Traitement du signal avancé (SIC4102)

Marc Castella marc.castella@telecom-sudparis.eu

Télécom SudParis

February 5, 2024

Part I

Présentation du module

Liste des séances programmées

- mer 07/02 10h-13h
- ven 09/02 10h-13h
- mer 28/02 10h-13h
- ven 01/03 10h-13h
- mer 13/03 10h-13h
- mar 20/03 10h-13h
- ven 22/03 10h-13h
- ven 29/03 10h-13h
- mer 03/04 10h-13h
- ven 05/04 10h-13h
- ven 03/05 14:30-16:30 : contrôle final
 - Questions de type QCM,
 - Exercices simples et questions de cours.
 - Pas de CF2.
- TPs: intégrés au cours + travail personnel en autonomie

Prérequis du module

Liste incomplète de notions utiles:

- algèbre linéaire:
 - produit matriciel, bases, espace vectoriel, norme, produit scalaire et projection orthogonale
- théorie du signal:
 - filtre, convolution
 - signaux à temps discret
 - échantillonnage
- probabilités et statistiques:
 - signaux aléatoires, espace des variables aléatoires de carré sommable
 - bases du cours de statistiques
- bases de programmation Python Scientifique (environnement au choix: iPython, Notebook, Jupyter Lab, ...)

Présentation du module

Thème: Reconstruction de signaux dans les modèles linéaires

- Apprentissage supervisé
 - approximation de signaux (choix de critère, régularisation)
 - estimation (régularisation, interprétation bayésienne)
 - filtre inverse, filtre de Wiener; application en communications numériques (égalisation)
- Apprentissage aveugle et séparation de sources
 - analyse en composantes principales (PCA)
 - analyse en composantes indépendantes (ICA)
 - statistiques d'ordre supérieur (cumulants)
 - principes statistiques et critères de théorie de l'information
- Travaux pratiques en autonomie: modèles linéaires
- Compléments et rappels d'optimisation (selon besoins)
- Selon temps disponible: quelques éléments sur le cas non linéaire

Gradient vector

Let $f : \mathbb{R}^n \to \mathbb{R}$.

• Gradient (column) vector $\nabla f(x)$:

$$[\nabla f(x)]_i = \frac{\partial f(x)}{\partial x_i}$$

First-order approximation of f near \overline{x} :

$$f(x) = f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x}) + o(||x - \overline{x}||)$$

Ex:

$$\begin{split} f(x) &= a^\top x & \nabla f(x) = a \\ g(x) &= x^\top M x & \nabla g(x) = (M + M^\top) x \\ &= 2Mx \text{ if } M \text{ symmetric.} \end{split}$$

Hessian matrix

Let $f : \mathbb{R}^n \to \mathbb{R}$.

• Hessian matrix $\nabla^2 f(x)$

$$[\nabla^2 f(x)]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Second-order approximation of f near \overline{x} :

$$f(x) = f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x}) + \frac{1}{2} (x - \overline{x})^{\top} \nabla^2 f(\overline{x}) (x - \overline{x}) + o(||x - \overline{x}||^2)$$

• Ex:

$$\begin{split} f(x) &= a^\top x & \nabla^2 f(x) = 0 \\ g(x) &= x^\top M x & \nabla^2 g(x) = M + M^\top \\ &= 2M \text{ if } M \text{ symmetric.} \end{split}$$

Part II

Linear models

Approximation problem

Given a signal with samples \mathbf{y} in \mathbb{R}^m , find its best linear representation on a signal basis $\mathbf{a}_1, \ldots, \mathbf{a}_n$:

$$\mathbf{y} \approx x_1 \mathbf{a}_1 + \dots + x_n \mathbf{a}_n$$

Norm minimization problem:

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|$$

where $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{m \times n}$ with $m \ge n$. Interpretations of $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|$:

- geometric: $\mathbf{A}\mathbf{x}^{\star}$ is the point in $\operatorname{Span}(\mathbf{A})$ closest to \mathbf{y} .
- estimation: linear measurement y = Ax + n where n is a measurement error or additive noise and x unknown.
- optimal design/synthesis: x are variables, Ax is result;
 x* is design that gives best desired result y.

Norm minimization

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|$$

with $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ge n$.

• $\|.\|_2$ norm: least-squares approximation. Solution satisfies:

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x}^{\star} = \mathbf{A}^{\top}\mathbf{y}$$

and if rank $\mathbf{A} = n$, $\mathbf{x}^{\star} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{y}$.

- $\bullet ~ \|.\|_{\infty}$ norm: Chebyshev approximation.
- $\|.\|_1$ norm: minimize sum of absolute residuals.
- Rq: no analytic solution to last two problems, but can be solved as LPs.

Penalty function approximation

min.
$$\phi(r_1) + \dots + \phi(r_m)$$

s.t. $\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{y}$

with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and ϕ a convex penalty function.

- $\bullet \ {\rm quadratic} \ \phi(u) = u^2$
- dead-zone linear: $\phi(u) = [|u| \alpha]_+$

• log-barrier:
$$\phi(u) = \begin{cases} -a^2 \log(1 - (\frac{u}{a})^2) & |u| < a, \\ +\infty & \text{otherwise.} \end{cases}$$

Penalty function approximation

Residuals histograms for the different penalties

Robustness, robust regression

- Outlier: measurement $y_i = \mathbf{a}_i^\top \mathbf{x} + n_i$ with large noise value n_i .
- Penalty function that avoid sensitivity to outliers:

$$\phi(u) = \begin{cases} u^2 & |u| < M, \\ M^2 & |u| \ge M. \end{cases}$$

Non convex!

• Huber penalty function:

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| < M, \\ M(2|u| - M) & |u| \ge M. \end{cases}$$

Robust regression Example

Least-norm problems

min. $\|\mathbf{x}\|$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{y}$

with $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \leq n$.

- $\|.\|_2$: least-squares solution of linear equations. can be solved via optimality conditions.
- $\|.\|_1$: minimum sum of absolute values: tends to produce a sparse solution.

can be solved as an LP.

Comparison between ℓ_2 and ℓ_1 norms

Interpretation of ℓ_1 as a convex relaxation

• Original ℓ_0 cardinality problem:

$$\begin{bmatrix} \min. \|\mathbf{x}\|_{0} \\ \text{s.t.} \|\mathbf{x}\|_{\infty} \leq R \\ \mathbf{x} \in \mathcal{C} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \min. \mathbf{1}^{\top} z \\ \text{s.t.} |x_{i}| \leq R z_{i} \\ x \in \mathcal{C}, \quad z_{i} \in \{0, 1\} \end{bmatrix}$$

• Relaxation of ℓ_0 to ℓ_1 :

$$\begin{bmatrix} \min. \mathbf{1}^{\top} z \\ \text{s.t.} |x_i| \le R z_i \\ x \in \mathcal{C}, \quad 0 \le z_i \le 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \min. \frac{1}{R} \| \mathbf{x} \|_1 \\ \text{s.t.} x \in \mathcal{C} \end{bmatrix}$$

Iterated weighted ℓ_1

- Cardinality problem: $\min. \|\mathbf{x}\|_0 \ s.t. \ \mathbf{x} \in \mathcal{C}$
- Iterated weighted ℓ_1 : Set $\mathbf{w} = \mathbf{1}$.

min. $\|\operatorname{diag}(\mathbf{w})\mathbf{x}\|_1$ s.t. $\mathbf{x} \in C$ $w_i := 1/(\epsilon + |x_i|)$

• Interpretation for $\mathbf{x} \succeq 0$ (no loss of generality: $x = x^+ - x^-$): Approximate ℓ_0 with $\log(1 + .)$

min.
$$\sum_{i=1}^{n} \log(1 + \frac{x_i}{\epsilon}) \quad \mathbf{x} \in \mathcal{C}, \mathbf{x} \succeq 0$$

and linearize at current iteration point:

$$\log\left(1+\frac{x_i}{\epsilon}\right) \approx \log\left(1+\frac{x_i^{(k)}}{\epsilon}\right) + \frac{x_i - x_i^{(k)}}{\epsilon + x_i^{(k)}}$$

Signal reconstruction problem

ullet Objective: reconstruct the unknown signal $\overline{\mathbf{x}} \in \mathbb{R}^n$

Signal reconstruction

- Observed signal: $\mathbf{y} = \overline{\mathbf{x}} + \mathbf{n}$ where \mathbf{n} is noise.
- Objective: reconstruct the unknown signal $\overline{\mathbf{x}} \in \mathbb{R}^n$
- $\rightarrow\,$ Minimize two objectives (w.r.t. ${\bf x}):$
 - data fidelity term: $\|\mathbf{x} \mathbf{y}\|$
 - regularization term: $\phi(\mathbf{x})$ where $\phi: \mathbb{R}^n \to \mathbb{R}$
- \rightarrow Penalized criterion minimization: min. $\|\mathbf{x} \mathbf{y}\|_2^2 + \lambda \phi(\mathbf{x})$
 - Examples:

Quadratic smoothing (example 1)

original and noisy signal

three reconstructed signals for different $\boldsymbol{\lambda}$

Quadratic smoothing (example 2)

original and noisy signal

three reconstructed signals for different $\boldsymbol{\lambda}$

Total variation denoising

original and noisy signal

three reconstructed signals for different $\boldsymbol{\lambda}$

Maximum likelihood estimation

- Gaussian noise: least-squares, best linear unbiased estimator (BLUE)
- Laplacian noise: ℓ_1 norm approximation
- uniform noise: ℓ_∞ norm

Maximum a posteriori estimation

- Gaussian noise:
- Gaussian regularization: RIDGE estimator (link with MMSE/Wiener filtering)
- Laplace regularization: ℓ_1 prior term
- uniform prior: ℓ_∞ constraint
- Perfect (non noisy) observations:
 - Gaussian prior: least ℓ_2 solution
 - \bullet Laplace prior: least ℓ_1 solution, link with basis pursuit/compressive sensing

Maximum likelihood

Parametric estimation

- Observation: $\mathbf{y} \in \mathbb{R}^m$
- $oldsymbol{ heta} \in \mathbb{R}^n$; unknown parameter to be estimated
- Parametric probability law: $\mathbf{y} \sim p_{\boldsymbol{\theta}}(\mathbf{y})$

Maximum likelihood. For a given realization of $\ensuremath{\mathbf{y}}$

- likelihood: $\boldsymbol{\theta} \mapsto p_{\boldsymbol{\theta}}(\mathbf{y})$
- log-likelihood: $\mathcal{L}(\theta) = \log p_{\theta}(\mathbf{y})$
- maximum likelihood estimator:

$$\hat{\boldsymbol{\theta}}_{ML} = \operatorname{Arg} \max_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\mathbf{y})$$
$$= \operatorname{Arg} \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$

<u>Remark</u>: If above maximization is a convex problem, constraint $\theta \in C$ with C convex can be added.

Observation model

Assumed model:

$$\mathbf{y} = \mathbf{A}\boldsymbol{\theta} + \mathbf{b} \quad \text{where:}$$
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m \quad \mathbf{A} = \begin{bmatrix} \mathbf{a}_1^\top \\ \vdots \\ \mathbf{a}_m^\top \end{bmatrix} \in \mathbb{R}^{m \times n} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^m, \text{ i.i.d.}$$

linear model with additive noise reads also (∀i = 1,...,m) y_i = a_i^Tθ + b_i with b_i i.i.d. noise with pdf b_i ~ p_b(.) and a_i given.
Likelihood: p_θ(y) = ∏_{i=1}^m p_b(y_i - a_i^Tθ)
Log-likelihood: L(θ) = ∑_{i=1}^m log p_b(y_i - a_i^Tθ)

Gaussian noise

Assume noise $\sim \mathcal{N}(0, \sigma^2)$, that is $p_b(.) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(.)^2}{2\sigma^2}}$. \triangleright Log-likelihood:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{m} \log p_b(y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta})$$
$$= \sum_{i=1}^{m} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta})^2}{2\sigma^2} \right]$$
$$= \underbrace{-\frac{m}{2} \log(2\pi\sigma^2)}_{\text{cst.}} - \underbrace{\frac{1}{2\sigma^2}}_{\text{cst.}} \underbrace{\sum_{i=1}^{m} (y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta})^2}_{\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2}$$

 \triangleright Maximum likelihood estimator is least-squares / least ℓ_2 norm approximation:

$$\hat{\boldsymbol{\theta}}_{\mathrm{ML}} = \operatorname{Arg\,min}_{\boldsymbol{\theta}} \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_{2}^{2} := \hat{\boldsymbol{\theta}}_{\mathrm{ls}}$$

27/125 See properties of least-squares / "BLUE" estimator in exercise.

SIC4102 2024

Laplace noise

Assume noise has density $p_b(.) = \frac{1}{2\alpha} e^{-\frac{|.|}{\alpha}}$ ($\alpha > 0$ given)

▷ Log-likelihood:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{m} \log p_b(y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta})$$
$$= \sum_{i=1}^{m} \left[-\log(2\alpha) - \frac{|y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta}|}{\alpha} \right]$$
$$= \underbrace{-m \log(2\alpha)}_{\text{cst.}} - \frac{1}{\alpha} \underbrace{\sum_{i=1}^{m} |y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta}|}_{\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_1}$$

 \triangleright Maximum likelihood estimator is least ℓ_1 norm approximation:

$$\hat{\boldsymbol{ heta}}_{\mathrm{ML}} = \operatorname{Arg\,min}_{\boldsymbol{ heta}} \|\mathbf{y} - \mathbf{A}\boldsymbol{ heta}\|_{1}$$

Uniform noise

Assume uniform noise with density $p_b(.) = \frac{1}{2\alpha} \mathbb{1}_{[-\alpha,\alpha]}(.)$ ($\alpha > 0$ given) \triangleright Likelihood:

$$\begin{split} p_{\boldsymbol{\theta}}(\mathbf{y}) &= \prod_{i=1}^{m} \frac{1}{2\alpha} \mathbb{1}_{[-\alpha,\alpha]}(y_{i} - \mathbf{a}_{i}^{\top} \boldsymbol{\theta}) \\ &= \begin{cases} \frac{1}{(2\alpha)^{m}} & \forall i, -\alpha \leq y_{i} - \mathbf{a}_{i}^{\top} \boldsymbol{\theta} \leq \alpha \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

▷ Maximum likelihood estimator such that $-\alpha \leq y_i - \mathbf{a}_i^\top \boldsymbol{\theta} \leq \alpha$ for all i = 1, ..., m is given by ℓ_∞ norm minimization:

$$\begin{split} \hat{\boldsymbol{\theta}}_{\mathrm{ML}} &= \mathrm{Arg\,min}_{\boldsymbol{\theta}} \, \| \mathbf{y} - \mathbf{A} \boldsymbol{\theta} \|_{\infty} \\ \text{given by: } \, \| \mathbf{y} - \mathbf{A} \hat{\boldsymbol{\theta}}_{\mathrm{ML}} \|_{\infty} \leq \alpha \end{split}$$

Maximum a posteriori

- Observation: $\mathbf{y} \in \mathbb{R}^m$
- $\theta \in \mathbb{R}^n$; unknown parameter to be estimated is a random variable. Prior density: $p(\theta) = \int p(\theta, \mathbf{y}) d\mathbf{y}$
- Posterior density: $p(\theta/\mathbf{y}) = \frac{p(\theta, \mathbf{y})}{p(\mathbf{y})} = \frac{p_{\theta}(\theta)p(\mathbf{y}/\theta)}{p_{\mathbf{y}}(\mathbf{y})}$
- $\bullet\,$ Maximum a posteriori. For a given realization of $\mathbf{y}:$

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \operatorname{Arg} \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} / \mathbf{y}) \\ &= \operatorname{Arg} \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathbf{y} / \boldsymbol{\theta}) \quad \text{taking log:} \\ \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \operatorname{Arg} \max_{\boldsymbol{\theta}} \left[\log p(\boldsymbol{\theta}) + \log p(\mathbf{y} / \boldsymbol{\theta}) \right] \end{split}$$

Maximum a posteriori

- Observation: $\mathbf{y} \in \mathbb{R}^m$
- $\theta \in \mathbb{R}^n$; unknown parameter to be estimated is a random variable. Prior density: $p(\theta) = \int p(\theta, \mathbf{y}) d\mathbf{y}$

• Posterior density:
$$p(\theta/\mathbf{y}) = \frac{p(\theta, \mathbf{y})}{p(\mathbf{y})} = \frac{p_{\theta}(\theta)p(\mathbf{y}/\theta)}{p_{\mathbf{y}}(\mathbf{y})}$$

 $\bullet\,$ Maximum a posteriori. For a given realization of ${\bf y}:$

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \operatorname{Arg} \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}/\mathbf{y}) \\ &= \operatorname{Arg} \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) p(\mathbf{y}/\boldsymbol{\theta}) \qquad \text{taking log:} \\ \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \operatorname{Arg} \max_{\boldsymbol{\theta}} \left[\log p(\boldsymbol{\theta}) + \log p(\mathbf{y}/\boldsymbol{\theta}) \right] \end{split}$$

• $p(\mathbf{y}/\boldsymbol{\theta}) \leftrightarrow p_{\boldsymbol{\theta}}(\mathbf{y})$ is the likelihood term.

Observation model

Assumed model:

$$\mathbf{y} = \mathbf{A}\boldsymbol{\theta} + \mathbf{b} \quad \text{where:}$$
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m \quad \mathbf{A} = \begin{bmatrix} \mathbf{a}_1^\top \\ \vdots \\ \mathbf{a}_m^\top \end{bmatrix} \in \mathbb{R}^{m \times n} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^m, \text{ i.i.d.}$$

- ▷ linear model with independent additive noise reads also $(\forall i = 1, ..., m) \ y_i = \mathbf{a}_i^{\top} \boldsymbol{\theta} + b_i$ with b_i i.i.d. noise with pdf $b_i \sim p_b(.)$ and \mathbf{a}_i given.
- ▷ Joint distribution: $p(\theta, \mathbf{y}) = p(\theta) \prod_{i=1}^{m} p_b(y_i \mathbf{a}_i^{\top} \theta)$

$$\triangleright \ \hat{\boldsymbol{\theta}}_{\text{MAP}} = \operatorname{Arg\,max}_{\boldsymbol{\theta}} \left[\log p(\boldsymbol{\theta}) + \sum_{i=1}^{m} \log p_b(y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta}) \right]$$

Observation model

Assumed model:

$$\mathbf{y} = \mathbf{A}\boldsymbol{\theta} + \mathbf{b} \quad \text{where:}$$
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m \quad \mathbf{A} = \begin{bmatrix} \mathbf{a}_1^\top \\ \vdots \\ \mathbf{a}_m^\top \end{bmatrix} \in \mathbb{R}^{m \times n} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^m, \text{ i.i.d.}$$

- ▷ linear model with independent additive noise reads also $(\forall i = 1, ..., m) \ y_i = \mathbf{a}_i^{\top} \boldsymbol{\theta} + b_i$ with b_i i.i.d. noise with pdf $b_i \sim p_b(.)$ and \mathbf{a}_i given.
- ▷ Joint distribution: $p(\boldsymbol{\theta}, \mathbf{y}) = p(\boldsymbol{\theta}) \prod_{i=1}^{m} p_b(y_i \mathbf{a}_i^{\top} \boldsymbol{\theta})$

$$\triangleright \ \hat{\boldsymbol{\theta}}_{\text{MAP}} = \operatorname{Arg\,max}_{\boldsymbol{\theta}} \left[\log p(\boldsymbol{\theta}) + \sum_{i=1}^{m} \log p_b(y_i - \mathbf{a}_i^{\top} \boldsymbol{\theta}) \right]$$

Gaussian prior: RIDGE estimator

Assumption:

• noise
$$\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \sigma_b^2 \mathbf{I})$$

• prior $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\boldsymbol{\theta}}^2 \mathbf{I})$

$$p(\boldsymbol{\theta}, \mathbf{y}) \propto \exp\left[-\frac{\|\boldsymbol{\theta}\|_{2}^{2}}{2\sigma_{\boldsymbol{\theta}}^{2}}\right] \exp\left[-\frac{\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_{2}^{2}}{2\sigma_{b}^{2}}\right]$$
$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \operatorname{Arg\,min}_{\boldsymbol{\theta}}\left[\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_{2}^{2} + \frac{\sigma_{b}^{2}}{\sigma_{\boldsymbol{\theta}}^{2}}\|\boldsymbol{\theta}\|_{2}^{2}\right]$$

Defining, $\lambda = \frac{\sigma_b^2}{\sigma_{\theta}^2}$ above estimator known as «RIDGE»:

$$\hat{\boldsymbol{\theta}}_{\mathrm{ridge}} = \mathrm{Arg\,min}_{\boldsymbol{\theta}} \left[\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_2^2 \right]$$

Above cost is the sum of:

 $\bullet\,$ data fidelity term $\leftrightarrow\,$ fit to the data

 \bullet regularization / penalization term \leftrightarrow prior distribution / information

See properties of RIDGE compared to least-squares in exercise.

32/125

$\begin{array}{ll} \mbox{Double exponential prior: LASSO estimator} \\ \hline \mbox{Assumption:} & \bullet \mbox{ noise } \mathbf{b} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \\ & \bullet \mbox{ prior } \boldsymbol{\theta} \sim \prod_{j=1}^n \frac{1}{2\alpha} e^{-\frac{|\boldsymbol{\theta}_j|}{2\alpha}} & (\mbox{iid + Laplace}) \end{array}$

$$p(\boldsymbol{\theta}, \mathbf{y}) \propto \exp\left[-\frac{1}{2\alpha} \sum_{j=1}^{n} |\theta_j|\right] \exp\left[-\frac{\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2}{2\sigma_b^2}\right]$$
$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \operatorname{Arg\,min}_{\boldsymbol{\theta}} \left[\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2 + \frac{\sigma_b^2}{\alpha} \|\boldsymbol{\theta}\|_1\right]$$

Defining, $\lambda = \frac{\sigma_b^2}{\alpha}$ above estimator known as «LASSO»:

$$\hat{\boldsymbol{\theta}}_{\mathrm{ridge}} = \mathrm{Arg\,min}_{\boldsymbol{\theta}} \left[\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{1} \right]$$

Above cost is the sum of:

- $\bullet\,$ data fidelity term $\leftrightarrow\,$ fit to the data
- \bullet regularization / penalization term \leftrightarrow prior distribution / information
 - ℓ_1 -norm promotes sparse solutions

Uniform prior

<u>Assumption</u>: • noise $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ • prior $\boldsymbol{\theta} \sim \prod_{j=1}^n \frac{1}{2\alpha} \mathbb{1}_{[-\alpha,\alpha]}(\theta_j)$ (iid + uniform)

$$p(\boldsymbol{\theta}, \mathbf{y}) \propto \prod_{j=1}^{n} \mathbb{1}_{[-\alpha, \alpha]}(\theta_j) \exp\left[-\frac{\|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2}{2\sigma_b^2}\right]$$
$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \underset{\|\boldsymbol{\theta}\|_{\infty} \leq \alpha}{\operatorname{Arg\,min}} \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2$$

 $\hat{oldsymbol{ heta}}_{\mathrm{MAP}}$ is constrained least-squares
Perfect linear observations

Assumption:• no noise: $\mathbf{y} = \mathbf{A}\boldsymbol{\theta}$ $\mathbf{A} \in \mathbb{R}^{m \times n}$ • prior $\boldsymbol{\theta} \sim p_{\boldsymbol{\theta}}(\boldsymbol{\theta})$

If $m \ge n$, more equations than unknowns, at most one solution to $\mathbf{y} = \mathbf{A}\boldsymbol{\theta}$. If m < n, less equations than unknowns and:

$$\hat{\boldsymbol{\theta}}_{MAP} = \operatorname{Arg\,min}_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \text{ s.t. } \mathbf{y} = \mathbf{A}\boldsymbol{\theta}$$

- If $\boldsymbol{\theta} \sim \mathcal{N}(0, \sigma_{\boldsymbol{\theta}}^2 \mathbf{Id})$: $\hat{\boldsymbol{\theta}}_{MAP} = \operatorname{Arg\,min}_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|_2^2 \text{ s.t. } \mathbf{y} = \mathbf{A}\boldsymbol{\theta}$ (least ℓ_2 -norm solution to linear equation)
- If $\theta \sim \text{double-exponential:} \ \hat{\theta}_{MAP} = \operatorname{Arg min}_{\theta} \|\theta\|_1 \text{ s.t. } \mathbf{y} = \mathbf{A}\theta$ (least ℓ_1 -norm solution to linear equation: basis pursuit)

Comparison ℓ_2 vs ℓ_1 norm: ℓ_1 promotes sparse solutions

Comparison between ℓ_2 and ℓ_1 norms

Part III

Wiener filter

Aspect fréquentiel du problème d'égalisation

- Egaliseur audio:
- \rightarrow (pré-)amplifier des fréquences absorbées/compenser imperfections de la chaîne d'écoute

• En communications numériques:

Aspect temporel du problème d'égalisation

• Diagramme de l'oeil (simulation)

 T_{c}

Signal analogique en bande de base

- $\bullet\,$ symboles à transmettre: $(a_k)_{k\in\mathbb{Z}}$ à la période symbole T_s
- impulsion/filtre de mise en forme: $\Pi(t)$
- signal en bande de base

$$d(t) = \sum_{k \in \mathbb{Z}} a_k \Pi(t - kT_s) = \left(\sum_k a_k \delta(t - kT_s)\right) \star \Pi(t)$$

• Rq: souvent, $a_k \in \mathbb{C}$ (transmission de plusieurs bits sur un symbole) et $d(t) \in \mathbb{C}$

Modulation, enveloppe complexe

$$\begin{array}{c|c} e(t) & \textbf{canal} & r(t) \\ \hline & h_{HF}(t) \end{array} (réception) \end{array}$$

• d(t) = p(t) + iq(t): enveloppe complexe du signal émis • signal émis: bande étroite autour de ν_0 (modulation)

$$e(t) = \Re\{d(t)e^{i2\pi\nu_0 t}\} = p(t)\cos(2\pi\nu_0 t) - q(t)\sin(2\pi\nu_0 t)$$

• filtre canal $h_{HF}(t)$ réel et opère sur bande de e(t)

Enveloppe complexe, filtre passe-bas équivalent En émission:

$$e(t) = \Re\{d(t)e^{i2\pi\nu_0 t}\} = \frac{1}{2} \left(d(t)e^{i2\pi\nu_0 t} + d(t)^* e^{-i2\pi\nu_0 t} \right)$$
$$E(\nu) = \frac{1}{2} (D(\nu - \nu_0) + D(-\nu - \nu_0)^*)$$

En réception:

$$\begin{split} R(\nu) &= H_{HF}(\nu)E(\nu) \\ &= \frac{1}{2}\Big(H(\nu-\nu_0) + H(-\nu-\nu_0)^*\Big)\Big(D(\nu-\nu_0) + D(-\nu-\nu_0)^*\Big) \\ &= \frac{1}{2}\Big(\underbrace{H(\nu-\nu_0)D(\nu-\nu_0)}_{X(\nu-\nu_0)} + \underbrace{H(-\nu-\nu_0)^*D(-\nu-\nu_0)^*}_{X(-\nu-\nu_0)^*}\Big) \\ r(t) &= \Re\{x(t)e^{i2\pi\nu_0 t}\} \quad \text{ où: } x(t) \xrightarrow{\text{TF}} X(\nu) = H(\nu)D(\nu) \end{split}$$

 \Rightarrow enveloppes complexes $d(t),\,x(t)$ et filtre passe-bas équivalent $H(\nu)$ au lieu de $e(t),\,r(t)$ et $H_{HF}(\nu).$

42/125

SIC4102 2024

Modèle équivalent en bande de base (1/2)

- Signaux émis e(t) et reçu r(t) représentés par leurs enveloppes complexes d(t) et x(t).
- Canal «haute-fréquence» H_{HF} représenté par son passe-bas équivalent $H(\nu)$
- Modèle avec prise en compte d'un bruit additif:

Modèle équivalent en bande de base (2/2)

$$\begin{array}{c|c} b(t) & (\text{bruit, blanc Gaussien}) \\ \hline a_k & \\ \hline (\text{symboles}) & \\ \hline \Pi(t) & \\ \hline \end{array} & \\ \hline \bullet & \\ \text{Avec } p(t) = h(t) \star \Pi(t) \text{ et } a(t) = \sum_k a_k \delta(t - kT_s): \end{array}$$

Filtrage adapté, échantillonnage

- Réponse impulsionnelle filtre adapté: $p(-t)^* \; y(t) = x(t) \star p(-t)^*$
- Echantillonnage au rythme symbole T_s $y_n = y(nT_s) = \int x(u)p(u - nT_s)^* du$

 \Rightarrow les $(y_n)_{n \in \mathbb{Z}}$ constituent un résumé exhaustif de $(x(t))_{t \in \mathbb{R}}$.

Modèle temps discret

• Mise en forme, canal + bruit:

$$x(t) = \sum_{k \in \mathbb{Z}} a_k p(t - kT_s) + b(t) \quad \text{ où: } p(t) = h(t) \star \Pi(t)$$

Après filtre adapté

$$\begin{split} y(t) &= x(t) \star p(-t)^* \\ y(t) &= \sum_{k \in \mathbb{Z}} a_k g(t - kT_s) + \underbrace{w(t)}_{\text{bruit coloré}} \\ \text{avec: } g(t) &= p(t) \star p(-t)^* \qquad w(t) = p(-t)^* \star b(t) \end{split}$$

• Echantillonnage $y_n = y(nT_s)$ et en posant $g_n = g(nT_s)$, $w_n = w(nT_s)$:

$$y_n = \sum_k a_k g_{n-k} + w_n$$

Critère de Nyquist

• Avec
$$g_n = g(nT_s)$$
:

Pour éviter interférence entre symboles (ISI), il faut et il suffit que (en notant g(t) ^{TF}→ G(ν)):

$$\begin{cases} g_0 = 1\\ g_k = 0, k \neq 0 \end{cases} \Leftrightarrow \underbrace{\sum_k g_k e^{-i2\pi\nu T_s}}_{\frac{1}{T_s}\sum_k G(\nu + \frac{k}{T_s})} = 1 \quad \forall \nu \in \left[\frac{-1}{2T_s}, \frac{1}{2T_s}\right] \end{cases}$$

 $\Rightarrow\,$ critère de Nyquist: $\frac{1}{T_s}\sum_k G(\nu+\frac{k}{T_s})=1$

Propriété et factorisation spectrale

• $g(t) = p(t) \star p(-t)^*$ (fonction autocorrélation déterministe)

 $\rightarrow\,\,{\rm si}\,\,p(t)$ s'étale sur L symboles, $g(t)\,\,{\rm sur}\,\,2L$ symboles

$$ightarrow \, g_n = g^*_{-n}$$
 et $G(z) = \sum_n g_n z^{-n}$ vérifie $G(z) = \left(G(1/z^*)
ight)^*$

- $\rightarrow\,$ si ξ_0 est racine de G(z), alors $1/\xi_0^*$ aussi
- \Rightarrow il existe une factorisation spectrale

$$G(z) = F(z)F(1/z^*)^*$$
 avec $F(z) = \alpha \prod_{n=1}^{L} (1 - \xi_n z^{-1})$

(correspond à la factorisation d'une densité spectrale).

• Rq: en prenant dans F(z) les L zéros à l'intérieur du cercle unité, on obtient F(z) à minimum de phase.

Blanchiment

• On a le modèle discret:

• si $g_k \xrightarrow{Tz} G(z) = F(z)F(1/z^*)^*$, alors le filtre $B(z) = \frac{1}{F(1/z^*)^*}$ permet de blanchir le bruit.

Preuve:

$$\mathbb{E}\{w_k w_l^*\} = \mathbb{E}\{\iint b(t)p(t-kT_s)^*b(\tau)p(\tau-lT_s) dt d\tau\}$$

= $2N_0 \int p(t-kT_s)^*p(\tau-lT_s) dt = 2N_0 \int p(t)p(t-(k-l)T_s)^* dt$
= $2N_0 [p(t) \star p(-t)^*]_{(k-l)T_s} = 2N_0 g((k-l)T_s) = 2N_0 g_{k-l}$

• Modèle après blanchiment:

$$x_n = \sum_k a_k f_{n-k} + b_n$$
 avec b_n : bruit blanc

Résumé de la chaine de traitement

Insuffisances du modèle

- canal inconnu: filtrage adapté difficile, blanchiment délicat
- filtre non causaux et RII \rightarrow tronquer RI et introduire retard
- $\bullet\,$ choix des instants d'échantillonnage $\rightarrow\,$ problème de synchronisation
- \rightarrow égalisation fractionnée (FSE: fractionnally spaced equalizer)
 - voir cours plus avancés ...

Critères d'égalisation et stratégies

- Diagramme de l'oeil : qualitatif, empirique
- Probabilité d'erreur sur un symbole (BER: bit error rate)
 - critère le plus pertinent. Souvent, tracé de BER fonction du SNR
 - difficulté conception
 - égaliseur Optimum MLSE (maximum likelihood sequence estimation)
- Erreur quadratique moyenne (MSE: mean square error)

• MSE =
$$\mathbb{E}\{|\hat{a}_n - a_n|^2\}$$

- pas de lien simple entre MSE et BER (mais en général bon BER si MSE faible)
- égaliseur MMSE (minimum mean square error)
- Taux d'interférence entre symboles (ISI: inter-symbol interference)

$$\bullet \text{ ISI} = \frac{\sum_{k \neq 0} |g_k|^2}{|g_0|^2}$$

- le plus simple, utilisé quand autres critères non disponibles
- égaliseur ZF (zero-forcing)

Modèle

- Signal non observé à reconstruire: $(x_n)_{n\in\mathbb{Z}}$
- Observations: $(y_n)_{n\in\mathbb{Z}}$
- Filtre dégradation: F(z)
- Filtre restauration: H(z)
- Chaîne globale: G(z) = H(z)F(z)
- Signal estimé après restauration: $(\hat{x}_n)_{n \in \mathbb{Z}}$

Modèle

- Signal non observé à reconstruire: $(x_n)_{n\in\mathbb{Z}}$
- Observations: $y_n = \sum_{k \in \mathbb{Z}} f_k x_{n-k} + b_n = f_n \star x_n + b_n$
- Signal estimé: $\hat{x}_n = \sum_{k \in \mathbb{Z}} h_k y_{n-k} = h_n \star y_n$
- Chaîne globale: $g_n = h_n \star f_n$

Expression matricielle du modèle Canal RIF

• Canal supposé RIF
$$(f_0, \ldots, f_{K-1})$$

• Signal reçu:
$$y_n = \sum_{k=0}^{n-1} f_k x_{n-k} + b_n$$

• Forme matricielle (avec ici $\mathbf{A} \in \mathbb{C}^{(N+1) \times (N+K)}$):

$$\mathbf{A} = \begin{bmatrix} f_{K-1} & \dots & f_0 & & \\ & f_{K-1} & \dots & f_0 & & \\ & & \ddots & \ddots & \\ & & & f_{K-1} & \dots & f_0 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_{-K+1} \\ \vdots \\ x_N \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} y_0 \\ \vdots \\ y_N \end{bmatrix} \quad \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

Filtre inverse

(égalisation ZF: Zero Forcing)

• Bruit négligé:

$$\hat{x}_n = h_n \star y_n \qquad y_n = f_n \star x_n \text{ et donc puisque } g_n = h_n \star f_n:$$

$$\hat{x}_n = g_n \star x_n = \sum_{k \in \mathbb{Z}} g_k x_{n-k} = g_0 x_n + \underbrace{\sum_{k \neq 0} g_k x_{n-k}}_{\text{interf. entre échantillons}}$$

• Objectif: annuler l'interférence ISI = $\frac{\sum_{n \neq 0} |g_n|^2}{|q_0|^2}$

• Solution: $g_0 = 1$ et $g_k = 0, k \neq 0$ et donc G(z) = 1

 \Rightarrow le filtre inverse:

$$H_{\rm inv}(z) = \frac{1}{F(z)}$$

annule les interférences entre échantillons successifs de x_n .

Filtre inverse en présence de bruit

• En présence de bruit:

$$\begin{split} \hat{x}_n &= h_n \star y_n = h_n \star (f_n \star x_n + b_n) \\ \hat{x}_n &= g_n \star x_n + h_n \star b_n = \underbrace{g_0 x_n + \sum_{k \neq 0} g_k x_{n-k}}_{=x_n \text{ si filtre inverse}} + \underbrace{\underbrace{h_n \star b_n}_{\text{bruit par le filtre inverse}} \end{split}$$

• Filtre canal sélectif en fréquence: $F(e^{\mathrm{i}\omega}) \xrightarrow[]{\omega \to \omega_0} 0.$ Alors:

$$H_{\rm inv}(e^{{\rm i}\omega}) = \frac{1}{F(e^{{\rm i}\omega})} \xrightarrow[\omega \to \omega_0]{} \infty$$

 \Rightarrow Amplification possible du bruit, éventuellement incontrôlée!

Filtre de Wiener

(égalisation MMSE: Minimum Mean Square Error)

- Estimation $n^{\text{ème}}$ symbole: $\hat{x}_n = h_n \star y_n = \sum_k h_k y_{n-k}$
- Erreur d'estimation: $\epsilon_n = x_n \hat{x}_n$
- Objectif: minimiser erreur quadratique moyenne

min. MSE :=
$$\mathbb{E}\{|\epsilon_n|^2\}$$

- \rightarrow projection orthogonale sur $\overline{\operatorname{span}}\{y_{n-p}\}_{p\in\mathbb{Z}}$.
 - Condition d'orthogonalité ∀p, ε_n ⊥ y_{n-p} donne équations vérifiées par la réponse impulsionnelle (h_k)_{k∈Z}:

$$\forall p \in \mathbb{Z} \qquad \gamma_{xy}(p) = \sum_{k \in \mathbb{Z}} h_k \gamma_y(p-k)$$

Expressions du filtre de Wiener (1/2)

• Réponse en fréquence:

$$H_{\text{Wiener}}(e^{i\omega}) = \frac{\Gamma_{xy}(e^{i\omega})}{\Gamma_y(e^{i\omega})}$$

Avec:

 $\Gamma_y(e^{\mathrm{i}\omega})$: densité spectrale de puissance de y_n $\Gamma_{xy}(e^{\mathrm{i}\omega})$: densité inter-spectrale de puissance de x_n et y_n

• Transformée en z:

$$H_{\text{Wiener}}(z) = \frac{\Gamma_{xy}(z)}{\Gamma_y(z)}$$

Expressions du filtre de Wiener (2/2)

• Hypothèses:

- \blacktriangleright signal $(x_n)_{n\in\mathbb{Z}}$ i.i.d. centré, $\mathbb{E}\{|x_n|^2\}=\sigma_x^2$
- ▶ bruit additif blanc Gaussien $(b_n)_{n \in \mathbb{Z}}$ indépendant, puissance σ_b^2 (centré)
- $y_n = \sum_k f_k x_{n-k} + b_n$ et $f_k \xrightarrow{\mathrm{Tz}} F(z)$.
- Réponse en fréquence:

$$H_{\text{Wiener}}(e^{\mathrm{i}\omega}) = \frac{F(e^{\mathrm{i}\omega})^*}{|F(e^{\mathrm{i}\omega})|^2 + \sigma_b^2/\sigma_x^2}$$

• Transformée en z:

$$H_{\text{Wiener}}(z) = \frac{F(1/z^*)^*}{F(z)F(1/z^*)^* + \sigma_b^2/\sigma_x^2}$$

Comportement du filtre de Wiener

$$H_{\text{Wiener}}(e^{\mathrm{i}\omega}) = \frac{F(e^{\mathrm{i}\omega})^*}{|F(e^{\mathrm{i}\omega})|^2 + \sigma_b^2}$$

• Bruit faible
$$\frac{\sigma_b}{\sigma_x} \to 0$$
: $H_{\text{Wiener}}(e^{i\omega}) = H_{\text{inv}}(e^{i\omega}) = \text{filtre inverse.}$

- Bruit fort $\frac{\sigma_b}{\sigma_x} \to \infty$: $H_{\rm Wiener}(e^{i\omega}) = 0$ (signal noyé sous le bruit, reconstruction impossible)
- Comportement intermédiaire entre les cas ci-dessus en fonction rapport signal/bruit $\frac{\sigma_b^2}{\sigma_x^2}$ et amplification/atténuation du filtre canal $|F(e^{i\omega})|^2$ à chaque fréquence ω .

Illustration

- Les trois canaux test A, B, C (Proakis).
- Simulation du filtre inverse (égaliseur ZF).
- Simulation du filtre de Wiener (égaliseur MMSE).

Filtre de Wiener RIF à horizon fini (1/2)

- Réponse impulsionnelle finie: $h_k = 0$ pour $k \notin \{0, \dots, L-1\}$
- Filtrage: $\hat{x}_n = \sum_{k=0}^{L-1} h_k y_{n-k}$
- min. $\mathbb{E}\{|x_n \hat{x}_n|^2\}$ donne:

$$\forall p \in \{0, \dots, L-1\}$$
 $\mathbb{E}\{(x_n - \hat{x}_n)y_{n-p}^*\} = 0$

 $\text{cad avec } \gamma_{xy}(p) := \mathbb{E}\{x_ny_{n-p}^*\} \text{ et } \gamma_y(p) := \mathbb{E}\{y_ny_{n-p}^*\}:$

$$\forall p \in \{0, \dots, L-1\} \qquad \gamma_{xy}(p) = \sum_{k=0}^{L-1} h_k \gamma_y(p-k)$$

Filtre de Wiener RIF à horizon fini (2/2)

• Réponse impulsionnelle (h_0,\ldots,h_{L-1}) donnée par:

$$\forall p \in \{0, \dots, L-1\} \qquad \gamma_{xy}(p) = \sum_{k=0}^{L-1} h_k \gamma_y(p-k)$$

• Forme matricielle:

•
$$\mathbf{h}_{\text{Wiener}} = \mathbf{R}_{\underline{yy}}^{-1} \mathbf{R}_{\underline{xy}}$$

Expression matricielle du modèle Canal RIF

• Canal supposé RIF
$$(f_0, \ldots, f_{K-1})$$

• Signal reçu:
$$y_n = \sum_{k=0}^{n-1} f_k x_{n-k} + b_n$$

• Forme matricielle (avec ici $\mathbf{A} \in \mathbb{C}^{(N+1) \times (N+K)}$):

$$\mathbf{A} = \begin{bmatrix} f_{K-1} & \dots & f_0 & & \\ & f_{K-1} & \dots & f_0 & & \\ & & \ddots & \ddots & & \\ & & & f_{K-1} & \dots & f_0 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_{-K+1} \\ \vdots \\ & x_N \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} y_0 \\ \vdots \\ & y_N \end{bmatrix} \quad \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

Expression matricielle filtre de Wiener

• Forme matricielle: $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$

- ► A: matrice donnée (ici: Toeplitz, taille C^{n×p})
- **x**: suite d'échantillons i.i.d., $\mathbb{E}\{x_i\} = 0$, $\mathbb{E}\{|x_i|^2\} = \sigma_x^2$
- **b**: bruit i.i.d. indépendant de **a**, $\mathbb{E}\{b_i\} = 0$, $\mathbb{E}\{|b_i|^2\} = \sigma_b^2$
- estimation: $\hat{\mathbf{x}} = \mathbf{H}_{\mathrm{Wiener}} \mathbf{y}$ avec:

$$\mathbf{H}_{\text{Wiener}} = \operatorname{Arg\,min}_{\mathbf{H}} \mathbb{E}\{\|\mathbf{H}\mathbf{y} - \mathbf{x}\|^2\}$$

• Après développement MSE, en posant $\lambda = \frac{\sigma_b^2}{\sigma_{\pi}^2}$:

$$\mathbf{H}_{Wiener} = \operatorname{Arg\,min}_{\mathbf{H}} \operatorname{Tr} \left[(\mathbf{H}\mathbf{A} - \mathbf{Id})(\mathbf{H}\mathbf{A} - \mathbf{Id})^{H} + \lambda \mathbf{H}\mathbf{H}^{H} \right]$$

• Annulation gradient ou projection orthogonale sur $\operatorname{span} \mathbf{y}$ donnent:

$$\mathbf{H}_{Wiener} = \mathbf{A}^{H}\!(\mathbf{A}\mathbf{A}^{H}\!+\lambda\mathbf{I}\!\mathbf{d})^{-1}$$

Filtre de Wiener Calcul (1/2)

 $\rightarrow \forall p, \ \epsilon_n \perp y_{n-p} \ \mathsf{d'où}:$

$$0 = \mathbb{E}\{\epsilon_n y_{n-p}^*\} = \mathbb{E}\{\left(x_n - \sum_k h_k y_{n-k}\right) y_{n-k}^*\}$$
$$= \underbrace{\mathbb{E}\{x_n y_{n-p}^*\}}_{\gamma_{xy}(p)} - \sum_k h_k \underbrace{\mathbb{E}\{y_{n-k} y_{n-p}^*\}}_{\gamma_y(p-k)}$$
$$\forall p \in \mathbb{Z} \qquad \gamma_{xy}(p) = \sum_{k \in \mathbb{Z}} h_k \gamma_y(p-k) \text{et après T}.z:$$
$$\Gamma_{xy}(z) = H(z)\Gamma_y(z) \text{ d'où: } H_{\text{Wiener}}(z) = \frac{\Gamma_{xy}(z)}{\Gamma_y(z)}$$

Filtre de Wiener Calcul (2/2)

$$\gamma_{xy}(p) = \mathbb{E}\{x_n y_{n-p}^*\} = \mathbb{E}\{x_n \left(\sum_k x_k f_{n-p-k} + b_{n-p}\right)^*\} = \sigma_x^2 f_{-p}^*$$

d'où $\Gamma_{xy}(z) = \sigma_x^2 F(1/z^*)^*$
 $\gamma_y(p) = \mathbb{E}\{y_n y_{n-p}^*\} = \dots = \sigma_x^2 f_n \star f_{-n}^* + \sigma_b^2 \delta_p$
d'où $\Gamma_y(z) = \sigma_x^2 F(z) F(1/z^*)^* + \sigma_b^2$
 $H_{\text{Wiener}}(z) = \frac{F(1/z^*)^*}{F(z) F(1/z^*)^* + \sigma_b^2 / \sigma_x^2}$
 $H_{\text{Wiener}}(e^{i\omega}) = \frac{F(e^{i\omega})^*}{|F(e^{i\omega})|^2 + \sigma_b^2 / \sigma_x^2}$

Compléments, calculs

Détails calcul (1/3: MSE)

Modèle d'observation $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$ ($\mathbf{A} \in \mathbb{C}^{n \times p}$ donnée, ici Toeplitz)

- x: suite d'échantillons i.i.d., $\mathbb{E}\{x_i\} = 0$, $\mathbb{E}\{|x_i|^2\} = \sigma_x^2$
- b: bruit i.i.d. indépendant de x, $\mathbb{E}\{b_i\} = 0$, $\mathbb{E}\{|b_i|^2\} = \sigma_b^2$

$$\mathbb{E}\{\|\mathbf{H}\mathbf{y} - \mathbf{x}\|^2\} = \mathbb{E}\{\|(\mathbf{H}\mathbf{A} - \mathbf{I}\mathbf{d})\mathbf{x} + \mathbf{H}\mathbf{b})\|^2\}$$

= $\mathbb{E}\{\mathrm{Tr}\left[(\mathbf{H}\mathbf{A} - \mathbf{I}\mathbf{d})\mathbf{x} + \mathbf{H}\mathbf{b})(\mathbf{H}\mathbf{A} - \mathbf{I}\mathbf{d})\mathbf{x} + \mathbf{H}\mathbf{b})^{\mathrm{H}}\right]\}$
= $p\sigma_x^2 \operatorname{Tr}\left[(\mathbf{H}\mathbf{A} - \mathbf{I}\mathbf{d})(\mathbf{H}\mathbf{A} - \mathbf{I}\mathbf{d})^{\mathrm{H}}\right] + p\sigma_b^2 \operatorname{Tr}\left[\mathbf{H}\mathbf{H}^{\mathrm{H}}\right]$

et donc avec $\lambda = \frac{\sigma_b^2}{\sigma_x^2}$:

$$\begin{split} \mathbf{H}_{\text{Wiener}} &= \operatorname{Arg\,min}_{\mathbf{H}} \operatorname{Tr} \left[(\mathbf{H}\mathbf{A} - \mathbf{I} \mathbf{d}) (\mathbf{H}\mathbf{A} - \mathbf{I} \mathbf{d})^{\text{H}} + \lambda \mathbf{H} \mathbf{H}^{\text{H}} \right] \\ &= \operatorname{Arg\,min}_{\mathbf{H}} \mathbb{E} \{ \| \mathbf{H} \mathbf{y} - \mathbf{x} \|^2 \} \end{split}$$

Détails calcul (2/3: gradient)
Critère MSE:
$$\mathcal{J}(\mathbf{H}) = \operatorname{Tr} \left[(\mathbf{H}\mathbf{A} - \mathbf{Id})(\mathbf{H}\mathbf{A} - \mathbf{Id})^{\mathrm{H}} + \lambda \mathbf{H}\mathbf{H}^{\mathrm{H}} \right].$$

 $\mathcal{J}(\mathbf{H} + \mathbf{E}) = \operatorname{Tr} \left[(\mathbf{H}\mathbf{A} - \mathbf{Id} + \mathbf{E}\mathbf{A})(\mathbf{H}\mathbf{A} - \mathbf{Id} + \mathbf{E}\mathbf{A})^{\mathrm{H}} + \lambda(\mathbf{H} + \mathbf{E})(\mathbf{H} + \mathbf{E})^{\mathrm{H}} \right]$
 $= \mathcal{J}(\mathbf{H}) + \operatorname{Tr} \left[(\mathbf{H}\mathbf{A} - \mathbf{Id})\mathbf{A}^{\mathrm{H}}\mathbf{E}^{\mathrm{H}} + \mathbf{E}\mathbf{A}(\mathbf{H}\mathbf{A} - \mathbf{Id})^{\mathrm{H}} + \lambda(\mathbf{H}\mathbf{E}^{\mathrm{H}} + \mathbf{E}\mathbf{H}^{\mathrm{H}}) \right] + o(\mathbf{E})$

d'où la dérivée:

$$\frac{\partial \mathcal{J}}{\partial \overline{\mathbf{H}}} = (\mathbf{H}\mathbf{A} - \mathbf{I}\mathbf{d})\mathbf{A}^{\mathrm{H}} + \lambda \mathbf{H} \,.$$

Annulation de la dérivée pour $\mathbf{H}(\mathbf{A}\mathbf{A}^H+\lambda\mathbf{I})=\mathbf{A}^H$ et donc:

 $\mathbf{H}_{\mathrm{Wiener}} = \mathrm{Arg\,min}_{\mathbf{H}}\,\mathcal{J}(\mathbf{H}) = \mathbf{A}^{\mathrm{H}}\!(\mathbf{A}\mathbf{A}^{\mathrm{H}}\!+\lambda\mathbf{I}\!\mathbf{d})^{-1}$

(
Détails calcul (3/3: projection orthogonale)

•
$$\hat{\mathbf{x}} = \mathbf{H}_{\mathrm{Wiener}}\mathbf{y}$$
 est tel que $\hat{\mathbf{x}} - \mathbf{x} \perp \mathbf{y}$ càd:

$$\begin{split} \mathbb{E}\{(\hat{\mathbf{x}} - \mathbf{x})\mathbf{y}^{H}\} &= \mathbb{E}\{(\mathbf{H}_{\mathrm{Wiener}}\mathbf{y} - \mathbf{x})\mathbf{y}^{H}\} = \mathbf{0} \qquad \text{d'où:} \\ \mathbf{H}_{\mathrm{Wiener}}\mathbb{E}\{\mathbf{y}\mathbf{y}^{H}\} &= \mathbb{E}\{\mathbf{x}\mathbf{y}\} \text{ donc:} \end{split}$$

• En utilisant les hypothèses du modèle $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$:

$$\begin{split} \mathbb{E}\{\mathbf{y}\mathbf{y}^{\mathrm{H}}\} &= \mathbb{E}\{(\mathbf{A}\mathbf{x} + \mathbf{b})(\mathbf{A}\mathbf{x} + \mathbf{b})^{\mathrm{H}}\} = \sigma_x^2 \mathbf{A}\mathbf{A}^{\mathrm{H}} + \sigma_b^2 \mathbf{I} \mathbf{d} \\ \mathbb{E}\{\mathbf{x}\mathbf{y}^{\mathrm{H}}\} &= \mathbb{E}\{\mathbf{x}(\mathbf{A}\mathbf{x} + \mathbf{b})^{\mathrm{H}}\} = \sigma_x^2 \mathbf{A}^{\mathrm{H}} \end{split}$$

• Finalement avec $\lambda = \frac{\sigma_b^2}{\sigma_x^2}$:

$$\mathbf{H}_{\mathrm{Wiener}} = \mathbb{E}\{\mathbf{x}\mathbf{y}\}\mathbb{E}\{\mathbf{y}\mathbf{y}^{\mathrm{H}}\}^{-1} = \mathbf{A}^{\mathrm{H}}(\mathbf{A}\mathbf{A}^{\mathrm{H}} + \lambda \mathbf{M})^{-1}$$

Part IV

Independent Component Analysis

«Cocktail party» problem

Modèle linéaire instantané

Mélange linéaire instantané

•
$$\mathbf{s}(t) = \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix}$$
: vecteur des sources

•
$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$
: vecteur des observations

- A: matrice de mélange de taille 2×2
- lien sources observations:

$$\mathbf{x}(t) = \mathbf{As}(t)$$

 \rightsquigarrow Plus généralement dans ce cours: nombre de sources = nombre d'observations = $N \geq 2$

- Transmission hertzienne «classique»: 1 émetteur 1 récepteur
- Cas MIMO: multi intput multi output

• \Rightarrow augmenter la fiabilité et le débit pour les réseaux locaux sans fils, téléphonie mobile, . . .

Autres applications possibles

- Parole, audio, son
- Image : décomposition d'une image, watermarking
- Biomédical :
 - magnéto- et électroencéphalographie et/ou IRMf (reconstruction des sources neuronales)
 - électrocardiogramme du fœtus
- Télécommunications
- Cosmologie: extraction du CMB (Cosmic Microwave Background)
- Sismique, géophysique
- etc.

Cadre aveugle

• Modèle instantané considéré:

$$\mathbf{x}(t) = \mathbf{As}(t) = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} s_1(t) + \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} s_2(t)$$

• <u>But</u> : reconstruire les sources $s_1(t), s_2(t)$ à partir des observations $x_1(t), x_2(t)$, càd trouver **B** tel que:

$$\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t) \quad \text{ et: } \quad \mathbf{y}(t) \leftrightarrow \mathbf{s}(t)$$

• Approches possibles:

- Connaissances sur le mélange (modèle physique de propagation, ...) : problème de reconstruction inverse.
- ▶ Pas de connaissances sur A : cadre aveugle. ~→ nécessite des hypothèses sur les sources.

Séparation de signaux sonores

- Sources : 3 signaux sonores provenant d'enregistrement CD échantillonnage à 44100Hz, 221088 échantillons (durée approx. 5s).
- Mélange par la matrice (tirée aléatoirement):

(-0.2507)	0.1714	0.9637
-0.9653	-0.6833	-0.0305
(0.0726)	0.7098	0.2652 /

Algorithme utilisé: CoM2 (voir [5] et page web correspondante)
 Objectifs du cours: présenter quelques principes de base de la séparation aveugle

Est-ce possible en aveugle?

• Indéterminations :

- ordre des sources
 - \rightarrow reconstitution à une permutation près
- facteur multiplicatif pour chaque source

$$x_j(t) = \sum_{i=1}^N a_{ij} s_i(t) \qquad x_j(t) = \sum_{i=1}^N \frac{a_{ij}}{\lambda_i} \lambda_i s_i(t)$$

$$\rightarrow$$
 normalisation : $\langle s_1(t)^2 \rangle = \langle s_2(t)^2 \rangle = 1$

($\langle . \rangle$ = valeur moyenne) \rightsquigarrow dans \mathbb{R} (resp. \mathbb{C}), indétermination de signe (resp. rotation complexe).

• Hypothèse forte, mais souvent plausible: indépendance statistique des sources.

Sources indépendantes

Deux sources s_1 et s_2 distribuées uniformément et indépendantes:

80/125

Illustration du cas aveugle

Utiliser l'indépendance

82/125

Séparation aveugle de sources / ICA

• Détermination des sources $s_i(t)$ à partir des $x_j(t)$:

$$x_j(t) = \sum_{i=1}^N a_{ij} s_i(t) \qquad / \qquad \mathbf{x}(t) = \mathbf{As}(t)$$

 \Rightarrow Séparation aveugle de sources (Blind Source Separation, **BSS**)

• Détermination des composantes indépendantes:

$$\mathbf{x}(t) = \sum_{i=1}^{N} \underbrace{\begin{pmatrix} a_{1i} \\ \vdots \\ a_{Ni} \end{pmatrix} s_i(t)}_{\text{composante indépendante}} = \mathbf{As}(t)$$

 \Rightarrow **ICA**: Independent Component Analysis

Notations

• Equations correspondantes:

$$\mathbf{x}(t) = \mathbf{As}(t)$$
 $\mathbf{y}(t) = \mathbf{Bx}(t)$

• En posant $\mathbf{G} := \mathbf{B}\mathbf{A}$:

$$\mathbf{y}(t) = \mathbf{Gs}(t)$$

Cadre considéré

• Sources temporellement indépendantes et identiquement distribuées (i.i.d.)

$$\mathbf{x} = \mathbf{A}\mathbf{s}$$
 $\mathbf{y} = \mathbf{B}\mathbf{x}$

avec s, x: vecteurs aléatoires taille N.

- → Dans ce cadre, la structure temporelle des signaux n'est pas prise en compte.
 - Sources centrées et de variance unité:

$$\forall i \in \{1, \dots, N\} \quad \mathbb{E}\{s_i\} = 0 \quad \mathbb{E}\{|s_i|^2\} = 1$$

Indépendance de variables aléatoires (1/2)

• s_1 et s_2 sont indépendantes lorsque:

$$f_{s_1,s_2}(u,v) = f_{s_1}(u)f_{s_2}(v)$$
où: $f_{s_1}(u) = \int f_{s_1,s_2}(u,v) \, dv$ et: $f_{s_2}(v) = \int f_{s_1,s_2}(u,v) \, du$

 \Rightarrow Pour toutes fonctions h_1 et h_2 :

$$\mathbb{E}\{h_1(s_1)h_2(s_2)\} = \mathbb{E}\{h_1(s_1)\}\mathbb{E}\{h_2(s_2)\}$$

Indépendance de variables aléatoires (2/2)

• Les composantes de $s = (s_1, ..., s_N)$ sont (mutuellement) indépendantes lorsque:

$$f_{\mathbf{s}}(s_1,\ldots,s_N) = \prod_{k=1}^N f_{s_k}(s_k)$$

 \Rightarrow Pour toutes fonctions h_1, \ldots, h_N :

$$\mathbb{E}\{h_1(s_1)\dots h_N(s_N)\} = \mathbb{E}\{h_1(s_1)\}\dots \mathbb{E}\{h_N(s_N)\}$$

- Attention à ne pas confondre avec l'indépendance par paires:
 - ► Si (s₁,...,s_N) sont indépendantes mutuellement, elles le sont deux par deux.
 - L'indépendance par paires n'entraîne pas (en général) l'indépendance mutuelle.

Décorrélation de variables aléatoires

• Deux variables aléatoires s_1 et s_2 sont décorrélées lorsque :

 $\mathbb{E}\{s_1s_2\} = \mathbb{E}\{s_1\}\mathbb{E}\{s_2\}$

 \bullet variables aléatoires indépendantes \Rightarrow décorrélées

MAIS réciproque fausse.

~> La décorrélation est un (premier) pas vers l'indépendance

• Pour $\mathbf{s} = (s_1, \dots, s_N)^{\top}$, on définit sa matrice de covariance

$$\mathbf{R}_{\mathbf{s}} := \mathbb{E}\{\mathbf{s}\mathbf{s}^{\top}\} \qquad \mathsf{cad}: \ (\mathbf{R}_{\mathbf{s}})_{ij} = \mathbb{E}\{s_i s_j\}$$

Le vecteur est décorrélé lorsque $\mathbf{R}_{\mathbf{s}}$ est diagonal.

Rq: vecteur décorrélé ⇔ toutes les paires sont décorrélées

Blanchiment

Rappel: modèle $\mathbf{x} = \mathbf{As}$ / objectif: trouver \mathbf{B} telle que $\mathbf{BA} = \mathbf{Id}$.

Blanchir les données: trouver une transformation linéaire qui rende les nouvelle données décorrélées

- \bullet Sorties décorrélées notées $\mathbf{z} := \mathbf{W} \mathbf{x}$
- Contrainte de décorrélation :

$$\mathbb{E}\{\mathbf{z}\mathbf{z}^T\} = \mathbf{I}\mathbf{d}_N$$

- \rightsquigarrow par symétrie, N(N+1)/2 équations
- \rightarrow insuffisant pour la détermination des N^2 paramètres de A (ou B).
 - Rq: mise en œuvre du blanchiment aisée (SVD)

Conséquence(s) du blanchiment

•
$$\mathbf{z} := \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{A}\mathbf{s}$$
 avec: $\mathbb{E}\{\mathbf{z}\mathbf{z}^T\} = \mathbf{I}\mathbf{d}_N \rightarrow \mathsf{insuffisant}$

 $\bullet~\mbox{En posant}~{\bf C}={\bf W}{\bf A},$ nouveau mélange ${\bf z}={\bf C}{\bf s}$ qui vérifie:

$$\mathbf{Id}_N = \mathbb{E}\{\mathbf{z}\mathbf{z}^\top\} = \mathbf{C}\mathbb{E}\{\mathbf{s}\mathbf{s}^\top\}\mathbf{C}^\top = \mathbf{C}\mathbf{C}^\top$$

 $\stackrel{\sim}{\longrightarrow} \text{ matrice mélange équivalente } \mathbf{C} \text{ orthogonale } (\mathbf{C}\mathbf{C}^{\top} = \mathbf{I} \mathbf{d}) \\ \stackrel{\sim}{\longrightarrow} \text{ transformation isométrique}$

Illustration du blanchiment

Conséquence(s) du blanchiment

• En posant C = WA, nouveau mélange z = Cs avec $C^{\top}C = Id$.

- Inverse du mélange blanchi: $\mathbf{Q} \leftrightarrow \mathbf{C}^{-1}$ \mathbf{Q} cherché est $\mathbf{C}^{-1} = \mathbf{C}^{\top}$, donc orthogonale
- \rightsquigarrow paramétrisation de ${\bf Q}$ par des angles (Jacobi)
 - $\bullet\,$ Matrice de séparation a été décomposée en ${\bf B}={\bf Q}{\bf W}$

Statistiques d'ordre supérieur

Rappel: s_1, \ldots, s_N sont indépendantes lorsque pour toutes fonctions $\overline{h_1, \ldots, h_N}$:

$$\mathbb{E}\{h_1(s_1)\dots h_N(s_N)\} = \mathbb{E}\{h_1(s_1)\}\dots \mathbb{E}\{h_N(s_N)\}$$

• Décorrélation/blanchiment: (insuffisant)

 $\mathbb{E}\{z_i z_j\} = \mathbb{E}\{z_i\}\mathbb{E}\{z_j\}$ pour toutes les paires i, j

- → Introduire des produits de k > 2 termes: $\mathbb{E}\{z_{i_1} \dots z_{i_k}\}$ Prendre des fonctions h_i polynomiales (monômes degré > 2)
- → Statistiques d'ordre supérieur (à deux)

Moments

Variable aléatoire r

Moment d'ordre k de r: $\mathbb{E}\{r^k\}$

- Vecteur aléatoire $\mathbf{r} = (r_1, \dots, r_N)^\top$: Moment (croisé) d'ordre k: $\mathbb{E}\{r_{i_1} \dots r_{i_k}\}$
- Moment d'ordre supérieur (à deux): k > 2
- manipulation peu pratique (pas de relation pour le moment d'une somme, en cas indépendance,...)
- <u>Rq</u>: les moments apparaissent dans le développement de la première fonction caractéristique

$$\begin{split} \varphi(u) &= \mathbb{E}\{e^{\mathbf{i} u r}\} & \text{(cas scalaire)} \\ \varphi(\mathbf{u}) &= \mathbb{E}\{e^{\mathbf{i} \mathbf{u}^\top \mathbf{r}}\} & \text{(cas vectoriel)} \end{split}$$

Cumulants

Cumulants d'ordre k : s'expriment polynomialement en fonction moments d'ordre $\leq k$ (et réciproquement).

• Pour des variables centrées ($\mathbb{E}\{r_i\}=0$):

$$\mathbb{C}\operatorname{um} \{r_1, r_2\} = \mathbb{E}\{r_1 r_2\}$$
$$\mathbb{C}\operatorname{um} \{r_1, r_2, r_3\} = \mathbb{E}\{r_1 r_2 r_3\}$$
$$\mathbb{C}\operatorname{um} \{r_1, r_2, r_3, r_4\} = \mathbb{E}\{r_1 r_2 r_3 r_4\} - \mathbb{E}\{r_1 r_2\} \mathbb{E}\{r_3 r_4\}$$
$$- \mathbb{E}\{r_1 r_3\} \mathbb{E}\{r_2 r_4\} - \mathbb{E}\{r_1 r_4\} \mathbb{E}\{r_2 r_3\}$$

• Cumulant d'ordre quatre (kurtosis) d'une variable r centrée:

$$\mathbb{C}\mathrm{um}\left\{r,r,r,r\right\} = \mathbb{E}\left\{r^4\right\} - 3\left(\mathbb{E}\left\{r^2\right\}\right)^2 =: \kappa(r)$$

• <u>Rq:</u> les cumulants apparaissent dans le développement de la deuxième fonction caractéristique

$$\begin{split} \psi(u) &= \log \mathbb{E}\{e^{\mathbf{i}ur}\} & \text{(cas scalaire)} \\ \psi(\mathbf{u}) &= \log \mathbb{E}\{e^{\mathbf{i}\mathbf{u}^{\top}\mathbf{r}}\} & \text{(cas vectoriel)} \end{split}$$

Propriétés des cumulants (1/3)

(i) symétrie: pour toute permutation des indices:

$$\mathbb{C}\mathrm{um}\left\{r_1,\ldots,r_k\right\}=\mathbb{C}\mathrm{um}\left\{r_{i_1},\ldots,r_{i_k}\right\}$$

(ii) multilinéarité (par rapport à chacun des arguments):

$$\mathbb{C}\operatorname{um} \{a+b, r_2, \dots, r_k\} = \mathbb{C}\operatorname{um} \{a, r_2, \dots, r_k\} + \mathbb{C}\operatorname{um} \{b, r_2, \dots, r_k\}$$
$$\mathbb{C}\operatorname{um} \{\lambda a, r_2, \dots, r_k\} = \lambda \mathbb{C}\operatorname{um} \{a, r_2, \dots, r_k\}$$

Vérification aisée dans le cas des expressions du transparent 99.

Propriétés des cumulants (2/3: indépendance)

(iii) s'il existe un sous-ensemble de variables $(a_i)_{i=1,...,m}$ indépendantes des autres $(b_j)_{j=1,...,n}$:

$$\mathbb{C}\mathrm{um}\left\{a_1,\ldots,a_m,b_1,\ldots,b_n\right\}=0$$

 \Rightarrow (iii') Si $(a_i)_{i=1,...,k}$ indépendantes de $(b_j)_{j=1,...,k}$,

 $\mathbb{C}\mathrm{um}\left\{a_1+b_1,\ldots,a_k+b_k\right\}=\mathbb{C}\mathrm{um}\left\{a_1,\ldots,a_k\right\}+\mathbb{C}\mathrm{um}\left\{b_1,\ldots,b_k\right\}$

ATTENTION: l'indépendance par paires ne suffit pas!

Vérification aisée dans le cas des expressions du transparent 99. (iii) ⇔ (iii') évident avec la multi-linéarité.

Propriétés des cumulants (3/3: cas gaussien)

(iv) pour un vecteur
$$(a_1, \ldots, a_k)$$
 gaussien:

$$\mathbb{C}\mathrm{um}\left\{a_1,\ldots,a_k\right\} = 0 \quad (k>2)$$

Pour r variable aléatoire gaussienne, le kurtosis est nul:

$$\kappa(r) = 0$$

- CONSEQUENCE(s) pour un vecteur gaussien:
 - statistiques d'ordre deux définissent sa loi,
 - décorrélation (par paires) équivaut à indépendance (mutuelle),
 - Ie blanchiment exploite toute l'information.

Sources non gaussiennes?

Variable aléatoire gaussienne:

- définie par ses deux premiers moments
- ▶ décorrélation ⇔ indépendance
- \Rightarrow Toute l'information statistique prise en compte lors du blanchiment.
 - Hypothèses fondamentales de l'analyse en composantes indépendantes

(ICA) : H.1 Les sources sont mutuellement indépendantes
H.2 Les sources ont une distribution de probabilité non gaussienne (sauf éventuellement une seule d'entre elles).

Identifiabilité

Justification théorique (théorème de Darmois-Skitovitch, 1953):

Soit $\mathbf{s} = (s_1, \dots, s_N)$ un vecteur aléatoire. Si

• composantes de s indépendantes,

• au plus l'une d'entre elles est gaussienne,

alors:

• composantes de y = Gs indépendantes $\Leftrightarrow G = PD$.

(**P**: permutation, **D**: matrice diagonale)

→→ **«non-gaussianité**» et **indépendance** sont les deux hypothèses centrales pour identifier un mélange de sources (cas i.i.d.)

Distributions uniforme et gaussienne

ICA et PCA

Analyse en composantes principales (PCA)

- Si données gaussiennes, ICA n'apporte rien de plus que PCA.
- PCA unique car condition de décorrélation couplée à contrainte AA^T = Id.
- PCA recherche des composantes par ordre décroissant d'énergie.
- PCA plus modeste, mais toujours possible.
- Algorithme PCA universel et simple, pas ICA.

Fonction de contraste

Fonction de **contraste** ϕ : critère dont la maximisation permet de séparer les sources.

- Différents cadres de validité:
 - séparation de toutes les sources
 - extraction d'une source
 - avec/sans blanchiment
- <u>Definition</u> (adaptée au 1er cadre): Avec s: vecteur de sources indépendantes, φ est une fonction de contraste si et seulement si:

(i)
$$\forall \mathbf{A} \quad \phi(\mathbf{As}) \leq \phi(\mathbf{s})$$

(ii) Si $\mathbf{A} = \mathbf{PD}$, alors $\phi(\mathbf{As}) = \phi(\mathbf{s})$
(iii) Si $\phi(\mathbf{As}) = \phi(\mathbf{s})$, alors \mathbf{A} s'écrit $\mathbf{A} = \mathbf{PD}$.

(P: permutation, D: matrice diagonale)

Somme des kurtosis

- Cadre et hypothèses:
 - blanchiment
 - sources indépendantes
 - $\kappa(s_i) \neq 0$ pour tout *i* (sauf éventuellement une).

adaptation angle rotation

• Contraste: max.
$$\mathcal{J}(\mathbf{y}) = \sum_{i=1}^{N} |\kappa(y_i)|$$

Rq:

- $\kappa(s_i) \neq 0 \Rightarrow s_i$ non gaussienne
- $\blacktriangleright \ \kappa(.) \leftrightarrow \text{\'ecart à la } \ \text{``gaussiannité} \\ \\ \label{eq:kappa}$
- max. $\sum_{i=1}^{N} (\kappa(y_i))^2$ est aussi un contraste.
Justification contraste p.108 (1/3: exprimer les cumulants)

• Matrice globale sources/sorties séparées notée $\mathbf{G}=[G_{ij}]_{ij}.$ $y_i=\sum_{j=1}^N G_{ij}s_j$

$$\kappa(y_i) = \mathbb{C}\mathrm{um}\left\{y_i, y_i, y_i, y_i\right\}$$

par multilinéarité:

$$\kappa(y_i) = \sum_{j_1=1}^N \sum_{j_2=1}^N \sum_{j_3=1}^N \sum_{j_4=1}^N G_{ij_1} G_{ij_2} G_{ij_3} G_{ij_4} \mathbb{C}\mathrm{un}\left\{s_{j_1}, s_{j_2}, s_{j_3}, s_{j_4}\right\}$$

par indépendance des sources:

$$\kappa(y_i) = \sum_{j=1}^N G_{ij}^4 \kappa(s_j)$$

۲

Justification contraste p.108 (2/3: majorer le critère)

• Blanchiment: $\mathbf{y} = \mathbf{Gs}$ avec \mathbf{G} orthogonale $(\mathbf{G}^{\top}\mathbf{G} = \mathbf{Id})$

 $\mathcal{J}(\mathbf{y}) = \sum_{i=1}^{N} |\kappa(y_i)| = \sum_{i=1}^{N} \left| \sum_{j=1}^{N} G_{ij}^4 \kappa(s_j) \right|$ $\leq \sum^N \sum^N G^4_{ij} |\kappa(s_j)| \quad \text{ par convexit} \acute{e}$ $i=1 \ i=1$ $\leq \sum^N \sum^N G_{ij}^2 |\kappa(s_j)| \quad \ \text{car} \ |G_{ij}| \leq 1$ $i=1 \ i=1$ $\leq \sum^N |\kappa(s_j)| \quad \ \text{car} \ \sum^N G_{ij}^2 = 1$ i=1

۲

Justification contraste p.108 (3/3: si majorant atteint)

• En cas d'égalité précédemment, puisque $\kappa(s_j) \neq 0$:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} (G_{ij}^2 - G_{ij}^4) |\kappa(s_j)| = 0 \text{ entraîne } G_{ij} \in \{0, -1, +1\}$$

• G étant orthogonale par blanchiment, c'est une matrice «triviale» (permutation+changement de signe)

Mise en œuvre

- estimation cumulants: à partir estimateurs empiriques des moments
- paramétrisation de Q par des angles de Jacobi
- solution explicite de la maximisation uni-dimensionnelle et balayage cyclique des angles de Jacobi (voir algos CoM2 et CoM1).
- autres algorithmes disponibles: JADE, FastICA

Kurtosis (1/2)

• Cadre:

- extraction d'une source sans blanchiment
- sources indépendantes
- $\kappa(s_i) \neq 0$ pour tout *i* dont extraction souhaitée

▶ \mathbf{b}^{\top} : filtre ligne extracteur, sortie scalaire: $y = \sum_{i=1}^{N} b_i x_i$

• Contraste:

max. $\mathfrak{I}(y) = |\kappa(y)|$ sous contrainte $\mathbb{E}\{|y|^2\} = 1$

 $\begin{array}{l} \underline{\mathrm{Rq}}: \text{ forme normalisée pour implantation pratique:} \\ \overline{\mathrm{max}}. \ \left| \frac{\kappa(y)}{\mathbb{E}\{|y|^2\}^2} \right| \text{ sous contrainte } \mathbb{E}\{|y|^2\} = 1 \end{array}$

Justification du contraste p. 113 Avec $\mathbf{g}^{\top} := \mathbf{b}^{\top} \mathbf{A}$, on a $y = \mathbf{b}^{\top} \mathbf{x} = \mathbf{b}^{\top} \mathbf{As}$.

$$\begin{split} y &= \mathbf{g}^{\top} \mathbf{s} = \sum_{i=1}^{N} g_{i} s_{i} \\ \kappa(y) &= \mathbb{C} \mathrm{um} \left\{ \mathbf{g}^{\top} \mathbf{x}, \mathbf{g}^{\top} \mathbf{x}, \mathbf{g}^{\top} \mathbf{x}, \mathbf{g}^{\top} \mathbf{x} \right\} \\ &= \sum_{i=1}^{N} g_{i}^{4} \kappa(s_{i}) \quad (\mathsf{multilinéarité+indépendance}) \end{split}$$

Sous la contrainte $\|\mathbf{g}\|^2 = \sum_{i=1}^N g_i^2 = 1 \leftrightarrow \mathbb{E}\{|y|^2\} = 1$:

$$|\kappa(y)| \le \sum_{i=1}^{N} g_i^4 |\kappa(s_i)| \le \sum_{i=1}^{N} g_i^2 |\kappa(s_i)| \le \max_{i=1}^{N} |\kappa(s_i)|$$

Maximum atteint si et seulement si g est séparant.

110/125

Kurtosis (2/2)

• Contraste kurtosis au carré:

max.
$$\mathcal{J}(y) = (\kappa(y))^2$$
 sous contrainte $\mathbb{E}\{|y|^2\} = 1$

• Contraste kurtosis en valeur absolue (équivalent):

max.
$$|\kappa(y)|$$
 sous contrainte $\mathbb{E}\{|y|^2\}=1$

• Si $\kappa(s_i) < 0$ pour tout *i* dont extraction souhaitée:

min. $\kappa(y)$ sous contrainte $\mathbb{E}\{|y|^2\} = 1$

• <u>Rq</u>: formes normalisées (sous contrainte $\mathbb{E}\{|y|^2\} = 1$): max. $\left(\frac{\kappa(y)}{\mathbb{E}\{|y|^2\}^2}\right)^2 \mid \max \left| \frac{\kappa(y)}{\mathbb{E}\{|y|^2\}^2} \mid \min \frac{\kappa(y)}{\mathbb{E}\{|y|^2\}^2} \right|$

Module constant (CMA)

 \bullet Valeurs dans $\mathbb C,$ signaux centrés et circulaires:

$$\kappa(y) = \mathbb{C}\mathrm{um}\{y, y, y^*, y^*\} = \mathbb{E}\{|y|^4\} - \underbrace{|\mathbb{E}\{y^2\}|^2}_{=0 \text{ (circularité)}} - 2\mathbb{E}\{|y|^2\}^2$$

• Contraste si $\kappa(s_i) < 0$:

min.
$$\kappa(y) = \mathbb{E}\{|y|^4\} - 2$$

• Algorithme module constant (CMA):

min.
$$\mathbb{E}\{(|y|^2 - \alpha)^2\} = \mathbb{E}\{|y|^4\} - 2\alpha \mathbb{E}\{|y|^2\} + \alpha^2$$

 $\rightsquigarrow \text{ identiques avec la contrainte } \alpha = \mathbb{E}\{|y|^2\} = 1.$

Mise en œuvre

- estimation cumulants: à partir estimateurs empiriques des moments
- algorithme:
 - gradient / gradient projeté
 - forme normalisée des critères
 - pas optimal à chaque optimisation unidimensionnelle: racine d'un polynôme
- extraction de plusieurs sources par déflation

Déflation

• Mélange $\mathbf{x} = \mathbf{As}$.

Une source connue ou précédemment extraite: $y = \alpha s_1$ (facteur multiplicatif α près)

• «Déflation»: recherche d'un vecteur colonne \mathbf{h} tel que:

$$ilde{\mathbf{h}} := rg\min_{\mathbf{h}} \|\mathbf{x} - \mathbf{h}y\|^2$$
 et définir: $ilde{\mathbf{x}} := \mathbf{x} - ilde{\mathbf{h}}y$

• Mélange de N-1 sources après déflation: $\tilde{\mathbf{x}} = \sum_{i=2}^{N} \mathbf{a}_{i} s_{i}$ En effet:

$$\|\mathbf{x} - \mathbf{h}y\|^2 = \|(\mathbf{a}_1 - \alpha \mathbf{h})s_1\|^2 + \|\sum_{i=2}^N \mathbf{a}_i s_i\|^2$$

• Reconstruction de toutes les sources par extraction/déflation.

Maximum de vraisemblance

- Modèle x = As paramétré par A et la densité de probabilité supposée des sources q(s).
- \Rightarrow Densité de probabilité de x:

$$p(\mathbf{x}|\mathbf{A},q) = |\det \mathbf{A}|^{-1}q(\mathbf{A}^{-1}\mathbf{x})$$

⇒ Log-vraisemblance normalisée de T échantillons $\mathbf{X} = (\mathbf{x}(1), \dots, \mathbf{x}(T)):$

$$\frac{1}{T}\log p(\mathbf{X}|A,q) = \frac{1}{T}\sum_{t=1}^{T}\log q(\mathbf{A}^{-1}\mathbf{x}(t)) - \log |\det \mathbf{A}|$$

Divergence de Kullback-Leibler

• On vient de voir:

$$\frac{1}{T}\log p(\mathbf{X}|A,q) = \frac{1}{T}\sum_{t=1}^{T}\log q(\mathbf{A}^{-1}\mathbf{x}(t)) - \log |\det \mathbf{A}|$$

d'où:

$$\frac{1}{T}\log p(\mathbf{X}|\mathbf{A},q) \xrightarrow{T \to \infty} -\mathrm{D}(\mathbf{A}^{-1}\mathbf{x}|\mathbf{s}) + \mathrm{cste}$$

⇒ Contraste associé:

$$\phi_{\rm MV}(\mathbf{y}) = -D(\mathbf{A}^{-1}\mathbf{x}|\mathbf{s})$$

vvv principe «Infomax», connu dans la communauté réseaux de neurones.

Information mutuelle (1/2)

• ỹ vecteur aléatoire:

- composantes indépendantes
- mêmes marginales que ${f y}$

• $I(\mathbf{y}) = D(\mathbf{y}|\tilde{\mathbf{y}}) = \text{information mutuelle du vecteur } \mathbf{y}.$

۲

 $\mathrm{D}(\mathbf{y}|\mathbf{s}) = \mathrm{D}(\mathbf{y}|\tilde{\mathbf{y}}) + \mathrm{D}(\tilde{\mathbf{y}}|\mathbf{s})$

Information mutuelle (2/2)

$$D(\mathbf{y}|\mathbf{s}) = D(\mathbf{y}|\tilde{\mathbf{y}}) + D(\tilde{\mathbf{y}}|\mathbf{s})$$

 $\max vrais = info mut + adéquation données$

\rightarrow Max de vraisemblance optimise la somme:

- terme d'indépendance
- terme ajustement à la distribution supposée de s.

 $\Rightarrow~{\sf Contraste}~{\sf associé:}~\phi_{\rm IM}({\bf y}) = -{\rm I}({\bf y})$

٠

Entropie différentielle

• Définition:

$$H(\mathbf{y}) = -\mathbb{E}\{\log p_{\mathbf{y}}(\mathbf{y})\} = -\int p_{\mathbf{y}}(\mathbf{y}) \log p_{\mathbf{y}}(\mathbf{y}) \, d\mathbf{y}$$

• Lien avec l'information mutuelle:

$$I(\mathbf{y}) = \sum_{i=1}^{N} H(y_i) - H(\mathbf{y})$$

Néguentropie (1/2)

- \mathbf{y}_{gauss} vecteur/variable aléatoire:
 - gaussienne,
 - même matrice de covariance que ${f y}$
- Néguentropie:

$$J(\mathbf{y}) = H(\mathbf{y}_{gauss}) - H(\mathbf{y})$$

• Néguentropie:

$$J(\mathbf{y}) = D(\mathbf{y}|\mathbf{y}_{gauss})$$

• Conséquence: $J(\mathbf{y}) \ge 0$ et $J(\mathbf{y}) = 0$ si et seulement si $\mathbf{y} = \mathbf{y}_{gauss}$.

Néguentropie (2/2)

• Avec $\mathbf{y} = \mathbf{Gs}$:

$$\phi_{\mathrm{IM}}(\mathbf{y}) = -\mathrm{I}(\mathbf{y}) = -\sum_{i=1}^{N} \mathrm{H}(y_i) + \log |\det \mathbf{G}| + \mathrm{H}(\mathbf{s})$$

 \bullet Sous contrainte de blancheur $|\det \mathbf{G}| = \mathrm{cste}$

 \Rightarrow Contraste associé:

$$\phi_{\mathrm{IM}}^{o}(\mathbf{y}) = -\sum_{i=1}^{N} \mathbf{H}(y_i) = \sum_{i=1}^{N} \mathbf{J}(y_i) + \mathrm{cste}$$

 \rightarrow maximiser la «non-gaussianité»

Contrastes

• Regarder l'écart entre les cumulants seulement au lieu des densités de probabilité:

$$\phi_2(\mathbf{y}) \triangleq \sum_{ij} (\kappa_{ij}(\mathbf{y}) - \kappa_{ij}(\mathbf{s}))^2$$

$$\phi_4(\mathbf{y}) \triangleq \sum_{ijkl} (\kappa_{ijkl}(\mathbf{y}) - \kappa_{ijkl}(\mathbf{s}))^2$$

- $\rightarrow \phi_2$ ne traduit que la décorrélation. ϕ_4 est un contraste.
 - Approximation du maximum de vraisemblance:

$$\phi_{\mathrm{MV}}(\mathbf{y}) = -\mathrm{D}(\mathbf{y}|\mathbf{s}) \approx -\frac{1}{48} \left(12\phi_2(\mathbf{y}) + \phi_4(\mathbf{y})\right)$$

Contrastes, cas «orthogonal»

- blanchiment \Rightarrow contrainte $\phi_2(\mathbf{y}) = 0$ imposée
- Dans ce cas, ϕ_4 devient:

$$\phi_4^o(\mathbf{y}) = -2\sum_i k_i \kappa_{iiii}(\mathbf{y}) \qquad (\mathcal{C}_4 \text{ dans TP})$$

où k_i = cumulant supposé des sources dans la modélisation. • Minimisation de ϕ_4^o par rapport aux k_i donne:

$$\begin{split} \phi^o_{\rm ICA}(\mathbf{y}) &= -\sum_i \kappa_{iiii}(\mathbf{y})^2 = \sum_{i,j,k,l \neq i,i,i,i} \kappa_{ijkl}(\mathbf{y})^2 + {\rm cste} \\ (\mathcal{C}_3 \text{ dans TP}) \end{split}$$

Conclusion

- Mélange linéaire instantané, cadre aveugle
- Hypothèses: sources indépendantes, non gaussiennes
- Approches:
 - globales, avec blanchiment
 - extraction d'une source + déflation (sans blanchiment)
- Fonctions de contraste
 - statistiques d'ordre supérieur
 - kurtosis
- Points non abordés:
 - prise en compte du bruit
 - algorithmes
 - ▶ signaux dans C (avec éventuelle circularité)
 - approche maximum de vraisemblance, théorie de l'information
 - problèmes liés: modèles linéaires convolutifs, égalisation

Bibliographie

http://tsi.enst.fr/~cardoso/stuff.html.

http://www.cnl.salk.edu/~tewon/ICA/display.htm.

J.-F. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, special issue on blind identification and estimation, 90(8):2009-2026, October 1998.

P. Comon. Independent component analysis, a new concept. Signal Processing, 36(3):287-314, April 1994.

A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.