f_{i}(x) \leq 0, i=1, \ldots, m
$$

Examples

Portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

Data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Signal restoration

- variables: signal values
- constraints: prior informations, value limits
- objective: data fit + regularization

Example: (linear) classification

- Training data $\left(f_{i}, c_{i}\right)_{i=1, \ldots, m}$ where for any $i=1, \ldots, m$:
- $f_{i} \in \mathbb{R}^{n}$: features,
- $c_{i} \in\{+1,-1\}$: category.
- Classify new data $f \in \mathbb{R}^{n}$ in the two classes. Linear classifier $\hat{c}=\operatorname{sign}\left(x^{\top} f\right)$: find weight vector x
- Associated optimization problem with ℓ_{2} regularization:

$$
\min _{x} . \sum_{i=1}^{m} \varphi\left(-c_{i}\left(x^{\top} f_{i}\right)\right)+\gamma\|x\|_{2} \quad(\gamma=\text { const. }>0)
$$

where cost function $\varphi(z)$ can be:

- $\varphi(z)=\mathbb{1}(z \geq 0)$
- $\varphi(z)=\log \left(1+e^{-z}\right)$ (logistic regression)
- $\varphi(z)=[1-z]_{+}$(support vector machine)
- $\varphi(z)=e^{z}$

General optimization problem:

- very difficult to solve (if nonconvex)
- methods involve some compromise, e.g.:
- local optimization method (nonlinear programming): not always finding the solution
- global optimization: very long computation time, worst case complexity grows exponentially with problem size
\rightsquigarrow These algorithms are often based on solving convex subproblems
Convex optimization problems can be solved efficiently and reliably:
- least-squares problems (analytical solution even exist in this case)
- linear programming problems
- many other convex programming problems

Convex optimization problem

$$
\left\{\begin{aligned}
\min . & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq b_{i}, \quad i=1, \ldots, m
\end{aligned}\right.
$$

- Objective and constraint functions are convex
- Includes as special cases: least squares, linear programming
- Convex optimization is "almost a technology":
- reliable and efficient algorithms (but generally no analytical solutions)
- computation time (roughly) proportional to $\max \left\{n^{3}, n^{2} m, F\right\}$ where F is cost of evaluating f_{i} 's and their first+second derivatives
- Many problems can be solved via convex optimization:
- often difficult to recognize
- many tricks for transforming problems

Euclidian space

Euclidian space \mathbf{E} (finite dimension) with inner-product $\langle.,$.

- Often $\mathbf{E}=\mathbb{R}^{n}$ and $\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$
- (Euclidian) norm $\|x\|_{2}=\sqrt{\langle x, x\rangle}$
- Cauchy-Schwarz inequality: $|\langle x, y\rangle| \leq\|x\|_{2}\|y\|_{2}$
- Orthogonal complement:

$$
G^{\perp}=\{y \in \mathbf{E} \mid\langle x, y\rangle=0 \text { for all } x \in G\}
$$

- Ball of center x_{0} radius $r \geq 0$:

$$
\begin{aligned}
& B\left(x_{0}, r\right]=\left\{x \in \mathbf{E} \mid\left\|x-x_{0}\right\| \leq r\right\} \\
& B\left(x_{0}, r\left[=\left\{x \in \mathbf{E} \mid\left\|x-x_{0}\right\|<r\right\}\right.\right.
\end{aligned}
$$

Dual norm

Let $\|$.$\| be a norm on \mathbf{E}$.
Associated dual norm $\|.\|_{*}$:

$$
\|z\|_{*}:=\sup _{\|x\| \leq 1}\langle z, x\rangle
$$

- $\langle z, x\rangle \leq\|z\|_{*}\|x\|$
- Dual norm of $\|.\|_{2}$ is itself.
- $\|.\|_{\infty}$ and $\|.\|_{1}$ are dual norms of each other.
- Dual of ℓ_{p}-norm is ℓ_{q} norm with $\frac{1}{p}+\frac{1}{q}=1$.
- $\|.\|_{* *}=\|\cdot\|$ (need not hold in infinite dimensional spaces)

Open and closed sets

Interior, closure, boundary interior of a set C :

$$
\operatorname{int} C=\{x \in C \mid B(x, \varepsilon[\subset C \text { for sufficiently small } \varepsilon\}
$$

A set C is open if $C=\operatorname{int} C$ and closed if its complement is open.
closure of a set C :

$$
\operatorname{cl} C=\{x \in \mathbf{E} \mid \text { for any (small) } \varepsilon, B(x, \varepsilon[\cap C \neq \emptyset\}
$$

boundary of a set $C: \operatorname{bd} C=\operatorname{cl} C \backslash \operatorname{int} C$
core of a set $C=$ set of points $x \in C$ such that for any direction $d \in \mathbf{E}$, $x+t d \in C$ for all small t. Note that $\operatorname{int} C \subseteq \operatorname{core} C$ (but core C may be larger than $\operatorname{int} C$).

Linear maps, adjoint, null space

\mathbf{E} and \mathbf{F} two Euclidian spaces.

- $A: \mathbf{E} \rightarrow \mathbf{F}$ is linear if $A(\lambda x+\mu y)=\lambda A x+\mu A y$ for any $x, y \in \mathbf{E}$ and $\lambda, \mu \in \mathbb{R}$.
- Linear functions $\mathbf{E} \rightarrow \mathbb{R}$ have the form $\langle a,$.$\rangle for some a \in \mathbf{E}$
- Affine functions $=$ linear + constant
- Adjoint of A is the linear map $A^{*}: \mathbf{F} \rightarrow \mathbf{E}$ such that:

$$
\left\langle A^{*} y, x\right\rangle=\langle y, A x\rangle \text { for any } x \in \mathbf{E}, y \in \mathbf{F}
$$

- If $\mathbf{E}=\mathbb{R}^{n}, \mathbf{F}=\mathbb{R}^{p}$, adjoint of $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is given by A^{\top}
- Null space (kernel): Ker $A=\{x \in \mathbf{E} \mid A x=0\}$

Symmetric matrices

- Set of symmetric matrices: $\mathbb{S}^{n}=\left\{M \in \mathbb{R}^{n \times n} \mid M^{\top}=M\right\}$
- Positive semidefinite matrices: $\mathbb{S}_{+}^{n}=\left\{M \in \mathbb{S}^{n} \mid x^{\top} M x \geq 0\right.$ for all $\left.x\right\}$
- Positive definite matrices: $\mathbb{S}_{++}^{n}=\left\{M \in \mathbb{S}^{n} \mid x^{\top} M x>0\right.$ for all $\left.x \neq 0\right\}$
- Inner product:

$$
\langle A, B\rangle=\operatorname{tr} A B \text { for } A, B \in \mathbb{S}^{n}
$$

- $M \in \mathbb{S}_{+}^{n}$ (resp. \mathbb{S}_{++}^{n}) will be written $M \succeq 0$ (resp. $M \succ 0$). Similarly (see later):

$$
A-B \in \mathbb{S}_{+}^{n} \Leftrightarrow A \succeq B \quad A-B \in \mathbb{S}_{++}^{n} \Leftrightarrow A \succ B
$$

Domain and extended-value function

Let f be a function $\mathbf{E} \rightarrow \mathbb{R}$ (often, $\mathbf{E}=\mathbb{R}^{n}$).
Domain: $\operatorname{dom} f=\{x \in \mathbf{E} \mid f(x)$ exists $\} \quad(\operatorname{dom} f \subset \mathbf{E})$
If $f: \operatorname{dom} f \rightarrow \mathbb{R}$, we use the extended-value extension of f :

$$
\begin{aligned}
f: \mathbf{E} & \rightarrow \mathbb{R} \cup\{+\infty\} \\
x & \mapsto \begin{cases}f(x) & \text { if } x \in \operatorname{dom} f \\
+\infty & \text { if } x \notin \operatorname{dom} f\end{cases}
\end{aligned}
$$

- Often simplifies the notation and provides a unifying view.
- $\operatorname{dom} f=\{x \in \mathbf{E} \mid f(x)<\infty\}$
- If $\operatorname{dom} f \neq \emptyset$, the function is said proper

Extended-value functions

Examples

- Log-barrier $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)= \begin{cases}-\log (-x) & \text { if } x<0 \\ +\infty & \text { if } x \geq 0\end{cases}
$$

$\operatorname{dom} f=\mathbb{R}_{--}$

- Indicator function of a given set $C \subset \mathbf{E}$:

$$
\imath_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

$\operatorname{dom} \imath_{C}=C$

Gradient vector

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

- Gradient (column) vector $\nabla f(x)$:

$$
[\nabla f(x)]_{i}=\frac{\partial f(x)}{\partial x_{i}}
$$

First-order approximation of f near \bar{x} :

$$
\hat{f}_{1}(x)=f(\bar{x})+\nabla f(\bar{x})^{\top}(x-\bar{x})
$$

- Ex:

$$
\begin{array}{llrl}
f(x) & =a^{\top} x & \nabla f(x) & =a \\
g(x) & =x^{\top} M x & \nabla g(x) & =\left(M+M^{\top}\right) x \\
& & =2 M x \text { if } M \text { symmetric. }
\end{array}
$$

Hessian matrix

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

- Hessian matrix $\nabla^{2} f(x)$ (often denoted by $H(x)$ in this course):

$$
\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

Second-order approximation of f near \bar{x} :

$$
\hat{f}_{2}(x)=f(\bar{x})+\nabla f(\bar{x})^{\top}(x-\bar{x})+\frac{1}{2}(x-\bar{x})^{\top} \nabla^{2} f(\bar{x})(x-\bar{x})
$$

- Ex:

$$
\begin{array}{llrl}
f(x) & =a^{\top} x & & \nabla^{2} f(x)
\end{array}=0
$$

Lower semi-continuous function (I.s.c.)

f is l.s.c. if and only if at any point x :

$$
x_{n} \underset{n \rightarrow \infty}{ } x \Rightarrow f(x) \leq \lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

f is l.s.c. \Leftrightarrow epigraph $\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid f(x) \leq t\right\}$ is a closed set

Part II

Convexity, convex optimization

Convex set

Convex set: contains line segment between any two points in the set

$$
x, y \in C, 0 \leq \theta \leq 1 \Rightarrow \theta x+(1-\theta) y \in C
$$

- Points of the form $\theta x+(1-\theta) y$ with $0 \leq \theta \leq 1$ corresponds to the line segment between x and y.

Affine set

Affine set: the line through any two points in the set is contained in the set

$$
x, y \in C, \theta \in \mathbb{R} \Rightarrow \theta x+(1-\theta) y \in C
$$

- Points of the form $\theta x+(1-\theta) y$ with $\theta \in \mathbb{R}$ corresponds to the line through x and y.

Affine and convex hull

Affine hull of set $C=$ all affine combinations of points in C

$$
\text { aff } C=\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k} \mid x_{i} \in C, \theta_{1}+\cdots+\theta_{k}=1\right\}
$$

Convex hull of set $C=$ all convex combinations of points in C

$$
\operatorname{conv} C=\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k} \mid x_{i} \in C, \theta_{i} \geq 0, \theta_{1}+\cdots+\theta_{k}=1\right\}
$$

Hyperplanes and halfspaces in \mathbb{R}^{n}

Let $a \in \mathbb{R}^{n}, a \neq 0$ and $b \in \mathbb{R}$:

- Hyperplane: $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x=b\right\}$: convex and affine

- Halfspace: $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x \leq b\right\}$: convex but not affine

- a is the normal vector
- The hyperplane separates the whole space \mathbb{R}^{n} in two halfspaces

Balls and ellipsoids

Euclidian ball:

$$
\begin{aligned}
B(\bar{x}, r] & =\left\{x \mid\|x-\bar{x}\|_{2} \leq r\right\}=\left\{x \mid(x-\bar{x})^{\top}(x-\bar{x}) \leq r^{2}\right\} \\
& =\left\{\bar{x}+r u \mid\|u\|_{2} \leq 1\right\}
\end{aligned}
$$

Ellipsoid:

$$
\mathcal{E}=\left\{x \mid(x-\bar{x})^{\top} P^{-1}(x-\bar{x}) \leq 1\right\} \quad \text { where } P \in \mathbb{S}_{++}^{n}
$$

With $A=P^{1 / 2}$, other representation: $\mathcal{E}=\left\{\bar{x}+A u \mid\|u\|_{2} \leq 1\right\}$

Operations that preserve convexity $(1 / 3)$

Intersection : the intersection of any number of convex sets is convex

Ex:

- Polyhedra: intersection of a finite number of hyperplanes/halfspaces
- $\mathcal{P}=\left\{x \mid a_{j}{ }^{\top} x \leq b_{j}, j=1, \ldots, m, c_{i}^{\top} x=d_{i}, i=1, \ldots, p\right\}$
- Simplex $\left\{\theta_{0} v_{0}+\cdots+\theta_{k} v_{k} \mid \theta \succeq 0, \mathbf{1}^{\top} \theta=1\right\}$ $\left(v_{0}, \ldots, v_{k}\right.$ affinely independent)
- Intersection of halfspaces:
$\left\{x \in \mathbb{R}^{m} /\left|\sum_{k=1}^{m} x_{k} \cos k t\right| \leq 1, \forall t \in[-\pi / 3, \pi / 3]\right\}$
- Positive semidefinite matrices: $\mathbb{S}_{+}^{n}=\bigcap_{x \neq 0}\left\{M \in \mathbb{S}^{n} \mid x^{\top} M x \geq 0\right\}$

Convex hull of a set S : intersection of all convex sets containing S.

Operations that preserve convexity $(2 / 3)$

Affine transformation: the image and inverse image of a convex set under an affine function is convex.

Ex:

- Scaling, translation, projection.
- Sum $S_{1}+S_{2}=\left\{x+y x \in S_{1}, y \in S_{2}\right\}$
- Partial sum $\left\{\left(x, y_{1}+y_{2}\right) ;\left(x, y_{1}\right) \in S_{1},\left(x, y_{2}\right) \in S_{2}\right\}$
- Polyhedron (inverse image of nonnegative orthant)
- Ellipsoid (image/inverse image of the unit Euclidian ball)
- Solution set of a Linear Matrix Inequality (LMI): $\left\{x \in \mathbb{R}^{n} \mid x_{1} A_{1}+\cdots+x_{n} A_{n} \preceq B\right\}$ where B, A_{1}, \ldots, A_{n} are given in \mathbb{S}^{p}

Operations that preserve convexity $(3 / 3)$

Perspective function

$$
P(x, t)=\frac{x}{t} \text { where } P: \mathbb{R}^{n} \times \mathbb{R}_{++} \rightarrow \mathbb{R}^{n}
$$

\rightarrow image and inverse image through perspective remains convex.
Linear-fractional $f(x)=\frac{A x+b}{c^{\top} x+d}$ with dom $f=\left\{x \mid c^{\top} x+d\right\}>0 \rightarrow$ preserve convexity (as a composition of affine and perspective functions).

Relative interior

interior of a set C :
$\operatorname{int} C=\{x \in C \mid B(x, \varepsilon[\subset C$ for sufficiently small $\varepsilon\}$
relative interior of a set $C=$ interior of C relative to its affine hull: relint $C=\{x \in C \mid B(x, \varepsilon[\cap$ aff $C \subseteq C$ for sufficiently small $\varepsilon\}$

Cones

Cone C : for every $x \in C$ and $\theta \geq 0$, we have $\theta x \in C$

Convex cone C : for every $x_{1}, x_{2} \in C$ and $\theta_{1}, \theta_{2} \geq 0$, we have $\theta_{1} x_{1}+\theta_{2} x_{2} \in C$

- Conic hull of a set C :

$$
\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k} \mid x_{i} \in C, \theta_{i} \geq 0, i=1, \ldots, k\right\}
$$

Examples of cones

- Nonnegative orthant $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- Positive semidefinite matrices

$$
\mathbb{S}_{+}^{n}=\left\{M \in \mathbb{S}^{n} \mid M \succeq 0\right\}=\left\{M \in \mathbb{S}^{n} \mid x^{\top} M x \geq 0, \forall x \in \mathbb{R}^{n}\right\}
$$

where \mathbb{S}^{n} is the set of symmetric matrices.

- Norm cone

$$
\left\{(x, t) \in \mathbb{R}^{n+1} \mid\|x\| \leq t\right\}
$$

When $\|\cdot\|=\|\cdot\|_{2}$, also called quadratic / second-order / Lorentz cone

- Cone of positive polynomials

$$
K=\left\{p \in \mathbb{R}^{n} \mid p_{1}+p_{2} t+\cdots+p_{n} t^{n-1} \geq 0, \forall t \in[0,1]\right\}
$$

Normal cone

Normal cone to a convex set C at $\bar{x} \in C$:

$$
\mathcal{N}_{C}(\bar{x})=\{d \in \mathbf{E} \mid\langle d, x-\bar{x}\rangle \leq 0, \forall x \in C\}
$$

when $\mathbf{E}=\mathbb{R}^{n}$, simplifies to:

$$
\mathcal{N}_{C}(\bar{x})=\left\{d \in \mathbb{R}^{n} \mid d^{\top}(x-\bar{x}) \leq 0, \forall x \in C\right\}
$$

Proper cones, generalized inequalities

Proper cone:

- convex
- closed
- solid (i.e. nonempty interior)
- pointed (i.e. contains no line: $x \in K,-x \in K \Rightarrow x=0$)

Generalized inequalities w.r.t. proper cone K :

$$
\begin{aligned}
& x \preceq_{K} y \Leftrightarrow y-x \in K \\
& x \prec_{K} y \Leftrightarrow y-x \in \operatorname{int} K \quad \text { (interior of } K \text {) }
\end{aligned}
$$

Examples of generalized inequalities

- $\quad K=\mathbb{R}_{+}^{n}$ gives usual partial ordering on \mathbb{R}^{n} (componentwise)

$$
x \preceq_{K} y \Longleftrightarrow x_{i} \leq y_{i}, \forall i
$$

- $K=\mathbb{S}_{+}^{n}=$ set of symmetric positive semidefinite matrices

$$
A \preceq B \Longleftrightarrow B-A \in \mathbb{S}_{+}^{n}
$$

- $K=$ cone of positive polynomials

$$
p \preceq_{K} q \Longleftrightarrow 0 \leq\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right) t+\cdots+\left(q_{n}-p_{n}\right) t^{n-1}, \forall t
$$

Separating hyperplane

Separating hyperplane theorem If C and D are disjoint convex sets $(C \cap D=\emptyset)$, there exist $a \neq 0, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that:

$$
\forall x \in C, a^{\top} x \leq b \quad \text { and } \forall x \in D, a^{\top} x \geq b
$$

The hyperplane $\left\{x \mid a^{\top} x=b\right\}$ separates C and D.

Strict separation

Basic separation If C closed and convex and $y \notin C$, there exist $a \neq 0, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that:

$$
\forall x \in C, \quad a^{\top} x \leq b<a^{\top} y
$$

$$
a^{\top} x>b
$$

Supporting hyperplanes

Supporting hyperplane $C \subset \mathbb{R}^{n}, \bar{x} \in \operatorname{bd} C$ If $a \neq 0$ and $\forall x \in C, a^{\top} x \leq a^{\top} \bar{x}$, then $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x=a^{\top} \bar{x}\right\}$ is a supporting hyperplane of C.

If C is convex, then there exist a supporting hyperplane at every boundary point of C.

Convex function

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$.

- strictly convex when: $f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)$
- f is concave if $(-f)$ is convex.

Epigraph

The epigraph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is:

$$
\text { epif }:=\left\{(x, t) \in \mathbb{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

- f is convex if and only if its epigraph is convex.
- sublevel set: $C_{\alpha}:=\{x \mid f(x) \leq \alpha\}$
$\triangleright C_{\alpha}$ is a convex set if f convex

Jensen's inequality

For a convex function f :

- $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$: called Jensen's inequality
- extends to
- sums (finite or not): for $\theta_{1}, \ldots, \theta_{p} \geq 0, \theta_{1}+\cdots+\theta_{p}=1$:

$$
f\left(\theta_{1} x_{1}+\cdots+\theta_{p} x_{p}\right) \leq \theta_{1} f\left(x_{1}\right)+\cdots+\theta_{p} f\left(x_{p}\right)
$$

- integrals and expected values: if $p(x)$ is a pdf with support $S \subset \operatorname{dom} f$:

$$
f\left(\int_{S} x p(x) d x\right) \leq \int_{S} f(x) p(x) d x \quad f(\mathbb{E}\{X\}) \leq \mathbb{E}\{f(X)\}
$$

Examples of convex/concave functions

convex

- $\|x\|$
- $\max \left(x_{1}, \ldots, x_{n}\right)$
- $f(x, y)=\frac{x^{2}}{y}$ with $\operatorname{dom} f=\mathbb{R} \times \mathbb{R}_{++}$
- $\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$

concave

- $f(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$
- $f(X)=\log \operatorname{det} X$ with $\operatorname{dom} f=\mathbb{S}_{++}^{n}$.
convex and concave
- affine functions: $f(x)=a^{\top} x+b$

First order conditions

Differentiable f with convex domain is convex if and only if:

$$
f(x) \geq f(\bar{x})+\nabla f(\bar{x})^{\top}(x-\bar{x}) \quad \forall x, \bar{x} \in \operatorname{dom} f
$$

The linear approximation of f is a global underestimator.

Second order conditions

Twice differentiable f with convex domain:

$$
f \text { convex } \Leftrightarrow \nabla^{2} f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f
$$

If $\nabla^{2} f(x) \succ 0 \quad \forall x \in \operatorname{dom} f$, then f strictly convex.

- Ex: $f(x)=\frac{1}{2} x^{\top} P x+q^{\top} x+r$ defined on \mathbb{R}^{n} is:
- convex iff $P \succeq 0$ (concave iff $P \preceq 0$),
- strictly convex iff $P \succ 0$ (strictly concave iff $P \prec 0$).

Operations that preserve convexity (1/3)

Nonnegative weighted sums: $f=w_{1} f_{1}+\cdots+w_{m} f_{m}$ is convex if f_{1}, \ldots, f_{m} convex and $w_{1}, \ldots, w_{m} \geq 0$.

Composition with an affine mapping: $x \mapsto f(A x+b)$ is convex (resp. concave) if f convex (resp. concave)

Pointwise maximum: $x \mapsto \max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex if f_{1}, \ldots, f_{m} convex (extends to supremum).

Operations that preserve convexity

 (2/3)Composition: let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and $f=h \circ g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x)=h(g(x))$.

- f is convex if h is convex nondecreasing and g is convex,
- f is convex if h is convex nonincreasing and g is concave,
- f is concave if h is concave nondecreasing and g is concave,
- f is concave if h is concave nonincreasing and g is convex.
(Easy proof in simple real valued differentiable case.)

Operations that preserve convexity

 (3/3)Minimization: if $f(x, y)$ convex in $(x, y), C \neq \emptyset, g(x)=\inf _{y \in C} f(x, y)$ is convex in x provided $g(x)>-\infty$ for some x.

Perspective of a function: perspective function of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ defined by

$$
g(x, t)=t f(x / t)
$$

The perspective preserves convexity.

How to prove convexity?

(1) verify definition, often simplified by restricting to a line:
$\triangleright f$ is convex if and only if it is convex when restricted to any line that intersects dom f
Ex: prove concavity of $f(X)=\log \operatorname{det} X$ with $\operatorname{dom} f=\mathbb{S}_{++}^{n}$.
(2) for twice differentiable functions, second-order condition
(3) show that f is obtained from simple convex functions by operations that preserve convexity.

Optimization problem in standard form

General form, non convex (but can be):

$$
\left\{\begin{array}{l}
\min . \\
f_{0}(x) \quad\left(x \in \mathcal{D} \subset \mathbb{R}^{n}\right) \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
h_{j}(x)=0, \quad j=1, \ldots, p
\end{array}\right.
$$

- $x=\left(x_{1}, \ldots, x_{n}\right)^{\top}$: optimization variables
- $f_{0}: \mathcal{D} \rightarrow \mathbb{R}$: objective or cost function
- $f_{i}: \mathcal{D} \rightarrow \mathbb{R}, i=1, \ldots, m$: inequality constraint functions
- $h_{j}: \mathcal{D} \rightarrow \mathbb{R}, j=1, \ldots, p$: equality constraint functions optimal value: $p^{\star}:=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, h_{j}(x)=0, x \in \mathcal{D}\right\}$
- $p^{\star}=+\infty$: problem unfeasible (no x satisfies the constraints)
- $p^{\star}=-\infty$: problem unbounded below

Vocabulary, remarks

- Constraints:
- implicit: $x \in \mathcal{D}$ intersection of all functions domain:
$\mathcal{D} \subset \operatorname{dom} f_{i}$ and $\mathcal{D} \subset \operatorname{dom} h_{j}$
- explicit: $f_{i}(x) \leq 0, h_{j}(x)=0$
- unconstrained problem: only implicit constraints
- Feasible point: any x that satisfies the constraint.
- feasibility problem $=$ find a feasible point $=$ special case of general problem with $f_{0}(x)=0$
- optimal point x^{\star} :
- x^{\star} global optimal if feasible and $p^{\star}=f_{0}\left(x^{\star}\right) \leq f_{0}(x)$ for any feasible x
- $x_{\text {loc }}^{\star}$ local optimum if feasible and $f_{0}\left(x_{\text {loc }}^{\star}\right) \leq f_{0}(x)$ for any x such that $\left\|x-x_{\text {loc }}^{\star}\right\| \leq \alpha$ and x feasible.

Convex optimization problem (standard form)

$$
\left\{\begin{array}{c}
\min . \\
f_{0}(x) \quad\left(x \in \mathcal{D}=\cap_{i=0}^{m} \operatorname{dom} f_{i}\right) \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
a_{i}^{\top} x=b_{i}, \quad i=1, \ldots, p
\end{array}\right.
$$

- objective f_{0} and constraint functions f_{1}, \ldots, f_{m} are convex
- equality constraints are affine.
often written as:

$$
\left\{\begin{array}{l}
\min . f_{0}(x) \quad(x \in \mathcal{D}) \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
\quad A x=b
\end{array}\right.
$$

Remark: can be written with inequalities only. Indeed, for $i=1, \ldots, p$, replace the equalities by the two inequalities $a_{i}^{\top} x-b_{i} \leq 0$ and $-a_{i}^{\top} x+b_{i} \leq 0$

Feasible set of a convex optimization problem

- General convex problem with inequalities only:

$$
\left\{\begin{array}{l}
\min . f_{0}(x) \quad(x \in \mathcal{D}) \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

- for all i, the sublevel set $C_{i}=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0\right\}$ is convex (follows from convexity of f_{i})
- feasible set $X:=\mathcal{D} \cap \bigcap_{i=1}^{m} C_{i}$ is convex
- A convex optimization problem minimizes a convex function over a convex set (take care: some convex sets may be nasty and intractable)

Global / local optimality for a convex optimization problem

Any locally optimal point of a convex problem is globally optimal.

Proof: Let $x_{\text {loc }}^{\star}$ be a local optimum. For an $R>0$,

$$
\forall x \text { feasible, }\left\|x-x_{\mathrm{loc}}^{\star}\right\|<R \Rightarrow f_{0}\left(x_{\mathrm{loc}}^{\star}\right) \leq f_{0}(x) .
$$

$x_{\text {loc }}^{\star}$ not global $\Rightarrow f_{0}(\bar{x})<f_{0}\left(x_{\text {loc }}^{\star}\right)$ for a feasible \bar{x}.
Let $z=(1-\theta) x_{\text {loc }}^{\star}+\theta \bar{x}$ with $\theta=\frac{R}{2\left\|\bar{x}-x_{\text {loc }}^{\star}\right\|}<1$ and use convexity to get a contradiction:

$$
f_{0}\left(x_{\mathrm{loc}}^{\star}\right) \leq f_{0}(z) \leq(1-\theta) f_{0}\left(x_{\mathrm{loc}}^{\star}\right)+\theta f_{0}(\bar{x})<f_{0}\left(x_{\mathrm{loc}}^{\star}\right)
$$

Optimality criterion

For convex and differentiable f_{0} (dom f_{0} open).
x^{\star} is optimal if and only if:

- x^{\star} feasible and: $\nabla f_{0}\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right) \geq 0$ for all feasible x.

- Equivalent condition: $-\nabla f_{0}\left(x^{\star}\right) \in \mathcal{N}_{X}\left(x^{\star}\right) \quad$ (normal cone)

Optimality criterion

(examples, see the exercises)
Particular cases, with differentiable f_{0} (dom f_{0} open):

- unconstrained problem: min. $f_{0}(x)$

$$
x^{\star} \text { optimal } \Leftrightarrow \quad \nabla f_{0}\left(x^{\star}\right)=0, \quad x^{\star} \in \operatorname{dom} f_{0}
$$

- equality constrained problem: $\left\{\begin{array}{l}\min . f_{0}(x) \\ \text { s.t. } A x=b\end{array}\right.$

$$
x^{\star} \text { optimal } \Leftrightarrow \quad \nabla f_{0}\left(x^{\star}\right)+A^{\top} \nu^{\star}=0, \quad A x^{\star}=b, \quad x^{\star} \in \operatorname{dom} f_{0}
$$

- minimization over nonnegative orthant: $\left\{\begin{array}{r}\min . f_{0}(x) \\ \text { s.t. } x \succeq 0\end{array}\right.$

$$
\begin{aligned}
x^{\star} \text { optimal } \Leftrightarrow & x^{\star} \succeq 0, \quad \nabla f_{0}\left(x^{\star}\right) \succeq 0 \\
& x_{i}^{\star}\left[\nabla f_{0}\left(x^{\star}\right)\right]_{i}=0, i=1, \ldots, n
\end{aligned}
$$

Strict separation

Basic separation If C closed and convex and $y \notin C$, there exist $a \neq 0, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that $\forall x \in C, \quad a^{\top} x \leq b<a^{\top} y$.

Proof: Let \bar{x} be a minimizer of $f(x)=\frac{\|x-y\|^{2}}{2}$ on C (which exists). Optimality condition $-\nabla f(\bar{x}) \in \mathcal{N}_{C}(\bar{x})$, yields for all $x \in C$

$$
\begin{gathered}
(y-\bar{x})^{\top}(x-\bar{x}) \leq 0 \quad \text { that is: } \\
\underbrace{(y-\bar{x})}_{=: a}{ }^{\top} x \leq \underbrace{(y-\bar{x})^{\top} \bar{x}}_{=: b}<(y-\bar{x})^{\top} y .
\end{gathered}
$$

Part III

Duality and optimality conditions

Lagrangian (inequality constraints only)

$$
\left\{\begin{array}{l}
\min . f_{0}(x) \quad x \in \mathcal{D} \subset \mathbb{R}^{n} \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

with $\mathcal{D}:=\cap_{i=1}^{m} \operatorname{dom} f_{i}$.
Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- λ_{i} are Lagrange multipliers, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top}$.

Lagrangian: linear approximation interpretation Equivalent unconstrained form:

$$
\min . f(x):=f_{0}(x)+\sum_{i=1}^{m} \imath_{\mathbb{R}_{-}}\left(f_{i}(x)\right)
$$

Replace indicator functions by "soft" constraint/underestimator:

For $\lambda \succeq 0$:

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) \leq f(x)
$$

Lagrange dual function

Dual function

$$
\mathcal{L}_{D}(\lambda):=\inf _{x \in \mathcal{D}} \mathcal{L}(x, \lambda)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)\right)
$$

- \mathcal{L}_{D} is concave (even if non convex problem), can be $-\infty$
- Lower bound property: if $\lambda \succeq 0$, then $\mathcal{L}_{D}(\lambda) \leq p^{\star}$

Proof: for $\lambda \succeq 0$ and x feasible:

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \underbrace{\lambda_{i}}_{\geq 0} \underbrace{f_{i}(x)}_{\leq 0} \leq f_{0}(x)
$$

Taking the infimum on the I.h.s yields $\mathcal{L}_{D}(\lambda) \leq f_{0}(x)$ for any feasible x and hence the result.

The dual problem

Lagrange dual problem

$$
\begin{gathered}
\left\{\begin{array}{c}
\operatorname{max.} \mathcal{L}_{D}(\lambda) \\
\text { s.t. } \lambda \succeq 0
\end{array}\right. \\
d^{\star}:=\sup _{\lambda \succeq 0} \mathcal{L}_{D}(\lambda)
\end{gathered}
$$

- It is a convex problem
- λ dual feasible if $\lambda \succeq 0, \lambda \in \operatorname{dom} \mathcal{L}_{D}$

Weak duality: $d^{\star} \leq p^{\star}$ always holds (also for nonconvex problems) $p^{\star}-d^{\star}$ is called duality gap.

Weak and strong duality

Weak duality (always holds): $d^{\star} \leq p^{\star}$
Strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- holds for convex problems under constraint qualifications (see later).

Duality and max-min inequality

Primal with optimal value $p^{\star}:\left\{\begin{array}{l}\min . f_{0}(x) \quad(x \in \mathcal{D}) \\ \text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m\end{array}\right.$

- Lagrangian: $\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
- Primal reads also:

$$
p^{\star}=\inf _{x \in \mathcal{D}} \sup _{\lambda \succeq 0} \mathcal{L}(x, \lambda)
$$

- Dual problem:

$$
d^{\star}=\sup _{\lambda \succeq 0} \inf _{x \in \mathcal{D}} \mathcal{L}(x, \lambda)
$$

- We have (max-min inequality):

$$
\sup _{\lambda \succeq 0} \inf _{x \in \mathcal{D}} \mathcal{L}(x, \lambda) \leq \inf _{x \in \mathcal{D}} \sup _{\lambda \succeq 0} \mathcal{L}(x, \lambda)
$$

Strong duality when strong max-min/saddle-point property satisfied

Geometric interpretation of duality

Convex case

$$
\left\{\begin{array}{l}
\min _{x \in \mathcal{D}} f_{0}(x) \\
\text { s.t. } f_{1}(x) \leq 0
\end{array} \quad \mathcal{L}_{D}(\lambda)=\inf _{x \in \mathcal{D}} f_{0}(x)+\lambda f_{1}(x)\right.
$$

Geometric interpretation of duality

Non-convex case

$$
\left\{\begin{array}{l}
\min _{x \in \mathcal{D}} f_{0}(x) \\
\text { s.t. } f_{1}(x) \leq 0
\end{array} \quad \mathcal{L}_{D}(\lambda)=\inf _{x \in \mathcal{D}} f_{0}(x)+\lambda f_{1}(x)\right.
$$

Lagrangian (inequality constraints only)

$$
\left\{\begin{array}{c}
\min . \\
f_{0}(x) \quad x \in \mathcal{D} \subset \mathbb{R}^{n} \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

with $\mathcal{D}:=\cap_{i=1}^{m} \operatorname{dom} f_{i}$.
Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- λ_{i} are Lagrange multipliers, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top}$.

Lagrangian sufficient conditions

Assume $\left(x^{\star}, \lambda^{\star}\right) \in \mathcal{D} \times \mathbb{R}^{m}$ satisfies:

$$
\begin{array}{llr}
\forall i=1, \ldots, m, & f_{i}\left(x^{\star}\right) \leq 0 & \text { (primal feasability) } \\
\forall i=1, \ldots, m, & \lambda_{i}^{\star} \geq 0 \\
\forall i=1, \ldots, m, & \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0 & \text { (dual feasability) } \\
\forall x \text { feasible }, \quad \mathcal{L}\left(x^{\star}, \lambda^{\star}\right) \leq \mathcal{L}\left(x, \lambda^{\star}\right) & \left(x^{\star} \text { minimizes } \mathcal{L}\left(., \lambda^{\star}\right)\right)
\end{array}
$$

then, x^{\star} is optimal (global minimum).

Proof: For any feasible x :
$f_{0}\left(x^{\star}\right)=\mathcal{L}\left(x^{\star}, \lambda^{\star}\right) \leq \mathcal{L}\left(x, \lambda^{\star}\right)=f_{0}(x)+\sum_{i=1}^{m} \underbrace{\lambda_{i}^{\star} f_{i}(x)}_{\leq 0} \leq f_{0}(x)$

- λ^{\star} : Lagrange multiplier vector
- Remark: no convexity!

KKT conditions (Karush-Kuhn-Tucker)

Convex case: sufficient conditions

Assume $\left(x^{\star}, \lambda^{\star}\right) \in \operatorname{int} \mathcal{D} \times \mathbb{R}^{m}$ satisfies:

$$
\begin{array}{ll}
\forall i=1, \ldots, m, & f_{i}\left(x^{\star}\right) \leq 0 \\
\forall i=1, \ldots, m, & \lambda_{i}^{\star} \geq 0 \\
\forall i=1, \ldots, m, & \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0 \\
\nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(x^{\star}\right)=0
\end{array}
$$

(primal feasability)
(dual feasabiilty)
(complementary slackness) (x^{\star} critical point of the Lagrangian)
then, if the problem is convex, x^{\star} is optimal.

- λ^{\star} : Lagrange multiplier vector
- Remark: for convex functions $f_{0}, f_{1}, \ldots, f_{m}$, last condition implies $\mathcal{L}\left(x^{\star}, \lambda^{\star}\right) \leq \mathcal{L}\left(x, \lambda^{\star}\right)$

Necessary optimality conditions (Fritz-John)

$$
\left\{\begin{aligned}
\min . & f_{0}(x) \quad x \in \mathcal{D} \subset \mathbb{R}^{n} \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{aligned}\right.
$$

- Active set at point $x: I(x)=\left\{i \in\{1, \ldots, m\} \mid f_{i}(x)=0\right\}$
- Fritz-John optimality conditions:

If $x_{\text {loc }}^{\star} \in \operatorname{int} \mathcal{D}$ is a local minimizer, there exist $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m} \geq 0$ such that:

$$
\lambda_{0} \nabla f_{0}\left(x_{\mathrm{loc}}^{\star}\right)+\sum_{i \in I\left(x_{\mathrm{loc}}^{\star}\right)} \lambda_{i} \nabla f_{i}\left(x_{\mathrm{loc}}^{\star}\right)=0
$$

- For $i \notin I\left(x_{\text {loc }}^{\star}\right)$, complementary slackness yields $\lambda_{i}=0 \rightsquigarrow$ terms don't appear above.
- To rule out the case $\lambda_{0}=0$, constraint qualification at $x_{\text {loc }}^{\star}$ (required for KKT to be necessary conditions)

Local constraint qualifications

Constraint qualifications at a point x :

- MFCQ (Mangasarian-Fromovitz constraint qualification): there is a direction d satisfying $\nabla f_{i}(x)^{\top} d<0$ for all $i \in I(x)$
- LICQ (linear independence constraint qualification):
$\left\{\nabla f_{i}(x)\right\}_{i \in I(x)}$ are linearly independent
Obviously: LICQ \Rightarrow MFCQ

Global constraint qualification (Slater)

- Slater constraint qualification for convex problem with constraints $f_{i}(x) \leq 0, \quad i=1, \ldots, m$
$>$ there exists $\hat{x} \in \operatorname{relint} \mathcal{D}$ with $f_{i}(\hat{x})<0, \quad i=1, \ldots, m$
- Refinement: affine inequalities need not be strict. For constraints

$$
\left\{\begin{array}{l}
f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
A x \leq b, \quad C x=d
\end{array}\right.
$$

$>$ there exists $\hat{x} \in \operatorname{relint} \mathcal{D}$ with $f_{i}(\hat{x})<0, \quad i=1, \ldots, m$ and $A x \leq b, C x=d$

+ For a convex problem: Slater \Rightarrow MFCQ at any feasible point.
+ Slater \approx there exist a strictly feasible point
+ Slater \Rightarrow strong duality and dual value attained when $d^{\star}>-\infty$

KKT necessary optimality conditions

Suppose $x_{\text {loc }}^{\star}$ is a local minimizer of

$$
\inf \left\{f_{0}(x) \mid x \in \mathcal{D}, f_{i}(x) \leq 0, i=1, \ldots, m\right\}
$$

If MFCQ holds at x_{loc}^{\star}, there is a Lagrange multiplier vector λ^{\star} for x_{loc}^{\star} :

$$
\begin{array}{ll}
\forall i=1, \ldots, m, & f_{i}\left(x_{\mathrm{loc}}^{\star}\right) \leq 0 \\
\forall i=1, \ldots, m, & \lambda_{i}^{\star} \geq 0 \\
\forall i=1, \ldots, m, & \lambda_{i}^{\star} f_{i}\left(x_{\mathrm{loc}}^{\star}\right)=0 \\
\nabla f_{0}\left(x_{\mathrm{loc}}^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(x_{\mathrm{loc}}^{\star}\right)=0
\end{array}
$$

(primal feasibility) (dual feasibility) (complementary slackness) ($x_{\text {loc }}^{\star}$ critical point of the Lagrangian)

Remarks:

- No convexity here, but local minimizer considered.
- For convex problems, above conditions are necessary and sufficient for global optimality.

Lagrangian (inequality constraints only)

$$
\left\{\begin{array}{l}
\min . f_{0}(x) \quad x \in \mathcal{D} \subset \mathbb{R}^{n} \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

with $\mathcal{D}:=\cap_{i=1}^{m} \operatorname{dom} f_{i}$.
Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- λ_{i} are Lagrange multipliers, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\top}$.

Necessary optimality conditions (through strong duality)

If strong duality holds, $x^{\star}, \lambda^{\star}$ are primal, dual optimal. Then:

- x^{\star} minimizes $x \mapsto \mathcal{L}\left(x, \lambda^{\star}\right)$
$\left.\rightsquigarrow \nabla_{x} \mathcal{L}\left(x, \lambda^{\star}\right)\right|_{x^{\star}}=0 \quad$ (see next slide)
- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, i=1, \ldots, m \quad$ (complementary slackness)

$$
\lambda_{i}^{\star}>0 \Rightarrow f_{i}\left(x^{\star}\right)=0 \quad f_{i}\left(x^{\star}\right)<0 \Rightarrow \lambda_{i}^{\star}=0
$$

Proof: (write all inequalities, which become equalities)

$$
d^{\star}=\mathcal{L}_{D}\left(\lambda^{\star}\right)=\inf _{x \in \mathcal{D}} \mathcal{L}\left(x, \lambda^{\star}\right) \leq \mathcal{L}\left(x^{\star}, \lambda^{\star}\right) \leq f_{0}\left(x^{\star}\right)=p^{\star}
$$

where $\mathcal{L}\left(x^{\star}, \lambda^{\star}\right)=f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)$
Remark: no convexity assumption

Necessary KKT conditions (through strong duality)

If strong duality holds, $x^{\star}, \lambda^{\star}$ are primal, dual optimal, then the following conditions (called KKT) hold:
(1) Primal constraints: $f_{i}\left(x^{\star}\right) \leq 0$, for $i=1, \ldots, m$
(2) Dual constraints: $\lambda_{i}^{\star} \geq 0$, for $i=1, \ldots, m$
(3) Complementary slackness: $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$
(9) Gradient of Lagrangian w.r.t. x vanishes at x^{\star} :

$$
\nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(x^{\star}\right)
$$

Remark: no convexity assumption

KKT sufficient conditions for convex problem

If $\bar{x}, \bar{\lambda}$ satisfy KKT for a convex problem, then they are primal/dual optimal.
(1) Primal constraints: $f_{i}(\bar{x}) \leq 0$, for $i=1, \ldots, m$
(2) Dual constraints: $\bar{\lambda}_{i} \geq 0$, for $i=1, \ldots, m$
(3) Complementary slackness: $\bar{\lambda}_{i} f_{i}(\bar{x})=0$ for $i=1, \ldots, m$
(4) $\nabla_{x} \mathcal{L}(\bar{x}, \bar{\lambda}, \bar{\nu})=\nabla f_{0}(\bar{x})+\sum_{i=1}^{m} \bar{\lambda}_{i} \nabla f_{i}(\bar{x})=0$

Indeed:

$$
\begin{aligned}
f_{0}(\bar{x}) & =\mathcal{L}(\bar{x}, \bar{\lambda}) \text { from compl. slackness and primal feas. } \\
& =\mathcal{L}_{D}(\bar{\lambda}) \text { from vanishing of } \nabla_{x} \mathcal{L}(\bar{x}, \bar{\lambda}) \text { and convexity. }
\end{aligned}
$$

KKT necessary and sufficient conditions for convex problem

For a convex problem, if Slater's condition is satisfied:

- Strong duality holds,
- Dual optimal value is attained when $d^{\star}>-\infty$ (i.e. there exists λ^{\star} such that $\left.\mathcal{L}_{D}\left(\lambda^{\star}\right)=d^{\star}=p^{\star}\right)$,
- KKT conditions are sufficient and necessary for global optimality.

Remark: This generalizes $\nabla f_{0}\left(x^{\star}\right)=0$ for unconstrained problem.

Perturbation and sensitivity analysis (1/2)

- Unperturbed optimization problem and dual

$$
p^{\star}:\left\{\begin{array} { c }
{ \operatorname { m i n } . f _ { 0 } (x) } \\
{ \text { s.t. } f _ { i } (x) \leq 0 , \quad 1 \leq i \leq m }
\end{array} \quad \left\{\begin{array}{r}
\max . \\
\text { s.t. } \lambda \succeq 0
\end{array}\right.\right.
$$

- Perturbed problem and dual

$$
p^{\star}(u):\left\{\begin{array} { l }
{ \operatorname { m i n } . f _ { 0 } (x) } \\
{ \text { s.t. } f _ { i } (x) \leq u _ { i } , \quad 1 \leq i \leq m }
\end{array} \quad \left\{\begin{array}{c}
\operatorname{max.} \mathcal{L}_{D}(\lambda)-u^{\top} \lambda \\
\text { s.t. } \lambda \succeq 0
\end{array}\right.\right.
$$

Optimal value $p^{\star}(u)$ as a function of parameters u (for the original problem $p^{\star}=p^{\star}(0)$)

Perturbation and sensitivity analysis (2/2)

Assume for problem, strong duality and λ^{\star} dual optimal.

- Global sensitivity:

$$
\begin{aligned}
p^{\star}(u) & \geq \mathcal{L}_{D}\left(\lambda^{\star}\right)-u^{\top} \lambda^{\star}(\text { weak duality pert. prob. }) \\
& \geq p^{\star}(0)-u^{\top} \lambda^{\star}(\text { strong duality })
\end{aligned}
$$

- Local sensitivity: if $p^{\star}(u)$ differentiable at 0 :

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0)}{\partial u_{i}}
$$

Proof: take $u=t e_{i}$ where e_{i} is $i^{\text {th }}$ canonical basis vector and get $\frac{\overline{p^{\star}\left(t e_{i}\right)}-p^{\star}(0)}{t} \geq-\lambda_{i}^{\star}$ for $t>0$ or $\leq-\lambda_{i}^{\star}$ for $t<0$.

- Interpretation: ...

Lagrangian and dual function

$$
\left\{\begin{aligned}
\min . & f_{0}(x) \quad\left(x \in \mathcal{D} \subset \mathbb{R}^{n}\right) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}\right.
$$

Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$
(λ_{i}, ν_{j} are Lagrange multipliers)

$$
\mathcal{L}(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \nu_{j} h_{j}(x)
$$

Dual function $\mathcal{L}_{D}(\lambda, \nu):=\inf _{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu)$

- \mathcal{L}_{D} is concave (even if non convex problem), can be $-\infty$
- Lower bound property: if $\lambda \succeq 0, \nu \in \mathbb{R}^{p}$, then $\mathcal{L}_{D}(\lambda, \nu) \leq p^{\star}$

Lagrangian: linear approximation interpretation
Equivalent unconstrained form:

$$
\min . f(x):=f_{0}(x)+\sum_{i=1}^{m} \imath_{\mathbb{R}_{-}}\left(f_{i}(x)\right)+\sum_{j=1}^{p} \imath_{\{0\}}\left(h_{j}(x)\right)
$$

Replace indicator functions by "soft" constraint/underestimator:

$\lambda \succeq 0$ and $\nu \in \mathbb{R}^{p}, \mathcal{L}(x, \lambda, \nu) \leq f(x)$.

Lagrange dual function

Lagrange dual problem

$$
d^{\star}:=\sup _{\lambda \succeq 0, \nu \in \mathbb{R}^{p}} \mathcal{L}_{D}(\lambda, \nu)=\left\{\begin{array}{c}
\text { max. } \mathcal{L}_{D}(\lambda, \nu) \\
\text { s.t. } \lambda \succeq 0
\end{array}\right.
$$

- It is a convex problem.
- λ, ν are dual feasible if $\lambda \succeq 0, \nu \in \mathbb{R}^{p},(\lambda, \nu) \in \operatorname{dom} \mathcal{L}_{D}$

Weak duality (always holds): $d^{\star} \leq p^{\star}$
$p^{\star}-d^{\star}$ is called duality gap.
Strong duality: $d^{\star}=p^{\star}$

- does not hold in general.
- holds for convex problems under constraint qualifications.

Duality and max-min inequality

Primal with optimal value $p^{\star}:\left\{\begin{array}{l}\text { min. } f_{0}(x) \quad(x \in \mathcal{D}) \\ \text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m \\ h_{j}(x)=0, \quad j=1, \ldots, p\end{array}\right.$

- Lagrangian: $\mathcal{L}(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \nu_{j} h_{j}(x)$
- Primal reads also:

$$
p^{\star}=\inf _{x \in \mathcal{D}} \sup _{\nu \in \mathbb{R}^{p}, \lambda \succeq 0} \mathcal{L}(x, \lambda, \nu)
$$

- Dual problem:

$$
d^{\star}=\sup _{\nu \in \mathbb{R}^{p}, \lambda \succeq 0} \inf _{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu)
$$

- We have (max-min inequality):

$$
d^{\star}=\sup _{\nu \in \mathbb{R}^{p}, \lambda \succeq 0} \inf _{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu) \leq \inf _{x \in \mathcal{D}} \sup _{\nu \in \mathbb{R}^{p}, \lambda \succeq 0} \mathcal{L}(x, \lambda, \nu)=p^{\star}
$$

Strong duality when strong max-min/saddle-point property satisfied.

KKT optimality conditions

$f_{i}\left(x^{\star}\right) \leq 0, \quad i=1, \ldots, m$
$h_{j}\left(x^{\star}\right)=0, \quad j=1, \ldots, p$
$\lambda_{i}^{\star} \geq 0, \quad i=1, \ldots, m$
(primal feasability)
(dual feasability)
$\left(\nu_{j}^{\star} \in \mathbb{R}, \quad j=1, \ldots, p\right)$
$\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, \quad i=1, \ldots, m$
(complementary slackness)
$\mathcal{L}\left(x^{\star}, \lambda^{\star}, \nu^{\star}\right) \leq \mathcal{L}\left(x, \lambda^{\star}, \nu^{\star}\right), \quad \forall x$ feasible $\quad\left(x^{\star}\right.$ minimizes $\left.\mathcal{L}\left(., \lambda^{\star}, \nu^{\star}\right)\right)$

KKT optimality conditions

$$
\begin{aligned}
& f_{i}\left(x^{\star}\right) \leq 0, \quad i=1, \ldots, m \\
& h_{j}\left(x^{\star}\right)=0, \quad j=1, \ldots, p \\
& \lambda_{i}^{\star} \geq 0, \quad i=1, \ldots, m \\
& \left(\nu_{j}^{\star} \in \mathbb{R}, \quad j=1, \ldots, p\right) \\
& \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, \quad i=1, \ldots, m \\
& \\
& \nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(x^{\star}\right)+\sum_{j=1}^{p} \nu_{j}^{\star} \nabla h_{j}\left(x^{\star}\right)=0 \\
& \text { (complementary slackness) } \\
& \text { (dual feasability) } \\
& \text { (x) critical point of } \\
& \text { the Lagrangian) }
\end{aligned}
$$

- Remark: for convex problem, last condition implies $\mathcal{L}\left(x^{\star}, \lambda^{\star}, \nu^{\star}\right) \leq \mathcal{L}\left(x, \lambda^{\star}, \nu^{\star}\right)$ for feasible x.

Least-norm solution of linear equation (example)
Lagrange dual

$$
\min .\|x\|_{2}^{2} \quad \text { s.t. } A x=b
$$

- Lagrangian:

$$
\mathcal{L}(x, \nu)=x^{\top} x+\nu^{\top}(A x-b)
$$

- Dual function: (minimum of \mathcal{L} w.r.t. x when $\nabla_{x} \mathcal{L}(x, \nu)=0$)

$$
\begin{aligned}
\mathcal{L}_{D}(\nu) & =\mathcal{L}\left(-\frac{1}{2} A^{\top} \nu, \nu\right) \\
& =-\frac{1}{4} \nu^{\top} A A^{\top} \nu-b^{\top} \nu \leq \inf \left\{\|x\|_{2}^{2} \mid A x=b\right\}
\end{aligned}
$$

- Primal and dual problems:

$$
p^{\star}:\left\{\begin{array}{l}
\min . x^{\top} x \\
\text { s.t. } A x=b
\end{array} \quad d^{\star}: \max .-\frac{1}{4} \nu^{\top} A A^{\top} \nu-b^{\top} \nu\right.
$$

Least-norm solution of linear equation (example)
KKT conditions and solution

$$
\min .\|x\|_{2}^{2} \quad \text { s.t. } A x=b
$$

- Lagrangian: $\mathcal{L}(x, \nu)=x^{\top} x+\nu^{\top}(A x-b)$
- Dual function: $\mathcal{L}_{D}(\nu)=-\frac{1}{4} \nu^{\top} A A^{\top} \nu-b^{\top} \nu$
- KKT conditions:

$$
\left\{\begin{array}{l}
A x^{\star}=b \\
2 x^{\star}+A^{\top} \nu^{\star}=0
\end{array}\right.
$$

- Solution (when $A A^{\top}$ invertible):

$$
\left\{\begin{array}{l}
x^{\star}=A^{\top}\left(A A^{\top}\right)^{-1} b \\
\nu^{\star}=-2\left(A A^{\top}\right)^{-1} b
\end{array}\right.
$$

LP (standard form) (example)
Lagrange dual

$$
\min . c^{\top} x \quad \text { s.t. } A x=b, x \succeq 0
$$

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & =c^{\top} x-\lambda^{\top} x+\nu^{\top}(A x-b) \\
& =-b^{\top} \nu+\left(c+A^{\top} \nu-\lambda\right)^{\top} x
\end{aligned}
$$

- Dual function:

$$
\mathcal{L}_{D}(\lambda, \nu)= \begin{cases}-b^{\top} \nu & \text { if } A^{\top} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

- Primal and dual problems:

$$
p^{\star}:\left\{\begin{array}{l}
\min . \\
c^{\top} x \\
\text { s.t. } A x=b \\
x \succeq 0
\end{array} \quad d^{\star}:\left\{\begin{array}{r}
\max .-b^{\top} \nu \\
\text { s.t. } A^{\top} \nu+c \succeq 0
\end{array}\right.\right.
$$

LP (standard form) (example)
KKT conditions

$$
\min . c^{\top} x \quad \text { s.t. } A x=b, x \succeq 0
$$

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & =c^{\top} x-\lambda^{\top} x+\nu^{\top}(A x-b) \\
& =-b^{\top} \nu+\left(c+A^{\top} \nu-\lambda\right)^{\top} x
\end{aligned}
$$

- KKT conditions:

$$
\left\{\begin{array}{l}
A x^{\star}=b, \quad x^{\star} \succeq 0 \\
\lambda^{\star} \succeq 0 \\
\lambda_{i}^{\star} x_{i}^{\star}=0, \quad i=1, \ldots, n \\
A^{\top} \nu^{\star}+c-\lambda^{\star}=0
\end{array}\right.
$$

Equality constr. convex quad. minimization (example)
KKT conditions

$$
\left\{\begin{aligned}
\min . & \frac{1}{2} x^{\top} P x+q^{\top} x+r \\
\text { s.t. } & A x=b
\end{aligned} \text { with } P \in \mathbb{S}_{+}^{n} .\right.
$$

- Lagrangian: $\mathcal{L}(x, \nu)=\frac{1}{2} x^{\top} P x+q^{\top} x+r+\nu^{\top}(A x-b)$
- KKT conditions:

$$
A x^{\star}=b, \quad P x^{\star}+q+A^{\top} \nu^{\star}=0
$$

can be written as:

$$
\left[\begin{array}{cc}
P & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

Subgradient

A subgradient of f at \bar{x} is any vector ϕ such that:

$$
f(\bar{x})+\phi^{\top}(x-\bar{x}) \leq f(x) \text { for all } x
$$

- $x \mapsto f(\bar{x})+\phi^{\top}(x-\bar{x})$ is a linear underestimator of f.
- if f convex and differentiable, $\nabla f(\bar{x})$ is (unique) subgradient.

Subdifferential

Definition

The subdifferential of f at \bar{x} is the set of all subgradients, denoted by:

$$
\partial f(\bar{x})=\left\{\phi \in \mathbb{R}^{n} \mid f(\bar{x})+\phi^{\top}(x-\bar{x}) \leq f(x) \text { for all } x\right\}
$$

- $\partial f(\bar{x})$ is a closed convex set (always).
- ∂f is a multi-function / set-valued map. $\partial f: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$
- $\operatorname{dom} \partial f=\left\{x \in \mathbb{R}^{n} \mid \partial f(x) \neq \emptyset\right\}$.
- If f convex and differentiable at $\bar{x} \in \operatorname{int} \operatorname{dom} f$, then $\partial f(\bar{x})=\{\nabla f(\bar{x})\}$.

Subdifferential

Examples
The subdifferential of f at \bar{x} is the set of all subgradients:

$$
\partial f(\bar{x})=\left\{\phi \in \mathbb{R}^{n} \mid f(\bar{x})+\phi^{\top}(x-\bar{x}) \leq f(x) \text { for all } x\right\}
$$

- If f convex and differentiable at $\bar{x} \in \operatorname{int} \operatorname{dom} f$, then $\partial f(\bar{x})=\{\nabla f(\bar{x})\}$.
- Absolute value: $\partial|\cdot|(x)=\left\{\begin{array}{cc}\{-1\} & x<0, \\ \{1\} & x>0, \\ {[-1,1]} & x=0\end{array}\right.$

- Indicator function: $\partial \imath_{C}(\bar{x})=\mathcal{N}_{C}(\bar{x})$ (normal cone operator)

Fermat's rule

Characterization of global minimizer:

$$
x^{\star} \text { global minimizer of } f \quad \Leftrightarrow \quad 0 \in \partial f\left(x^{\star}\right)
$$

Proof: Use definition of subdifferential:

$$
0 \in \partial f\left(x^{\star}\right) \Leftrightarrow f\left(x^{\star}\right)+\left\langle 0, x-x^{\star}\right\rangle \leq f(x) \text { for all } x
$$

Remark:

- holds also for nonconvex f.

The Fenchel conjugate function (definition)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (with $f(x)=\infty$ for $x \notin \operatorname{dom} f$).
Fenchel conjugate:

$$
f^{*}(v)=\sup _{x \in \mathbb{R}^{n}}\left(v^{\top} x-f(x)\right)
$$

The Fenchel conjugate function (first properties)

$$
f^{*}(v)=\sup _{x \in \mathbb{R}^{n}}\left(v^{\top} x-f(x)\right)
$$

- f^{*} is convex
(because sup of affine functions. True for non convex f also.)
- $f \geq g$ implies $f^{*} \leq g^{*}$
- If $\operatorname{dom} f \neq \emptyset, f^{*}$ never takes the value $-\infty$
- f^{*} is I.s.c. (lower semi-continuous)
(because epigraph closed)

Lower semi-continuous function (I.s.c.)

f is l.s.c. if and only if at any point x :

$$
x_{n} \xrightarrow[n \rightarrow \infty]{ } x \quad \Rightarrow f(x) \leq \lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

f is I.s.c. \Leftrightarrow epigraph $\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid f(x) \leq t\right\}$ is a closed set

I.s.c.

non I.s.c.

Fenchel conjugate function

Examples

- $f(x)=a x+b$
- $f(x)=e^{x}$
- $f(x)=-\log x$

$$
\begin{gathered}
f^{*}(v)= \begin{cases}-b & \text { if } v=a \\
+\infty & \text { otherwise }\end{cases} \\
f^{*}(v)= \begin{cases}v \log v-v & \text { if } v \geq 0 \\
+\infty & \text { otherwise }\end{cases} \\
f^{*}(v)= \begin{cases}-\log (-v)-1 & \text { if } v<0 \\
+\infty & \text { otherwise }\end{cases}
\end{gathered}
$$

Fenchel conjugate function

Examples (continued)

- $f(x)=\frac{1}{2} x^{\top} Q x$ with $Q \succ 0$
- $f(x)=\frac{1}{2}\|x\|_{2}^{2}$
- $f(x)=\|x\|$

$$
\begin{array}{r}
f^{*}(v)=\frac{1}{2} v^{\top} Q^{-1} v \\
f^{*}(v)=\frac{1}{2}\|v\|_{2}^{2} \\
f^{*}(v)= \begin{cases}0 & \text { if }\|v\|_{*} \leq 1 \\
+\infty & \text { otherwise }\end{cases}
\end{array}
$$

Dual norm

Let $\|$.$\| be a norm on \mathbf{E}$.
Associated dual norm $\|.\|_{*}$:

$$
\|z\|_{*}:=\sup _{\|x\| \leq 1}\langle z, x\rangle
$$

- $\langle z, x\rangle \leq\|z\|_{*}\|x\|$
- Dual norm of $\|.\|_{2}$ is itself.
- $\|.\|_{\infty}$ and $\|.\|_{1}$ are dual norms of each other.
- Dual of ℓ_{p}-norm is ℓ_{q} norm with $\frac{1}{p}+\frac{1}{q}=1$.
- $\|.\|_{* *}=\|\cdot\|$ (need not hold in infinite dimensional spaces)

Fenchel-Young inequality

- For any x and v in $\mathbb{R}^{n}: \quad f(x)+f^{*}(v) \geq v^{\top} x$
- Equality case:

$$
f(x)+f^{*}(v)=v^{\top} x \Leftrightarrow v \in \partial f(x)
$$

- For f convex, I.s.c., proper, equality case:

$$
\begin{aligned}
f(x)+f^{*}(v)=v^{\top} x & \Leftrightarrow v \in \partial f(x) \\
& \Leftrightarrow x \in \partial f^{*}(v)
\end{aligned}
$$

Fenchel biconjugate

- The biconjugate $f^{* *}=\left(f^{*}\right)^{*}$ is convex I.s.c. (from properties of $f^{*}(v)=\sup _{x \in \mathbb{R}^{n}}\left(v^{\top} x-f(x)\right)$)
- $f^{* *}$ is a minorant of f
(follows from Fenchel-Young inequality $f(x) \geq v^{\top} x-f^{*}(v)$)
Theorem
For any function $\left.\left.f: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$:

$$
\begin{aligned}
f=f^{* *} & \Leftrightarrow f \text { is closed (I.s.c.) and convex } \\
& \Leftrightarrow \text { For all points in } \mathbb{R}^{n},
\end{aligned}
$$

$$
f(x)=\sup \{\alpha(x) \mid \alpha \text { an affine minorant of } f\}
$$

For proper closed convex functions, the conjugacy operation induces a bijection.

Fenchel duality

Let $\left.\left.f: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$ and $\left.\left.g: \mathbb{R}^{m} \rightarrow\right]-\infty,+\infty\right]$ be given function and $A \in \mathbb{R}^{m \times n}$.

$$
\begin{aligned}
p^{\star} & :=\inf _{x \in \mathbb{R}^{n}}\{f(x)+g(A x)\} \\
d^{\star} & :=\sup _{v \in \mathbb{R}^{m}}\left\{-f^{*}\left(A^{\top} v\right)-g^{*}(-v)\right\}
\end{aligned}
$$

(primal value)
(dual value)

We have:

- Weak duality: $d^{\star} \leq p^{\star}$ (proof: Fenchel-Young inequality)
- Strong duality: if f and g are convex, under qualification constraints ${ }^{1}: p^{\star}=d^{\star}$ and the supremum in the dual problem is attained if finite.
${ }^{1} 0 \in \operatorname{core}(\operatorname{dom} g-A \operatorname{dom} f)$ or stronger condition $A \operatorname{dom} f \cap \operatorname{cont} g \neq \emptyset$

Fenchel and Lagrange duality

- Primal problem (as in Fenchel: previous slide): $\min _{x \in \mathbb{R}^{n}} f(x)+g(A x)$
- Equivalent constrained problem:

$$
\min _{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}} f(x)+g(y) \quad \text { s.t. } y=A x
$$

- Lagrangian and dual function:

$$
\begin{aligned}
L(x, y, \nu) & =f(x)+g(y)+\nu^{\top}(y-A x) \\
\inf _{x, y} L(x, y, \nu) & =-\sup _{x \in \mathbb{R}^{n}}\left\{x^{\top} A^{\top} \nu-f(x)\right\}-\sup _{y \in \mathbb{R}^{m}}\left\{(-\nu)^{\top} y-g(y)\right\} \\
& =-f^{*}\left(A^{\top} \nu\right)-g^{*}(-\nu)
\end{aligned}
$$

- Dual problem: $\max _{\nu \in \mathbb{R}^{m}}-f^{*}\left(A^{\top} \nu\right)-g^{*}(-\nu)$ is exactly Fenchel dual! (see previous slide)

Part IV

Algorithms

Unconstrained minimization

With $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex, twice differentiable, find solution to:

$$
p^{\star}: \quad \min _{x} . f(x)
$$

- Optimality condition: $\nabla f\left(x^{\star}\right)=0$
- Produce a sequence of points $x^{(k)} \in \operatorname{dom} f$ such that:

$$
f\left(x^{(k)}\right) \rightarrow p^{\star}
$$

- Starting point $x^{(0)}$ required, such that:

$$
\begin{aligned}
& x^{(0)} \in \operatorname{dom} f \\
& \text { sublevel set }\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\} \text { is closed }
\end{aligned}
$$

Descent methods

Starting from $x^{(0)}$ repeat for $k=0,1,2, \ldots$:

$$
x^{(k+1)}=x^{(k)}+t \Delta x^{(k)} \quad \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- $t \geq 0$ is the step size or step length
- $\Delta x^{(k)}$ is the search direction or step and must satisfy:

$$
\nabla f\left(x^{(k)}\right)^{\top} \Delta x^{(k)}<0
$$

(because $f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top}\left(t \Delta x^{(k)}\right) \leq f\left(x^{(k+1)}\right)$ from convexity)

- Simplified notation:
current point: x, search direction: Δx
next point: $x^{+}=x+t \Delta x \quad$ with: $f\left(x^{+}\right)<f(x)$

Step size and line search

- Constant step size $t>0$ chosen and fixed.
- Exact line search $t=\operatorname{argmin}_{t \geq 0} f(x+t \Delta x)$
- Backtracking (with parameters $\alpha \in] 0,1 / 2[, \beta \in] 0,1[$) starting at $t=1$, repeat $t:=\beta t$ until:

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{\top} \Delta x
$$

(also known as Armijo's rule) graphical interpretation:

Unconstrained descent method

given starting point $x^{(0)} \in \operatorname{dom} f$, tolerance $\epsilon>0$, repeat:
(1) Compute search direction $\Delta x^{(k)}$
(2) Stopping criterion: quit if it is smaller than ϵ.
(3) Choose step size t (backtracking, line search, constant, ...)
(9) Update: $x^{(k+1)}=x^{(k)}+t \Delta x^{(k)}$

Possible search directions for a descent method:

- gradient: $\Delta x_{\text {grad }}^{(k)}=-\nabla f\left(x^{(k)}\right)$
- (normalized) steepest descent: $\Delta x_{\text {nsd }}^{(k)}=\operatorname{argmin}_{v}\left\{\nabla f\left(x^{(k)}\right)^{\top} v \mid\|v\| \leq 1\right\}$
- Newton: $\Delta x_{\mathrm{nt}}^{(k)}=-\nabla^{2} f\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)$

Gradient descent

Gradient descent direction (at point x):

$$
\Delta x_{\mathrm{grad}}=-\nabla f(x)
$$

Stopping condition: usually $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\epsilon$.

Strongly convex function

f is strongly convex iff $f-\frac{m}{2}\|x\|_{2}^{2}$ is convex for an $m>0$. For twice continuously differentiable f, equivalent to $\nabla^{2} f(x) \succeq m \mathbf{I d}$ Implications:

- $f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2} \quad$ (convexity)
- $p^{\star} \geq f(x)-\frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} \quad$ (minimize above r.h.s. w.r.t. y)
- Sublevel sets are bounded (because of the first inequality above). On $\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\}$, Hessian max. eigenvalue bounded: $\nabla^{2} f(x) \preceq M \mathbf{I d}$.
$\rightarrow f(y) \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{M}{2}\|y-x\|_{2}^{2}$
- M / m is an upper-bound on the condition number of $\nabla^{2} f(x)$.

$$
m \mathbf{I d} \preceq \nabla^{2} f(x) \preceq M \mathbf{I d}
$$

Convergence

(Gradient with exact line search)

For strongly convex f :

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

- $c \in] 0,1\left[\right.$ is a constant, depends on $x^{(0)}$ and the function f.
- $c=1-\frac{m}{M} \quad$ if $m \mathbf{I d} \preceq \nabla^{2} f(x) \preceq M \mathbf{I d}$.
- $f\left(x^{(k)}\right)-p^{\star} \leq \epsilon$ after at most $\frac{\log \left(\left(f\left(x^{(0)}-p^{\star}\right) / \epsilon\right)\right.}{\log 1 / c}$ iterations.
\rightsquigarrow gradient very simple but very slow, rarely used in practice.

Gradient with optimal step

Gradient with fixed step

Steepest descent

Normalized direction (at x for given $\|\cdot\|$)

$$
\Delta x_{\text {nsd }}=\operatorname{argmin}\left\{\nabla f(x)^{\top} v \mid\|v\| \leq 1\right\}
$$

Unnormalized direction: $\Delta x_{\text {sd }}=\|\nabla f(x)\|_{*} \Delta x_{\text {nsd }}$

- For Euclidian norm, $\Delta x_{\text {sd }}=\Delta x_{\text {grad }}$.
- For the norm $\|z\|_{P}=\left(z^{\top} P z\right)^{1 / 2}$ with $P \in \mathbb{S}_{+}^{n}, \Delta x_{\text {sd }}=-P^{-1} \nabla f(x)$.
- For ℓ_{1} norm, $\Delta x_{\mathrm{sd}}=-\frac{\partial f(x)}{\partial x_{i}} e_{i}$ where e_{i} is i-th standard basis vector and i such that $\|\nabla f(x)\|_{\infty}=\left|[\nabla f(x)]_{i}\right|$.

Newton step

Newton method: general descent method with search direction

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x) .
$$

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\hat{f}_{2}(x+v)=f(x)+\nabla f(x)^{\top} v+\frac{1}{2} v^{\top} \nabla^{2} f(x) v
$$

- $x+\Delta x_{\text {nt }}$ solves linearized optimality condition

$$
\begin{aligned}
\nabla f(x+v) & \approx \nabla f(x)+\nabla^{2} f(x) v \\
& =0
\end{aligned}
$$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

Newton decrement

Measure of the proximity of x to x^{\star} :

$$
\lambda(x)=\left(\nabla f(x)^{\top} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{\top} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- directional derivative in the Newton direction: $\nabla f(x)^{\top} \Delta x_{\mathrm{nt}}=-\lambda(x)^{2}$
- affine invariant (unlike $\|\nabla f(x)\|_{2}$)

Unconstrained Newton method

given starting point $x^{(0)} \in \operatorname{dom} f$, tolerance $\epsilon>0$, repeat:
(1) Compute the Newton step $\Delta x_{\mathrm{nt}}^{(k)}$ and decrement $\lambda\left(x^{(k)}\right)$.
(2) Stopping criterion: quit if $\lambda^{2} / 2 \leq \epsilon$
(3) Choose step size t by backtracking line search.
(9) Update: $x^{(k+1)}=x^{(k)}+t \Delta x_{\mathrm{nt}}^{(k)}$

- descent method: for all $k, f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$
- affine invariant: Newton iterates for $\tilde{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are $y^{(k)}=T^{-1} x^{(k)}$.

Convergence

Newton method
For f strongly convex $\left(\nabla^{2} f(x) \succeq m \mathbf{I d}\right)$ and Hessian L-Lipschitz, there exist η, γ with $0<\eta \leq m^{2} / L, \gamma>0$:

- if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \geq \eta$ (damped phase):

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \geq \eta$ (quadratically convergent phase), bactracking selects unit step and:

$$
\frac{L}{2 m^{3}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{3}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2}\right)^{2}
$$

\rightarrow number of iterations until $f(x)-p^{\star} \leq \epsilon$ bounded above by:

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\frac{2 m^{3}}{L^{2} \epsilon}\right)
$$

Equality constrained minimization

With $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex, twice differentiable, find solution to:

$$
\left\{\begin{aligned}
\min . & f(x) \\
\text { s.t. } & A x=b
\end{aligned}\right.
$$

- Optimality condition: there exists a ν^{\star} such that:

$$
\left[\begin{array}{l}
A x^{\star}=b \\
\nabla f\left(x^{\star}\right)+A^{\top} \nu^{\star}=0
\end{array}\right.
$$

Equality constr. convex quad. minimization (example) KKT conditions

$$
\left\{\begin{aligned}
\min . & \frac{1}{2} x^{\top} P x+q^{\top} x+r \\
\text { s.t. } & A x=b
\end{aligned} \text { with } P \in \mathbb{S}_{+}^{n} .\right.
$$

- Lagrangian: $\mathcal{L}(x, \nu)=\frac{1}{2} x^{\top} P x+q^{\top} x+r+\nu^{\top}(A x-b)$
- KKT conditions:

$$
A x^{\star}=b, \quad P x^{\star}+q+A^{\top} \nu^{\star}=0
$$

can be written as:

$$
\left[\begin{array}{cc}
P & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

Equality constrained Newton method (1/2)

- Newton step at feasible point x is given by:

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x) \\
0
\end{array}\right]
$$

Interpretation:

- Δx_{nt} solves second order approximation.
- Linearized optimality conditions.
- Newton decrement (expression differs from unconstrained case, same interpretation):
$\lambda(x)=\left(\Delta x_{\mathrm{nt}}{ }^{\top} \nabla^{2} f(x)^{-1} \Delta x_{\mathrm{nt}}\right)^{1 / 2}=\left(-\nabla f(x)^{\top} \Delta x_{\mathrm{nt}}\right)^{1 / 2}$

Equality constrained Newton method (2/2)

given starting point $x^{(0)} \in \operatorname{dom} f$ with $A x^{(0)}=b$ (feasible), tolerance $\epsilon>0$,
(1) Compute the Newton step Δx_{nt} and decrement $\lambda(x)$.
(2) Stopping criterion: quit if $\lambda^{2} / 2 \leq \epsilon$
(3) Choose step size t by backtracking line search.
(4) Update: $x^{(k+1)}=x^{(k)}+t \Delta x_{\mathrm{nt}}$

- feasible descent method: for all $k, f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$ and $x^{(k)}$ feasible
- affine invariant

Infeasible start Newton method (1/2)

Newton method can be generalized to infeasible x (i.e. $A x \neq b$) Newton step at infeasible point x is given by:

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x) \\
A x-b
\end{array}\right]
$$

primal-dual interpretation

- write optimality conditions as $r(y)=0$, where:

$$
y=(x, \nu) \quad r(y)=\left(\nabla f(x)+A^{\top} \nu, A x-b\right)
$$

- linearizing $r(y)=0$ gives $r(y+\Delta y) \approx r(y)+\operatorname{Dr}(y) \Delta y=0$ and yields the above equation with $w=\nu+\Delta \nu_{\mathrm{nt}}$.

Infeasible start Newton method (2/2)

given starting point $x^{(0)} \in \operatorname{dom} f, \nu^{(0)}$, tolerance $\epsilon>0, \alpha \in] 0,1 / 2[, \beta \in] 0,1[$ repeat:
(1) Compute primal and dual Newton steps $\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}$
(2) Bactracking line search on $\|r\|_{2}$. $t:=1$
while $\| r\left(x+t \Delta x_{\mathrm{nt}}, \nu+t \Delta \nu_{\mathrm{nt}}\left\|_{2}>(1-\alpha t)\right\| r(x, \nu) \|_{2}, t:=\beta t\right.$
(3) Update: $x^{(k+1)}=x^{(k)}+t \Delta x_{\mathrm{nt}}, \nu^{(k+1)}=\nu^{(k)}+t \Delta \nu_{\mathrm{nt}}$ $\underline{\text { until } A x=b \text { and }\|r(x, \nu)\|_{2} \leq \epsilon}$

- not a descent method: $f\left(x^{(k+1)}\right)>f\left(x^{(k)}\right)$ is possible

Inequality constrained minimization

Notations and assumptions

With functions f_{i} convex, twice continuously differentiable and $A \in \mathbb{R}^{p \times n}$, $\operatorname{rank} A=p$, find solution to:

$$
p^{*}: \quad\left\{\begin{array}{l}
\min . \\
f_{0}(x) \\
\text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
A x=b
\end{array}\right.
$$

Assumptions:

- p^{\star} is finite and attained
- problem is strictly feasible: there exist \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0} \quad f_{i}(\tilde{x})<0, i=1, \ldots, m, \quad A \tilde{x}=b
$$

\rightarrow strong duality holds, dual optimum is attained.

Inequality constrained minimization

Reformulation

Original problem reads also:

$$
p^{*}: \quad\left\{\begin{aligned}
\min . & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{aligned}\right.
$$

Using indicator function $\left(\imath_{\mathbb{R}_{-}}(u)=0\right.$ if $u \leq 0$ and $+\infty$ otherwise) \rightsquigarrow equality constrained problem:

$$
p^{\star}: \quad\left\{\begin{array}{l}
\min . f_{0}(x)+\sum_{i=1}^{m} \imath_{\mathbb{R}_{-}}\left(f_{i}(x)\right) \\
\text { s.t. } A x=b
\end{array}\right.
$$

\rightsquigarrow Find an approximation for $\imath_{\mathbb{R}_{-}}$.

Logarithmic barrier

- For $t>0, u \mapsto-\frac{1}{t} \log (-u)$ is a smooth approximation of $\imath_{\mathbb{R}_{-}}$
- Approximation improves as $t \rightarrow \infty$

Approximate problem

$$
p^{\star}: \quad\left\{\begin{array}{l}
\min . f_{0}(x)+\sum_{i=1}^{m} \imath_{\mathbb{R}_{-}}\left(f_{i}(x)\right) \\
\text { s.t. } A x=b
\end{array}\right.
$$

Approximation with logarithmic barrier $\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)$

$$
\left\{\begin{array}{l}
\min . f_{0}(x)-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { s.t. } A x=b
\end{array}\right.
$$

\rightsquigarrow equality constrained problem
\rightsquigarrow, can be solved by Newton method for increasing values of t

Central path

For $t>0$, define $x^{\star}(t)$ as the solution of

$$
\left\{\begin{array}{l}
\min . f_{0}(x)-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { s.t. } A x=b
\end{array}\right.
$$

Central path is $\left\{x^{\star}(t) \mid t>0\right\}$
One can prove:

$$
p^{\star} \geq f_{0}\left(x^{\star}(t)\right)-\frac{m}{t}
$$

$\rightsquigarrow x^{\star}(t)$ converges to optimal point as $t \rightarrow \infty$

Central path: proof of suboptimality bound
From previous slide, $x^{\star}(t)$ satisfies for a $\hat{\nu}$:

$$
\left\{\begin{array}{l}
A x^{\star}(t)=b, \quad f_{i}\left(x^{\star}(t)\right)<0 \\
\nabla f_{0}\left(x^{\star}(t)\right)+\frac{1}{t} \sum_{i=1}^{m} \frac{1}{-f_{i}\left(x^{\star}(t)\right.} \nabla f_{i}\left(x^{\star}(t)\right)+A^{\top} \hat{\nu}=0
\end{array}\right.
$$

Last equation reads $\nabla f_{0}\left(x^{\star}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) \nabla f_{i}\left(x^{\star}(t)\right)+A^{\top} \nu^{\star}(t)=0$ with $\lambda_{i}^{\star}(t)=1 /\left(-t f_{i}\left(x^{\star}(t)\right)\right) \geq 0$ and $\nu^{\star}(t)=\hat{\nu}$. Since $x^{\star}(t)$ minimizes original Lagrangian at $\lambda^{\star}(t), \nu^{\star}(t)$, the latter are dual feasible and:

$$
\begin{aligned}
p^{\star} & \geq \mathcal{L}_{D}\left(\lambda^{\star}(t), \nu^{\star}(t)\right)=\mathcal{L}\left(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)\right) \\
& \geq f_{0}\left(x^{\star}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) f_{i}\left(x^{\star}(t)\right)+\nu^{\star}(t)^{\top}\left(A x^{\star}(t)-b\right) \\
& \geq f_{0}\left(x^{\star}(t)\right)-\frac{m}{t}
\end{aligned}
$$

Barrier method

Given strictly feasible $x, t=t^{(0)}, \mu>1$, tolerance $\epsilon>0$, repeat:
(1) Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$ subject to $A x=b$.
(2) Update. $x:=x^{\star}(t)$.
(3) Stopping criterion. quit if $m / t \leq \epsilon$.
(9) Increase t. $t:=\mu t$.

- Terminates with $f_{0}(x)-p^{\star} \leq \epsilon$
- Centering usually done using Newton's method, starting at current x
- Choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10-20$.
- Several heuristics for choice of $t^{(0)}$

Feasibility and phase I methods

Feasibility problem: find x such that

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{1}
\end{equation*}
$$

Phase I: computes strictly feasible point for barrier method Basic phase I method

$$
\left\{\begin{array}{l}
\min . s \tag{2}\\
\quad \text { s.t. } f_{i}(x) \leq s, \quad i=1, \ldots, m \\
\quad A x=b
\end{array}\right.
$$

- If x, s feasible with $s<0$, then x strictly feasible for (1).
- If optimal value \bar{p}^{\star} of (2) is positive, then (1) infeasible.
- If $\bar{p}^{\star}=0$ in (2) and attained, then (1) feasible (but not strictly). if $\bar{p}^{\star}=0$ in (2) and not attained, then (1) infeasible.

Generalized inequalities

$$
\left\{\begin{array}{l}
\min . f_{0}(x) \text { s.t. } \quad f_{i}(x) \prec_{K_{i}} 0, \quad i=1, \ldots, m \\
A x=b
\end{array}\right.
$$

- f_{0} convex
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k_{i}}$ convex with respect to proper cones $K_{i} \subset \mathbb{R}^{k_{i}}$
- f_{i} twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank} A=p$
- We assume p^{\star} is finite and attained
- We assume proble is strictly feasible; hence strong duality holds and dual optimum is attained
$\rightsquigarrow E x: S O C P, S D P$

(A few words about) Convergence

Number of outer (centering) iterations: exactly

$$
\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

plus the initial centering step (to compute $x^{\star}\left(t^{(0)}\right)$)

Centering problem: see convergence analysis of Newton's method

Part V

Proximal methods

Generalities about proximal methods

Gradient and Newton methods:

- smooth functions (differentiable once or twice),
- medium size problems (Newton), sometimes larger (gradient)

Proximal methods:

- suitable for smooth and non-smooth functions,
- suitable for constrained and unconstrained problems,
- large size and distributed implementations,
- based on high level "prox" operation, which is itself an optimization problem.

(Sub)-gradient in non differentiable case

Proximal operator

Let f be a closed proper convex function.
Proximal operator

$$
\operatorname{prox}_{f}(v)=\operatorname{Arg} \min _{x} f(x)+\frac{1}{2}\|x-v\|_{2}^{2}
$$

Proximal operator of the scaled function (with $\lambda>0$)

$$
\operatorname{prox}_{\lambda f}(v)=\operatorname{Arg} \min _{x} f(x)+\frac{1}{2 \lambda}\|x-v\|_{2}^{2}
$$

Projection and prox

With \imath_{C} indicator function of convex set C, proximal operator generalizes projection Π_{C} :

$$
\begin{aligned}
\operatorname{prox}_{\lambda_{2} C}(v) & =\operatorname{Arg} \min _{x} \imath_{C}(x)+\frac{1}{2 \lambda}\|x-v\|_{2}^{2} \\
& =\operatorname{Arg} \min _{x \in C}\|x-v\|_{2}^{2} \\
& =\Pi_{C}(v)
\end{aligned}
$$

- Ex: for C an affine subset $C=\{x \mid A x=b\}$:

$$
\operatorname{prox}_{\imath_{\{x \mid A x=b\}}}(v)=\left(\mathbf{I d}-A^{\top}\left(A A^{\top}\right)^{-1} A\right) v+A^{\top}\left(A A^{\top}\right)^{-1} b
$$

Prox: examples

Affine function: $f(x)=b^{\top} x+c$:

$$
\operatorname{prox}_{\lambda f}(v)=v-\lambda b
$$

Quadratic function: $f(x)=\frac{1}{2} x^{\top} A x+b^{\top} x+c$ with $A \in \mathbb{S}_{+}^{n}$

$$
\operatorname{prox}_{\lambda f}(v)=(\mathbf{I d}+\lambda A)^{-1}(v-\lambda b)
$$

Indeed: above expression(s) obtained by setting derivative to zero $\nabla f(x)+\frac{1}{\lambda}(x-v)=A x+b+\frac{1}{\lambda}(x-v)=0$

- Shrinkage operator: $\operatorname{prox}_{\frac{\lambda}{2}(.)^{2}}(v)=\frac{1}{1+\lambda} v$ or more generally:

$$
\operatorname{prox}_{\frac{\lambda}{2}\|\cdot\|_{2}^{2}}(v)=\frac{1}{1+\lambda} v
$$

>For $1^{\text {st }}$ order approximation $\hat{f}_{1}(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\top}\left(x-x_{0}\right)$:

$$
\operatorname{prox}_{\lambda \hat{f}_{1}}\left(x_{0}\right)=x_{0}-\lambda \nabla f\left(x_{0}\right)
$$

$>$ For $2^{\text {nd }}$ order approximation

$$
\begin{aligned}
\hat{f}_{2}(x)= & f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\top}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{\top} \nabla^{2} f\left(x_{0}\right)\left(x-x_{0}\right): \\
& \operatorname{prox}_{\lambda \hat{f}_{2}}\left(x_{0}\right)=x_{0}-\left(\frac{1}{\lambda} \mathbf{I d}+\nabla^{2} f\left(x_{0}\right)\right)^{-1} \nabla f\left(x_{0}\right)
\end{aligned}
$$

Interpretation of prox

$$
\operatorname{prox}_{\lambda f}(v)=\operatorname{Arg} \min _{x} f(x)+\frac{1}{2 \lambda}\|x-v\|_{2}^{2}
$$

- $\operatorname{prox}_{\lambda f}(v)$ moves from v towards the minimum of f, penalized by the cost of staying near to v depending on λ
- Connection with gradient step (under some assumptions, for small λ):

$$
\operatorname{prox}_{\lambda f}(v) \approx v-\lambda \nabla f(v)
$$

Prox and subdifferential

From $\operatorname{prox}_{\lambda f}(v)=\operatorname{Arg} \min _{x} f(x)+\frac{1}{2 \lambda}\|x-v\|_{2}^{2}$, it follows:

$$
\begin{aligned}
p=\operatorname{prox}_{\lambda f}(v) & \Leftrightarrow \quad 0 \in \partial f(p)+\frac{1}{\lambda}(p-v) \\
& \Leftrightarrow \quad v \in p+\lambda \partial f(p) \\
& \Leftrightarrow \quad v \in(\mathbf{I d}+\lambda \partial f)(p)
\end{aligned}
$$

Resolvent

For an operator T, the resolvent of T is $(\mathbf{I d}+\lambda T)^{-1}$.

Resolvent of subdifferential

$$
\operatorname{prox}_{\lambda f}=(\mathbf{I d}+\lambda \partial f)^{-1}
$$

In addition, $\operatorname{prox}_{\lambda f}$ is single-valued.

Soft thresholding

(Scalar case)
$\operatorname{prox}_{\lambda|.|}($.$) of absolute value is the soft thresholding operator:$

$$
\underset{\substack{ \\S_{\lambda}(v)=\operatorname{sign}(v)[|v|-\lambda]^{2} \\ \text { sot-thressolding operator }}}{ }= \begin{cases}v-\lambda & \text { if } v \geq \lambda, \\ 0 & \text { if }-\lambda \leq v \leq \lambda, \\ v+\lambda & \text { if } v \leq-\lambda .\end{cases}
$$

prox of separable sum

If $f(x)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$,

$$
\operatorname{prox}_{f}(v)=\left[\begin{array}{c}
\operatorname{prox}_{f_{1}}\left(v_{1}\right) \\
\vdots \\
\operatorname{prox}_{f_{n}}\left(v_{n}\right)
\end{array}\right]
$$

$>$ For $f(x)=\|x\|_{1}$:

$$
\left[\operatorname{prox}_{\lambda\|\cdot\|_{1}}(v)\right]_{i}=S_{\lambda}\left(v_{i}\right)
$$

$>$ For $f(x)=\frac{1}{2}\|x\|_{2}^{2}$:

$$
\operatorname{prox}_{\frac{\lambda}{2}\|\cdot\|_{2}^{2}}(v)=\left(\frac{1}{1+\lambda}\right) v
$$

Other properties of prox

- Precomposition: if $\tilde{f}(x)=f(\alpha x+\beta)$,

$$
\operatorname{prox}_{\lambda \tilde{f}}(v)=\frac{1}{\alpha}\left[\operatorname{prox}_{\alpha^{2} \lambda f}(\alpha v+\beta)-\beta\right]
$$

- Postcomposition: if $\tilde{f}(x)=\alpha f(x)+b$ with $\alpha>0$,

$$
\operatorname{prox}_{\lambda \tilde{f}}(v)=\operatorname{prox}_{\alpha \lambda f}(v)
$$

- Affine addition: if $\tilde{f}(x)=f(x)+a^{\top} x+b$,

$$
\operatorname{prox}_{\lambda \tilde{f}}(v)=\operatorname{prox}_{\lambda f}(v-\lambda a)
$$

- Regularization: if $\tilde{f}(x)=f(x)+\rho / 2\|x-a\|_{2}^{2}$,

$$
\operatorname{prox}_{\lambda \tilde{f}}(v)=\operatorname{prox}_{\tilde{\lambda} f}((\tilde{\lambda} / \lambda) v+(\rho \tilde{\lambda}) a) \text { where } \tilde{\lambda}=\lambda /(1+\lambda \rho)
$$

Moreau decomposition

Let $f^{*}(v)=\sup _{x}\langle v, x\rangle-f(x)$ be the Fenchel conjugate of f.
Moreau decomposition

$$
v=\operatorname{prox}_{f}(v)+\operatorname{prox}_{f^{*}}(v)
$$

Moreau decomposition

Let $f^{*}(v)=\sup _{x}\langle v, x\rangle-f(x)$ be the Fenchel conjugate of f.
Moreau decomposition

$$
v=\operatorname{prox}_{f}(v)+\operatorname{prox}_{f^{*}}(v)
$$

Proof: Let $p=\operatorname{prox}_{f}(v)$ and define $q=v-p$. By definition of prox, $q \in \partial f(p)$ and hence $p \in \partial f^{*}(q)$, which means $v-q \in \partial f^{*}(q)$ and hence $q=\operatorname{prox}_{f^{*}}(v)$.

Moreau decomposition

Let $f^{*}(v)=\sup _{x}\langle v, x\rangle-f(x)$ be the Fenchel conjugate of f.
Moreau decomposition

$$
v=\operatorname{prox}_{f}(v)+\operatorname{prox}_{f^{*}}(v)
$$

Proof: Let $p=\operatorname{prox}_{f}(v)$ and define $q=v-p$. By definition of prox, $q \in \partial f(p)$ and hence $p \in \partial f^{*}(q)$, which means $v-q \in \partial f^{*}(q)$ and hence $q=\operatorname{prox}_{f^{*}}(v)$.
$>$ generalizes orthogonal decomposition:

- take L a subspace and $f=\imath_{L}$:

$$
\begin{aligned}
\imath_{L}^{*}(v) & =\sup _{x}\left(v^{\top} x-\imath_{L}(x)\right)=\sup _{x \in L} v^{\top} x \\
& =\left\{\begin{array}{ll}
+\infty & \text { if } v^{\top} x_{0} \neq 0 \text { for an } x_{0} \in L \\
0 & \text { if } v^{\top} x=0 \text { for all } x \in L
\end{array}=\imath_{L^{\perp}}(v)\right. \\
& \text { where } L^{\perp}=\left\{y \mid y^{\top} x=0 \text { for all } x \in L\right\}
\end{aligned}
$$

- The Moreau decomposition reads: $v=\Pi_{L}(v)+\Pi_{L^{\perp}}(v)$

Fixed points of prox

Minimizers of f are fixed points of prox_{f} :

$$
x^{\star} \text { minimizes } f \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
$$

Proof:

$\Rightarrow f(x) \geq f\left(x^{\star}\right)$ for any x hence $f(x)+\frac{1}{2}\left\|x-x^{\star}\right\|_{2}^{2} \geq f\left(x^{\star}\right)+\frac{1}{2}\left\|x^{\star}-x^{\star}\right\|_{2}^{2}$ which proves that x^{\star} minimizes the I.h.s. expression.
$\Leftarrow \tilde{x}=\operatorname{prox}_{f}(v)$ if and only if \tilde{x} minimizes $f(x)+\frac{1}{2}\|x-v\|_{2}^{2}$, that is if and only if $0 \in \partial f(\tilde{x})+(\tilde{x}-v)$. With $\tilde{x}=v$, we get $0 \in \partial f(\tilde{x})$ and thus $\tilde{x}=v=x^{\star}$.

Proximal point algorithm

Proximal minimization algorithm

$$
x^{(k+1)}=\operatorname{prox}_{\lambda f}\left(x^{(k)}\right)
$$

- Convergence can be justified, few applications.
> Iterative refinement method for solving $A x=b\left(A \in \mathbb{S}_{+}^{n}\right)$:

$$
x^{(k+1)}=x^{(k)}+(A+\epsilon \mathbf{I d})^{-1}\left(b-A x^{k}\right)
$$

\leftrightarrow Proximal point minimization of $g(x)=\frac{1}{2} x^{\top} A x-b^{\top} x$:

$$
\begin{aligned}
\operatorname{prox}_{\lambda g}(v) & =(\mathbf{I d}+\lambda A)^{-1}(v+\lambda A v-\lambda A v+\lambda b) \\
& =v-\left(\frac{1}{\lambda} \mathbf{I d}+A\right)^{-1}(A v-b)
\end{aligned}
$$

Proximal gradient

- Split objective:

$$
\min . f(x)+g(x)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ are l.s.c., proper, convex; f is differentiable and g can be nonsmooth

- Proximal gradient method:

$$
x^{(k+1)}:=\operatorname{prox}_{\lambda_{k} g}\left(x^{(k)}-\lambda_{k} \nabla f\left(x^{(k)}\right)\right)
$$

where $\lambda_{k}>0$ is a step size.
\triangleright Converges with fixed step size $\left.\left.\lambda_{k}=\lambda \in\right] 0,2 / L\right]$ when ∇f is Lipschitz continuous with constant L.

LASSO (Least Absolute Shrinkage and Selection Operator)
(Proximal gradient algorithm)

$$
\min \cdot \frac{1}{2}\|A x-b\|_{2}^{2}+\gamma\|x\|_{1}
$$

- Splitting:

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{2}\|A x-b\|_{2}^{2} & g(x) & =\gamma\|x\|_{1} \\
\nabla f(x) & =A^{\top}(A x-b) & \operatorname{prox}_{\lambda g}(x) & =S_{\lambda \gamma}(x)
\end{array}
$$

- Proximal algorithm:

$$
x^{(k+1)}:=S_{\lambda \gamma}\left(x^{(k)}-\lambda A^{\top}\left(A x^{(k)}-b\right)\right)
$$

where fixed step-size $0<\lambda \leq \frac{1}{\left\|A^{\top} A\right\|_{2}}$
\triangleright Sometimes called ISTA (Iterative Shrinkage-Thresholding Algorithm), accelerated version called FISTA (Fast ISTA).

Alternating Direction Method of Multipliers (ADMM)

 (seen as a proximal algorithm)- Split objective:

$$
\min . f(x)+g(x)
$$

$f, g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ are I.s.c., proper, convex.
f and g can be nonsmooth.

- Alternating direction method of multipliers (ADMM):

$$
\left[\begin{array}{l}
x^{(k+1)}:=\operatorname{prox}_{\lambda f}\left(z^{(k)}-u^{(k)}\right) \\
z^{(k+1)}:=\operatorname{prox}_{\lambda g}\left(x^{(k+1)}+u^{(k)}\right) \\
u^{(k+1)}:=u^{(k)}+x^{(k+1)}-z^{(k+1)}
\end{array}\right.
$$

\triangleright Also known as Douglas-Rachford splitting.

Augmented Lagrangian and prox operator

- min. $f(x)+g(x)$ equivalent to:

$$
\left\{\begin{array}{cl}
\min . & f(x)+g(z) \\
\text { s.t. } & x-z=0
\end{array}\right.
$$

- Augmented Lagrangian (with parameter $\rho>0$):

$$
L_{\rho}(x, z, y)=f(x)+g(z)+y^{\top}(x-z)+\frac{\rho}{2}\|x-z\|_{2}^{2}
$$

can be written with $u=\frac{1}{\rho} y$:

$$
L_{\rho}(x, z, y)=f(x)+g(z)+\frac{\rho}{2}\|x-z+u\|_{2}^{2}-\frac{\rho}{2}\|u\|_{2}^{2}
$$

$\Rightarrow \operatorname{Arg} \min _{x} L_{\rho}(x, z, y)=\operatorname{prox}_{\lambda f}(z-u)$
$\Rightarrow \operatorname{Arg} \min _{z} L_{\rho}(x, z, y)=\operatorname{prox}_{\lambda g}(x+u)$ where $\lambda=\frac{1}{\rho}$.

Alternating Direction Method of Multipliers (ADMM)

 (seen as an augmented Lagrangian method)- min. $f(x)+g(x)$ equivalent to:

$$
\left\{\begin{array}{c}
\min . f(x)+g(z) \\
\text { s.t. } x-z=0
\end{array}\right.
$$

- Augmented Lagrangian (with parameter $\rho>0$):

$$
L_{\rho}(x, z, y)=f(x)+g(z)+y^{\top}(x-z)+\frac{\rho}{2}\|x-z\|_{2}^{2}
$$

- Alternate Direction Method of Multipliers (ADMM) iterations:

$$
\left[\begin{array}{l}
x^{(k+1)}:=\operatorname{Arg} \min _{x} L_{\rho}\left(x, z^{(k)}, y^{(k)}\right) \\
z^{(k+1)}:=\operatorname{Arg} \min _{z} L_{\rho}\left(x^{(k+1)}, z, y^{(k)}\right) \\
y^{(k+1)}:=y^{(k)}+\rho\left(x^{(k+1)}-z^{(k+1)}\right)
\end{array}\right.
$$

Basis pursuit

(ADMM algorithm)

$$
\left\{\begin{aligned}
\min . & \|x\|_{1} \\
\text { s.t. } & A x=b
\end{aligned}\right.
$$

- Equivalent to:

$$
\left\{\begin{array}{c}
\min . \imath_{\{x \mid A x=b\}}(x)+\|z\|_{1} \\
\text { s.t. } x-z=0
\end{array}\right.
$$

- ADMM iterations (derived from slide 154):

$$
\left[\begin{array}{rl}
x^{(k+1)} & :=\Pi_{\{x \mid A x=b\}}\left(z^{(k)}-u^{(k)}\right) \\
z^{(k+1)} & :=S_{\lambda}\left(x^{(k+1)}+u^{(k)}\right) \\
u^{(k+1)}:=u^{(k)}+x^{(k+1)}-z^{(k+1)}
\end{array}\right.
$$

with S_{λ} : a soft thresholding and $\Pi_{\{x \mid A x=b\}}$: projection.

LASSO (Least Absolute Shrinkage and Selection Operator)
(ADMM algorithm)

$$
\min \cdot \frac{1}{2}\|A x-b\|_{2}^{2}+\gamma\|x\|_{1}
$$

- Equivalent to:

$$
\left\{\begin{array}{l}
\min . \frac{1}{2}\|A x-b\|_{2}^{2}+\gamma\|z\|_{1} \\
\text { s.t. } x-z=0
\end{array}\right.
$$

- ADMM iterations (derived from slide 154):

$$
\left[\begin{array}{rl}
x^{(k+1)} & :=\left(\lambda A^{\top} A+\mathbf{I d}\right)^{-1}\left(\left(z^{(k)}-u^{(k)}\right)+\lambda A^{\top} b\right) \\
z^{(k+1)} & :=S_{\lambda \gamma}\left(x^{(k+1)}+u^{(k)}\right) \\
u^{(k+1)} & :=u^{(k)}+x^{(k+1)}-z^{(k+1)}
\end{array}\right.
$$

with $S_{\lambda \gamma}$: soft thresholding.

Alternating Direction Method of Multipliers (ADMM)

 (seen as an augmented Lagrangian method)$$
\left\{\begin{aligned}
\min . & f(x)+g(z) \\
\text { s.t. } & A x+B z=c
\end{aligned}\right.
$$

- Augmented Lagrangian (with parameter $\rho>0$):

$$
L_{\rho}(x, z, y)=f(x)+g(z)+y^{\top}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Alternate Direction Method of Multipliers (ADMM) iterations:

$$
\left[\begin{array}{rl}
x^{(k+1)} & :=\operatorname{Arg} \min _{x} L_{\rho}\left(x, z^{(k)}, y^{(k)}\right) \\
z^{(k+1)} & :=\operatorname{Arg} \min _{z} L_{\rho}\left(x^{(k+1)}, z, y^{(k)}\right) \\
y^{(k+1)} & :=y^{(k)}+\rho\left(A x^{(k+1)}+B z^{(k+1)}-c\right)
\end{array}\right.
$$

Generalized LASSO

(ADMM algorithm)

$$
\min . \frac{1}{2}\|A x-b\|_{2}^{2}+\gamma\|F x\|_{1}
$$

- Equivalent to:

$$
\left\{\begin{aligned}
& \min . \frac{1}{2}\|A x-b\|_{2}^{2}+\gamma\|z\|_{1} \\
& \text { s.t. } F x-z=0
\end{aligned}\right.
$$

- ADMM iterations (derived from slide 159 with $\rho=1 / \lambda$, compare with slide 158):

$$
\left[\begin{array}{l}
x^{(k+1)}:=\left(A^{\top} A+\rho F^{\top} F\right)^{-1}\left(A^{\top} b+\rho F^{\top}\left(z^{(k)}-u^{(k)}\right)\right) \\
z^{(k+1)}:=S_{\gamma / \rho}\left(F x^{(k+1)}+u^{(k)}\right) \\
u^{(k+1)}:=u^{(k)}+F x^{(k+1)}-z^{(k+1)}
\end{array}\right.
$$

