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Abstract— This work deals with the problem of source sepa-
ration in the case when the observations result from a MIMO
convolutive mixing system. In a blind framework, higher-order
contrast functions have been proved to be efficient for extracting
sources. Inspired by a semi-blind approach, we propose new
contrast functions for blind signal separation which make use of
reference signals. The main advantage of this approach consists
in the quadratic form of these criteria: the extraction of one
source hence reduces to a simple optimization task for which
fast and efficient algorithms are available. The separation of the
other sources from the mixture is then carried out by an iterative
deflation method. Furthermore, these contrasts are shown to be
valid for both i.i.d. and non i.i.d. source signals. The performance
offered by these criteria is investigated through simulations: they
appear as very appealing tools compared with some classical
contrast functions.

Index Terms— contrast functions, blind source separation,
higher order statistics, cumulants, equalization

I. INTRODUCTION

A. Generalities

The problem of blind equalization of Linear Time Invariant
(LTI) systems appears in a wide variety of applications. Multi-
user environments have brought the necessity to equalize the
received signals both in space and time in order to reduce inter-
symbol and co-channel interferences. In this context, the use
of blind algorithms offers many advantages: the possibility to
consider rapidly time-varying channels, no need for a training
sequence and hence a potential increase of the available band-
width. In many other fields such as array processing, passive
sonar, seismic exploration, speech processing or biology, blind
equalization has also proved to be useful. The corresponding
generic problem is then generally referred to as the blind
source separation (BSS) one. In this context, we propose
separation criteria which allow to tackle the issue through an
iterative separation method. We first give a short review of
previous works on the subject.

Depending on the characteristics of the input signal(s) and
on the number of inputs and outputs of the considered linear
system, the blind equalization problem can be formulated in
different ways. Historically, the first works considered a single
sequence of independent and identically distributed (i.i.d.)
random variables, corresponding to the input signal, and a
single output signal. This problem has been considered in
numerous works, using certain signal properties like higher-
order statistics [40, 3, 21] or constant modulus [15, 47].

More recently, the research community has addressed more
challenging models where the number of inputs is greater
than one [50, 49, 43, 45]. This multichannel case has been a
promising research area for the last few years, for which strong
connections have been established with the instantaneous blind
source separation problem. The latter one has become very
popular and is often referred to as Independent Component
Analysis (ICA). The underlying model assumes that there is
no intersymbol interference but only co-channel interference
(see e.g. [9, 24, 30, 39]). More complicated models have been
studied (e.g. non linear [44], convolutive, . . . ). The problem
of separating convolutive mixtures, which is addressed in this
paper, has been tackled by different methods. On the one hand,
it is possible in the case of non i.i.d. sources, to exploit either
the non-stationnarity or the spectral diversity and to develop
methods based on second-order statistics [38, 27, 26]. On the
other hand, it is possible to use higher-order statistics and the
corresponding methods may be classified as follows:

• Contrast-based approaches known in the case of instan-
taneous mixtures have been generalized to the convolu-
tive case [10, 37]. More recently, contrasts have been
exhibited in the case of non i.i.d. sources [31, 6]. Jacobi-
like methods have been proposed for the maximization
of such criteria [11]. These approaches, which extract all
the sources simultaneously, often suffer from the need to
perform a prewhitening stage and from the existence of
spurious local maxima of the optimized criteria.

• It has long been noticed that convolutive mixtures can be
translated into instantaneous ones at each frequency. This
is the basic idea for several frequency domain methods
[8, 13, 12, 29]. All these methods have to take into
account a permutation and scaling ambiguity at each
frequency. Furthermore, to provide good results, these
methods may require a number of samples even larger
than other methods.

• Iterative methods extract the sources one by one and
therefore rely on the ability to extract one source (see
e.g. [20, 48, 42]). Depending on the context, they have
been referred to as “deflation” techniques [33, 48, 42],
hierarchical [46] or multistage [19] methods. These iter-
ative methods are very interesting because they remain
valid in the case of non i.i.d. signals [42] and because
the corresponding separation criteria may not present any
spurious local maxima [42].
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In this paper, we consider a Multi-Input / Multi-Output
(MIMO) LTI system with possibly non i.i.d. input source
signals, even though we mainly focus our attention on the
i.i.d. case. Our approach relies on a Multi-Input / Single-
output (MISO) inverse filter criteria based on higher-order
statistics followed by a deflation procedure to extract all the
source signals. We propose a new objective function which
makes use of so-called reference signals [2, 4, 7] and we show
that it is a contrast function allowing to extract one source
signal. Hence, the source separation problem can be solved
iteratively by successive global maximizations of this function.
The proposed objective function has the great advantage of
depending quadratically on the searched parameters. This leads
to a simplified optimization scheme, thus significantly speed-
ing up the source estimation process. We further investigate the
conditions required for the reference signals and show that they
are widely satisfied. This allows to use the proposed criteria in
a blind context. The resulting optimization problems are also
addressed.

It is worth noting that our approach is related to other
works. First, we have to mention that other approaches have
previously been called “reference”-based, although they are
not directly linked to our approach and rely on second order
statistics: so, in [28] a method is proposed for the separation
of instantaneous mixtures. The method in [14] deals with the
equalization of a single source mixed on several sensors and it
has been generalized to convolutive MIMO mixtures in [34].

In the present paper, we call “reference” signal any signal
fixed prior to the separation, whose cross-statistics with the
observations allows to build separation criteria. The reference
signal may either stem from a semi-blind approach, or may be
chosen from the observations. The papers most directly linked
to our approach are [35, 1] on the one hand and [21, 23, 22]
on the other hand. The first ones both deal with instantaneous
mixtures and require a prewhitening of the observation vector.
The seminal work in [21, 23, 22] yields a method called EVA
(Eigenvector Algorithm) that is applied to scalar deconvolution
problems only (i.e. a single source is filtered by different
channels and observed on several sensors). Moreover in the
latter work, the source signals are assumed to be i.i.d. although
some classes of signals of interest such as CPM (Continuous
Phase Modulated) ones do not satisfy this assumption. The
original contribution of our work is to address the general
case of a convolutive mixture of several sources, which may
be non i.i.d.

The model, notations and key assumptions are given in
Section II. Section III proves the validity of the proposed
criteria for source separation. In particular, in Section III-C,
we give the conditions for these criteria to be used in a totally
blind context. The case of non i.i.d. sources is studied in Sec-
tion III-D. Section IV gives some detailed explanations about
the optimization procedure and the possibility to extend the
method to a MIMO separating algorithm. Finally, simulation
results are given in Section V and Section VI concludes the
paper.

B. Notations

In the whole paper, n stands for a generic integer (n ∈ Z).
Bold upper (resp. lower) case letters are used for matrices
(resp. vectors). M[z] ,

∑
n∈ZM(n)z−n denotes the transfer

function of the LTI system {M} with impulse response
M(n). All quantities throughout the paper may be either real
or complex-valued. .∗ stands for the complex conjugate, .T

for matrix transpose, .H for matrix hermitian transpose. To
provide a general formulation in Section III-B, we introduce
the notation y(∗)i(n), where for i ∈ {1, 2}, the symbol .(∗)i

means an optional complex conjugation, that is, for each index
i, we have either y(∗)i(n) = y(n) or y(∗)i(n) = y∗(n).
Finally Cum{.} stands for the the cumulant of any set of
random variables, I is the identity matrix and δn stands for
the Kronecker symbol, i.e. δn = 1 if n = 0 and 0 otherwise.

II. MODEL AND PROBLEM FORMULATION

We consider an observed Q-dimensional (Q ∈ N, Q ≥ 2)
discrete-time signal. Its nth sample is denoted by the column
vector x(n). Assuming a noise-free model, the observation
x(n) results from an LTI multichannel system described by
the input-output relation:

x(n) =
∑

k∈Z
M(k)s(n− k) , {M}s(n). (1)

In the above equation, M(n) represents a (Q,N) matrix
corresponding to the impulse response of the LTI mixing
system, which is denoted by {M} for simplicity. The vector
of source signals (or sources) s(n) is an N -dimensional (N ∈
N∗) unknown and unobserved column vector. The objective
is to restore the sources blindly, that is from the only use
of the observations. For this to be achievable, the following
assumptions must be made on the mixing system:

A0. The LTI mixing system is stable (i.e. for all (i, j),
the (i, j)th element Mij(n) of the matrix M(n) forms
an absolutely summable sequence:

∑
n∈Z |Mij(n)| < ∞,

∀(i, j)).
A0’. The LTI mixing system is left invertible, that is there

exists a stable LTI system {W} with impulse response
W(n) such that the global LTI system {G} , {W?M}
with impulse response G(n) ,

∑
k∈ZW(k)M(n − k)

corresponds to an identity LTI multichannel system, i.e.
G(n) = Iδn.

One should notice that A0’ can be satisfied only if there are
more observed signals than sources (Q ≥ N ). More precisely,
A0’ is satisfied if and only if for all ω, the matrix M[eıω] has
full rank N (see e.g. [17]). In the case of MIMO-FIR (Finite
Impulse Response) systems, one can give a more precise result
[18]: a left MIMO-FIR inverse system exists if and only if
M[z] has full column rank for all z ∈ C, z 6= 0.

Our approach being an iterative one, we will focus on the
extraction of a single source (the extraction of all sources is
done through a deflation procedure which will be described in
Section IV-C). In this MISO context, the considered problem
consists in estimating one row of {W}, that is a (1, Q)
LTI vector filter {w}, called an equalizer, and with impulse
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response w(n), such that the scalar signal

y(n) =
∑

k∈Z
w(k)x(n− k) (2)

restores one of the components si(n), i ∈ {1, . . . , N}, of the
source vector. In order to obtain tractable expressions, we
define the corresponding (1, N) global LTI vector filter {g}
by its impulse response g(n) ,

∑
k∈Zw(k)M(n − k), and

then we have

y(n) =
∑

k∈Z
g(n− k)s(k) , {g}s(n) . (3)

To be able to carry out the estimation blindly, assumptions
about the source signals are required. In this paper, we will
adopt the following assumptions:

A1. The source vector components si(n), i ∈ {1, . . . , N}
are stationary and zero-mean random processes with
unit variance. They are also statistically mutually in-
dependent (typically up to the order of the considered
cumulants). The source signal correlation sequences are
definite positive1 and are respectively denoted by γi(k) ,
E{si(n)s∗i (n− k)} where k ∈ Z and i ∈ {1, . . . , N}.

Now it has to be noticed that there exist some inherent
undetermined factors in the estimation of the source signals.
Indeed, they can be recovered “only” up to a permutation and
to a scalar filtering. For this reason, the equalization of one
source signal is said to be achieved when there exists an index
i0 ∈ {1, . . . , N} and a non-zero scalar filter with impulse
response g(n), such that the ith filter component in g(n) reads

gi(n) , (g(n))i = αg(n)δi−i0 , (4)

where α ∈ C, α 6= 0. The above relation is called the
“equalization condition” and expresses the fact that y(n) is
equal to one source signal, si0(n), up to a scalar filtering.

Notice that the above equalization condition can be made
more restrictive when all source signals are also assumed
to be sequences of independent and identically distributed
(i.i.d.) complex random variables. Indeed, in such a case, it
is classically said that the equalization is realized when the
scalar filter g(n) reduces to a simple delay. This reads:

∃l ∈ Z gi(n) , (g(n))i = αδn−lδi−i0 . (5)

For convenience, we introduce for any index j ∈ {1, ..., N}
and any scalar filter with impulse response h(n) its j-norm:

‖h‖2j ,
∑

(k1,k2)∈Z2

h(k1)h∗(k2)γj(k2 − k1). (6)

One can easily see that ‖h‖2j is the variance of the signal
obtained when filtering the source sj(n) by the filter with
impulse response h(n). Since the sources have unit variance,
one can restrict the multiplicative factor in (4) and (5) to |α| =
1 by imposing the constraint E{|y(n)|2} = 1. Defining the
(weighted) `2-norm of the global (1, N) filter {g} by

‖g‖2 ,
N∑

i=1

‖gi‖2i (7)

1A summable correlation sequence is definite positive when the correspond-
ing spectrum density is positive.

one can see that the constraint E{|y(n)|2} = 1 is then
equivalent to ‖g‖2 = 1, i.e. to having a unit-norm global
filter. Note that for i.i.d. source signals, this condition simply
becomes:

N∑

i=1

∑

k∈Z
|gi(k)|2 = 1. (8)

Let us finally introduce some useful notations. In the
following, we denote by S the set of source signals satisfying
assumptions A1. We also denote by G1 the set of unit norm
vector filters and by Gi0

1e the subset of filters in G1 satisfying
the equalization condition (4). Note that, when {g} ∈ Gi0

1e,
in addition to the constraint |α| = 1, we may suppose in
(4) that ‖g‖i0 = 1. We denote by Gi0

1ed the subset of Gi0
1e

when g(n) = δn−l (i.e. the set of global filters satisfying the
equalization condition (5)). Finally, we denote Y the set of
the output MISO equalizer as defined in (3), when the source
signal belongs to S and the global system belongs to G1.

III. A GENERAL FAMILY OF CONTRAST FUNCTION

A. Contrast function

Before presenting our results, we recall some useful defini-
tions in the context of MISO equalization. It is well-known that
one of the most interesting approaches to the blind equalization
problem consists in the use of an appropriate contrast function.
Basically, a contrast function plays the role of an objective
function in the sense that its (global) maximization allows us to
solve the problem. In this way, the source separation problem
becomes an optimization one. Moreover, identifiability condi-
tions are provided by the definition domain of the considered
contrast function. In accordance with the considered method,
which is iterative and relies on successive MISO extractions
of each of the sources, we introduce the following definition
of a contrast function for i.i.d. source signals.

Definition 1 (contrast function for i.i.d. sources): Let
C{·} be a function from Y to R. It is called a contrast
function or simply a contrast when it satisfies the two
following properties:

p1. There exists (i0, k0) ∈ {1, . . . , N} × Z such that

∀y(n) ∈ Y C{y(n)} ≤ C{si0(n− k0)}. (9)

p2. The equality holds in (9) for any (i0, k0) ∈ {1, . . . , N}×
Z if and only if the global filter is separating, i.e. {g} ∈
Gi0

1ed.
According to the above definition, the global maximization of
a contrast function leads to the extraction of one source up to
a delay and a multiplicative factor.

However, this definition cannot be used for non i.i.d. source
signals whose extraction based on mutual independence cri-
teria can only be guaranteed up to a scalar filtering. This is
the reason why a weaker definition of a contrast is now given,
which will be used for non i.i.d. source signals.

Definition 2 (contrast function for non i.i.d. sources):
Let C{·} be a function from Y to R. It is called a contrast
function when it satisfies the two following properties:
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p1’. For all possible output of the equalizer:

C{y(n)} ≤ N
max
i=1

sup
g∈Gi

1e

C{{g}s(n)}. (10)

p2’. The equality holds in (10), if and only if there exists i0
such that g ∈ Gi0

1e.
It is clear that if a function is a contrast in the sense of Defini-
tion 1 then it is also a contrast in the sense of Definition 2. The
converse property is not true in general since the separation as
expressed in Section II constitutes a weaker property for non
i.i.d. sources than for i.i.d. sources.

B. Case of i.i.d. source signals

To provide a better insight in the results, we first consider
the relatively simple case of i.i.d. source signals. The proofs
will be extended to the non i.i.d. case in Section III-D.
One of the contributions of the paper consists in proposing
criteria based on R-th order (R ≥ 3) cross-cumulants, where
R − 2 variables are fixed. This choice yields a quadratic
dependence with respect to the optimized parameters which
greatly simplifies the optimization task.

According to the notations in Section I-B, we define the
following R-th order (R ≥ 3) cumulant (where the optional
complex conjugate .(∗)1 and .(∗)2 are not necessarily equal):

κR,z{y(n)} = Cum{y(∗)1(n), y(∗)2(n), z1(n), . . . , zR−2(n)}
(11)

where zi(n), i ∈ {1, . . . , R − 2} are signals fixed prior to
the separation. In our previous works [4, 2], these signals
have been referred to as reference signals which have been
determined from prior information, but we will prove later (see
Section III-C) that they may be chosen in a rather arbitrary
way. We now define the following function:

CR,z{y(n)} , |κR,z{y(n)}| , R ≥ 3. (12)

We will prove that CR,z{y(n)} is a contrast function. To this
end, we define the following supremum,

κmax
R =

N
max
j=1

sup
k∈Z

|κR,z{sj(n− k)}|. (13)

We moreover assume that it is reached and hence bounded:

A2. There exists (j0, k0) such that:

κmax
R = |κR,z{sj0(n− k0)}| < +∞. (14)

Under the above assumption, which will be proved to be
widely satisfied (see Proposition 2), we are able to state the
following proposition:

Proposition 1: In the case of i.i.d. source signals, under
Assumption A2., the function CR,z is a contrast over the set
of unit norm row filters (‖g‖ = 1) if and only if the set

I , {(j, k) ∈ {1, . . . , N} × Z | |κR,z{sj(n− k)}| = κmax
R }

(15)
contains a single element.

Proof: The proof is given in Appendix I

C. Blind use of the proposed criteria
1) Reference signal: We have not specified so far how to

choose the signals zi(n). The simplest way to make this choice
consists in assuming that each signal is obtained by a MISO
filtering of the sources:

∀i ∈ {1, . . . , R− 2} zi(n) =
∑

k∈Z
t(i)(n− k)s(k) . (16)

where for all i, t(i)(n) is the impulse response of a (1, Q) sta-
ble vector filter. In a semi-blind context, zi(n), i ∈ {1, . . . , R−
2} can be called reference signals and t(i)(n), i ∈ {1, . . . , R−
2} can be viewed as the impulse responses of reference
systems. In choosing the reference signals as filtered versions
of the sources, one can easily ensure that Assumption A2. is
fullfilled, as stated by the following Proposition.

Proposition 2: If the filters with impulse responses
t(i)(n), i ∈ {1, . . . , R − 2} are stable, then assumption A2.
is satisfied.

Proof: Similarly to the proof of Proposition 1, in order
to simplify notations, we restrict the study to the case when
y(∗)1(n) = y(∗)2(n) = y(n). Using cumulant multilinearity
and source independence, one obtains (for any given j in
{1, . . . , N}):

|κR,z{sj(n− k)}| = |CR{sj(n)}| |
R−2∏

i=1

t
(i)
j (k)| (17)

where t
(i)
j (k) is the j-th component of t(i)(k) and where

we have defined the R-th order auto-cumulant CR{sj(n)} ,
Cum{sj(n), sj(n), sj(n), . . . , sj(n)}. Because of the stability
of the filters, the sequences (t(i)j (k))k∈Z are summable and
so is the sequence

( ∏R−2
i=1 t

(i)
j (k)

)
k∈Z. This implies that the

latter sequence converges to 0 when |k| → ∞ and, hence,
the supremum over k ∈ Z is reached in (13), showing that
Assumption A2. holds.

2) Randomly driven reference system: It seems natural
to wonder whether the validity condition for the proposed
contrast as given in Proposition 1 is restrictive or not. Actually,
the following proposition shows that this condition is weak,
since it appears that zi(n), i ∈ {1, . . . , R − 2} can be chosen
almost arbitrarily, unlike what has been done in [4]:

Proposition 3: Assume that we have κmax
R > 0 in Equation

(14). If the filters {t(i)}, 1 ≤ i ≤ R − 2 have finite
impulse response (FIR) and if their coefficients have been
chosen randomly distributed according to a continuous joint
probability density function (supported on a set of non-zero
measure), then almost surely the set I has one single element
and CR,z is a contrast.

Proof: Denote by (j0, k0) a pair of indices satisfying
Equation (14) (such a pair exists according to Proposition 2
and the FIR assumption). From Equation (17), one can see
that for any (j, k) 6= (j0, k0), we have (j, k) ∈ I if and only
if

|CR{sj(n)}
R−2∏

i=1

t
(i)
j (k)| = |CR{sj0(n)}

R−2∏

i=1

t
(i)
j0

(k0)| , (18)

which is almost surely false if the coefficients are driven from
a continuous joint probability density function.
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One should notice that the above proposition still holds true
when all reference filters are identical (∀i ∈ {1, . . . , R −
2}, t(i) = t). This case of particular interest will often be
considered in the following.

Finally, note also that all the arguments used to prove
Propositions 1, 2 and 3 still apply if some of the “reference
signals” zi(n), i ∈ {1, . . . , R− 2} are replaced by their com-
plex conjugates. This means that the expression in Equation
(11) can be generalized by conjugating or not each term in
the expression of the cumulant. For readability, we did not
introduce additional notations on the reference signals to make
it explicit.

3) Example of 4th or 3rd order cumulants and comments:
We here address the particular case when 4-th order cumulants
are considered with an equal number of conjugated and non
conjugated terms and when one reference signal is used only.
More precisely, we have R = 4, z1(n) = z∗2(n) , z(n) and
the contrast reads:

C4,z{y(n)} , |Cum{y(n), y∗(n), z(n), z∗(n)}|
with: z(n) =

∑

k∈Z
t(n− k)s(k) . (19)

Notice that if the reference signal z(n) is replaced by y(n),
the function C4,z{y(n)} was already shown to be a contrast
in [48] for the case of i.i.d. sources and in [42] for non i.i.d.
sources. At this point, one may wonder why no assumption has
been made on the 4-th order cumulants of the sources, which
must usually be non zero [48, 42]. In fact, this assumption is
taken into account in Proposition 1. Indeed, in order to satisfy
the assumption of Proposition 1, we must have κmax

R > 0
which necessarily implies that at least one source should have
a non zero 4-th order auto-cumulant. This justifies that the
following assumption is required by our method:

A3. At least one of the sources has non zero 4-th order
auto-cumulant, i.e. there exists i ∈ {1, . . . , N},

C4{si(n)} , Cum{si(n), s∗i (n), si(n), s∗i (n)} 6= 0.

More precisely, one can remark from the proof of Propo-
sition 1 that the maximization of the contrast C4,z{y(n)}
leads to the extraction of a source such that there exists
(j0, k0) satisfying Equation (14), that is |κ4,z{sj0(n − k0)}|
reaches the maximum value. By writing |κ4,z{sj0(n−k0)}| =
|tj0(k0)|2|Cum{sj0(n), s∗j0(n), sj0(n), s∗j0(n)}| one sees that
the maximum value of |κ4,z{sj0(n−l0)}| results from a trade-
off, where either the auto-cumulant or the coefficient |tj0(k0)|
takes a large value. The latter condition can be interpreted
as the prominence of the j0-th source with a delay k0 in the
reference signal. Finally, if some of the sources in the mixture
have vanishing auto-cumulants, one should remark that it still
possible to extract the sources with non zero auto-cumulants.

A similar discussion holds, under minor modifications, for
cumulants of any order. In particular, 3-rd order cumulants
will be used in the simulations. In this case, the contrast
reads C3,z{y(n)} , |Cum{y(n), y(n), z(n)}| and assump-
tion A3. becomes: there exists i ∈ {1, . . . , N} such that
Cum{si(n), si(n), si(n)} 6= 0. One should pay attention to
the fact that this assumption is not satisfied by sources having

a symmetric probability density function. Odd-order cumulants
cannot be used in the latter case.

D. Case of non i.i.d. source signals

1) Validity of the proposed contrast function for non i.i.d.
sources: Now, inspired from [42], we show how the results can
be adapted to the case of non i.i.d. source signals. Similarly
to Equation (13), we define:

∀i ∈ {1, . . . , N}, Mi , sup
{g}∈Gi

1e

CR,z{{g}s(n)}

and Mmax , N
max
i=1

Mi. (20)

The following set will play a role identical to the one in
Equation (15):

I ′ , {j ∈ {1, . . . , N} | Mj = Mmax}. (21)

Finally, Assumption A2. should be modified as follows:
A4. For all i ∈ I ′, the supremum Mi in (20) is reached

by a filter which is denoted by {g]
i} ∈ Gi

1e.
We are then able to state the following result:

Proposition 4: In the case of non i.i.d. signals, under as-
sumption A4., the function CR,z is a contrast over the set of
unit norm filters (‖g‖ = 1) if and only if the set I ′ contains
a single element.

Proof: The proof is given in Appendix II.
2) A sufficient condition for the validity of Proposition 4:

In the particular case when only one reference signal given
by z(n) =

∑
k∈Z t(n − k)s(k) is considered, the following

Proposition gives a sufficient condition for Proposition 4 to
hold true. Let us define for any j ∈ {1, . . . , N} the following
R-th order auto-cumulant at time-lag (p1, . . . , pR−1):

C(p1,...,pR−1)
R {sj(n)} ,

Cum{sj(n), sj(n + p1), . . . , sj(n + pR−1)}. (22)

For any j ∈ {1, . . . , N} we set:

‖tj‖`1 ,
∑

k∈Z
|tj(k)| ‖tj‖`∞ , sup

k∈Z
|tj(k)|

and: ‖C(·)
R {sj(n)}‖`1 ,

∑
p1,...,pR−1

|C(p1,...,pR)
R {sj(n)}|.

We further assume that the correlation sequences of the sources
are summable and, as they have been assumed positive definite,
the j-th source has a continuous spectrum density which is
lower-bounded by a constant Γmin

j > 0.
Proposition 5: A sufficient condition for Proposition 4 to

hold true, is that there exists j0 ∈ {1, . . . , N} such that, for
all j 6= j0,

‖tj0‖R−2
`∞ |C(0,...,0)

R {sj0(n)}| >
(‖tj0‖R−2

`1
−‖tj0‖R−2

`∞ ) sup
(l1,...,l2) 6=(0,...,0)

|C(0,l1,...,lR−2)
R {sj0(n)}|

+ (Γmin
j )−1‖tj‖R−2

`∞ ‖C(·)
R {sj(n)}‖`1 . (23)

Proof: The proof is given in Appendix III.
One notices that the difference between the left-hand side

and the right-hand side of the above inequality is all the more
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important as |C(0,...,0)
R {sj0(n)}| is large or ‖tj0‖`∞ is close

to ‖tj0‖`1 . This confirms our intuition that the extraction of a
source should be easier when its kurtosis has a high value and
when the reference is not too far from a separating filter ex-
tracting this source. Finally, in the case of i.i.d. sources, using
the facts that C(p1,...,pR−1)

R {sj(n)} = 0 for (p1, . . . , pR−1) 6=
(0, . . . , 0) and Γmin

j = 1, one can see that (23) reduces to:

‖tj0‖R−2
`∞ |C(0,...,0)

R {sj0(n)}| > ‖tj‖R−2
`∞ |C(0,...,0)

R {sj(n)}|
which is exactly the validity condition formerly stated for i.i.d.
sources. This illustrates that Propositions 4 and 5 generalize
our previous results to non i.i.d. sources.

IV. PRACTICAL CONTRAST OPTIMIZATION

We now derive an efficient method for the optimization of
the previous contrasts. Moreover, we will describe an iterative
method where the reference system is updated after each iter-
ation by the output signal computed in previous iteration. This
method which we refer to as a “fixed-point” method, exhibits
improved performance in simulations.

A. Optimization method

We now consider the optimization of the proposed contrast
through its practical implementation with FIR filters. Hence,
in order to ensure Assumption A0’, it is assumed that:

A5. The mixing system is an FIR filter with impulse re-
sponse of length L. In addition, there are more sensors
than sources (Q ≥ N ). Finally, the polynomial matrix
z-transform M[z] of the filter {M} is irreducible.

Note by the way that irreducibility is widely satisfied as soon
as there are strictly more sensors than sources (Q > N , see e.g.
[16]). Assumption A5. ensures that the mixing filter admits a
MIMO-FIR left inverse filter (see [16] or [25]), which can be
assumed to be causal because of the delay indetermination and
whose length is denoted by D.

The row vectors defining the impulse response of the MISO
equalizer can always be stacked in the following (1, QD) row
vector:

w ,
(
w(0) w(1) . . . w(D − 1))

)
(24)

We similarly define the (QD, 1) column vector

x(n) ,
(
x(n)T x(n− 1)T . . . x(n−D + 1)T

)T
.

Using these notations it is straightforward to see that Equa-
tion (2) can be written as

y(n) = wx(n). (25)

Hence the power of the output of the MISO equalizer reads

E{|y(n)|2} = wRxwH (26)

where Rx , E{x(n)x(n)H} is the covariance matrix of x(n).
Let us now consider the cumulants in (11). Using the multi-

linearity property of cumulants, one can easily obtain

κR,z{y(n)} = w(∗)1Cx,z

(
w(∗)2

)T

(27)

where w(∗)1 (resp. w(∗)2) stands for the vector w conjugated
in the same way as y(∗)1(n) (resp. y(∗)2(n)) in (11). The
matrix Cx,z is defined component-wise as
(
Cx,z

)
i,j

= Cum{x(∗)1
i (n), x(∗)2

j (n), z1(n), . . . , zR−2(n)}
where x

(∗)1
i (n) (resp. x

(∗)2
j (n)) are the i-th (resp. j-th) com-

ponent of vector x(n) conjugated as explained above.
Hence optimizing the contrast CR,z under the constraint of

a unit norm MISO filter is equivalent to determine

max |w(∗)1Cx,z

(
w(∗)2

)T

|
under the constraint wRxwH = 1 . (28)

It can be noticed that the covariance matrix Rx is positive
semidefinite and thus some of its eigenvalues can be zero. In
such a case, the solution to the above maximization problem is
not unique since any vector belonging to the nullspace kerRx

of Rx can be added to the solution without changing the sepa-
rator output (if wH ∈ kerRx, then wx(n) obviously vanishes
identically). Hence we can impose the following additional
constraint:

wH ∈ (kerRx)⊥. (29)

This constraint is introduced in order to ensure that a unique
solution to (28) exists. This in turn allows to simplify further
the problem (see Equation (36)) although Rx is not necessarily
positive definite. Imposing (29) can be easily done by a pro-
jection onto the signal subspace spanned by the eigenvectors
associated to all non zero eigenvalues. More precisely, as Rx

is a covariance matrix, it can be decomposed as

Rx = UDUH (30)

where D is the square diagonal matrix corresponding to all
the non zero eigenvalues and U is a matrix whose columns
correspond to the family of orthonormal eigenvectors associ-
ated to these non zero eigenvalues. Let us now introduce the
two following matrices

P , UD
1
2 Q , D− 1

2 UH . (31)

The constraint in (29) is then taken into account by setting

w = w̃Q (32)

which leads to
w̃ , wP. (33)

Then
wRxwH = wPPHwH = w̃w̃H (34)

and

κR,z{y(n)} = w(∗)1Cx,z

(
w(∗)2

)T

= w̃(∗)1C̃x,z

(
w̃(∗)2

)T

where
C̃x,z , Q(∗)1Cx,z

(
Q(∗)2

)T

. (35)

Finally the maximization problem in (28) takes the more clas-
sical form:

max |w̃(∗)1C̃x,z

(
w̃(∗)2

)T

|
under the constraint w̃ w̃H = 1 . (36)
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Note that the transformation on w given by (33) corresponds
to a prewhitening step. Then, the above optimization problem
can be readily solved in the following two particular cases:
• if all quantities are real-valued, in which case the complex

conjugation has no effect and the matrix C̃x,z is real
symmetric;

• if in Equation (11) which defines the contrast, each sig-
nal appears twice, once with a complex conjugate and
once without. In such a case, the matrix C̃x,z is hermi-
tian symmetric and (36) amounts to the maximization of
|w̃C̃x,zw̃H | under the constraint w̃ w̃H = 1.

In both cases, the solution is given by the eigenvector of C̃x,z

associated to the eigenvalue with largest modulus. In practice
it can be obtained by an Singular Value Decomposition (SVD)
of the considered matrix.

The advantages of the approach are twofold: first, the global
maximum of the contrast can be reached and the optimization
task is not made difficult by the possible existence of spurious
local maxima. Second, the optimization does not require any
iterative gradient-like algorithm which appears to be time con-
suming because of their slow convergence and the requirement
to perform numerous contrast/gradient estimations. It follows
that the optimization time is very significantly reduced since
the estimation step is performed only once.

B. A “fixed-point” like method
We assume, in this paragraph, that only one reference sys-

tem is used. This means that for all i ∈ {1, . . . , R − 2}, we
have zi(n) = z(n), ∀n ∈ Z (or possibly zi(n) = z∗(n) in
the complex case). For clarity, we will write κR,z and CR,z

instead of the previously used notations κR,z and CR,z.
According to Proposition 3, the criterion CR,z in (12) where

the reference signals zi(n), i ∈ {1, . . . , R − 2} have all been
chosen equal zi(n) = z(n), ∀i, constitutes almost surely a
contrast when z(n) is the output of a (1, Q) FIR randomly
driven row filter operating on the observed signals.

However, following the discussion in Section III-C.3, one
could expect that the better the reference system separates
the j0-th source signal, the better the result of the extrac-
tion of the j0-th source signal should be, in the presence
of estimation errors. Furthermore, the output obtained after
maximization of CR,z should be closer to the extracted source
than the reference one. Based on this observation, an iterative
procedure is proposed. Basically, the output which has been
previously obtained by the maximization of CR,z serves as
a “new” (or updated) reference signal. More precisely, using
the same notations as in Section IV-A, the iterative procedure
consists of the following steps:

1) choose or draw randomly a vector w0

2) for ` ∈ {1, 2, . . . , `max} do:
• fix the reference to z(n) = w`−1x(n),
• w` = arg maxw CR,z{y(n)} where

y(n) = wx(n).
3) The separating filter is given by the coefficients w`max .

One can see that w` is obtained from w`−1 from the function
given by the arg max expression. This is the reason why this

algorithm has been called “fixed-point” like. Notice that a sim-
ilar method was proposed for SISO deconvolution problems
in [21]. We have observed in simulations that a few iterations
`max of the above method allows to improve the performance
obtained with a single maximization of the contrast function
using a randomly driven reference system. In particular, it
must be pointed out that this method appears more robust
with respect to estimation errors than the method which would
consist in performing only one contrast optimization.

C. Extraction of the whole set of sources

So far, we have been concerned with the problem of extract-
ing a single source from a mixture of N sources observed from
Q sensors. Iterative solutions have been proposed to extract all
sources. Among them, the so-called “deflation” method [33]
consists in subtracting the contribution of the source which has
been previously extracted from the sensors (see also [48, 42]
for other details). This operation can be performed by a least
square approach and then, the remaining problem amounts
to separating N − 1 sources from the Q observed signals.
Repeating this operation iteratively leads to the extraction of
all the N sources.

Let us now see the consequence of a “deflation” step on
the matrix Rx which has been defined in Section IV-A and
which is used for the extraction of a single source. Defining
the QD ×N(L + D − 1) matrix

T (M) ,


M(0) . . . M(L− 1) 0 . . . 0

0 M(0) . . . M(L− 1)
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 M(0) . . . M(L− 1)




and the column vector

s(n) ,
(
s(n)T s(n− 1)T . . . s(n− L−D + 2)

)T
,

we have x(n) = T (M)s(n) and hence

Rx = T (M)RsT (M)H (37)

where Rs , E{s(n)s(n)H}.
In addition to A5., we assume that the mixing system has

strictly more sensors than sources (Q > N ) and that the matrix
T (M) is full column rank (that is in particular the case when
the polynomial matrix M[z] is column reduced and when D ≥
N(L− 1), see [32] for more details).

In this case, the rank of Rx is equal to the rank of Rs.
Thus, cancelling the contribution of one source on the sensors
is equivalent to having one source that identically vanishes.
Then, one can easily see that L + D− 1 components of s(n)
identically vanish and therefore, the rank of Rx is reduced of
the same number.

At the P -th source extraction stage, P −1 “deflation” steps
have been performed and thus the rank of Rx has to be
reduced by (P − 1)(L + D − 1). This fact must be taken
into account when projecting onto (kerRx)⊥ as explained in
Section IV-A. The procedure is summarized hereunder:



IEEE TRANS. SIGNAL PROCESSING, VOL. 55, NO. 1, JAN. 2007 8

Let x0(n) = x(n). Estimate r0 = rank(Rx0) (or assume it
is known). For i = 1 . . . N do:

1) decompose Rxi−1 according to (30), keeping the
largest ri−1 eigenvalues. Then extract from xi−1(n)
a source according to the method from Section IV-B,
so yielding yi(n).

2) if i < N , then perform a deflation step:
• by a least square method, subtract yi(n) from

xi−1(n), which yields xi(n).
• Set ri = ri−1 − (P − 1)(L + D − 1).

V. SIMULATION RESULTS

The proposed approach is now illustrated through computer
simulations. We have mainly considered real-valued source
signals and mixing systems. Complex-valued signals and sys-
tems have also been tested because of their importance in
telecommunication systems. In particular, non-linear CPM (Con-
tinuous Phase Modulation) source signals have been consid-
ered. If we except Experiment 3 where a comparison is per-
formed between 3-rd and 4-th order based contrasts, the sepa-
ration criterion which has been used is derived from 4-th order
cumulants and is given by Equation (19).

All the results presented below result from Monte-Carlo
simulations involving 100 realizations. At each run, the mixing
system and the sources have been drawn randomly. The coeffi-
cients of the reference system have also been drawn randomly
except in Section V-B. The coefficients of the mixing system
and of the reference system have been generated according to
a normal distribution.

A. Experiment 1 – MSE w.r.t. iteration number

Here, we consider a mixture of i.i.d. PAM-4 source signals,
i.e. signals taking their values in the set {− 3√

5
,− 1√

5
, 1√

5
, 3√

5
}

with equal probabilities. The length of the mixing filter is
L = 3, the number of sources is N = 3 and the number
of observations is Q = 4. The simulations have been carried
out with K = 5000 and K = 10000 samples, successively. In
Tables I and II, we give the average mean square error (MSE)
on the estimated source signal MSE versus the number of
iterations `max used for the “fixed-point” method described in
Section IV-B. In Table I, the initial reference system has been
drawn randomly, whereas in Table II, it has been arbitrarily
set to w0 = (1, 0, . . . , 0).

One notices in both Tables I and II that after a few itera-
tions, the MSE becomes constant: the validity of the method
proposed in Section IV-B is confirmed by the low error values
which are obtained. In addition, one may observe that the
results become interesting even after the first iteration. The
importance of the choice of the reference signal is investigated
in the next paragraph.

B. Experiment 2 – Influence of the reference signal

We consider the case of N = 2 i.i.d. PAM-4 source signals,
Q = 3 observation signals and a mixing filter of length L = 3.
To evaluate the influence of the reference signal, we choose
it as z(n) = βs1(n) + (1 − β)s2(n) with β ∈ [0, 1]. In so

doing, we are able to investigate the sensitivity of the contrast
function w.r.t. the choice of the reference system and the con-
ditions in Proposition 1. The latter conditions are met, except
when β = 1/2. In other words, this experiment is carried
out in a semi-blind context where z(n) is given and where
the influence of its choice is evaluated. Incidently, the choice
of the reference signal is linked to the closeness between the
principal eigenvalue of the matrix C̃x,z in Equation (36) and
its next largest eigenvalue.

In Figure 1, the MSE of the estimated source signal is
plotted versus β for three different sample sizes and for a
constant number of iteration `max = 1. In Figure 2, the MSE
of the estimated source signal is plotted versus β for four dif-
ferent iteration numbers and for a constant number of samples
K = 5000.

As expected, better results are obtained for values of β near
0 or 1, that is when the reference signal is closer to one of
the sources. Moreover, with a sufficient number of samples,
satisfactory values of the MSE are observed, except for values
of β close to 1/2. By increasing the number of samples,
this behaviour becomes more apparent. This confirms the fact
that, when the exact statistics are available, the proposed cri-
teria constitute contrasts, except for β = 1/2 (which arises
with probability zero when the reference system is randomly
driven).

C. Experiment 3 – Comparison with non quadratic contrasts

It has been well established that the square modulus of the
fourth order cumulant |C4{y(n)}|2 of the separator output is
a contrast [48, 42]. We now compare this classical contrast
with the quadratic contrast in Equation (19). The latter one
has been used as described in Section IV-B with `max = 5
successive optimizations and an initial reference system ran-
domly chosen. On the other hand, the contrast |C4{y(n)}|2
has been optimized using a gradient ascent method with an
adaptatively adjusted step-size (initially set to one and divided
by two each time the contrast does not increase).

In these simulations we have considered N = 3 i.i.d. uni-
form source signals mixed on Q = 4 sensors by a filter
of length L = 3. The number of samples has been set to
K = 5000.

First and foremost, the quadratic contrasts proposed in this
paper are optimized much quicker than the classical ones. The
results in Table III show up that `max = 5 optimizations
of the quadratic contrast can be performed about 25 times
faster than a single optimization of a classical non quadratic
contrast2.

In Figure 3, the empirical MSE cumulative distribution func-
tion is also displayed. One can see that the “reference” based
approach outperforms the classical one.

In conclusion, the quadratic contrasts appear as very inter-
esting tools, both for their easy and fast optimization and for
the good quality results they provide.

2The execution times have been estimated on a computer running a Pentium
4 processor running at 1GHz clock frequency and with 256MB RAM.
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D. Experiment 4 – Comparison between 3-rd and 4-th order
based contrasts

The contrast functions given by Equations (11) and (12) can
be based on cumulants of any order greater than or equal to 3.
Intuitively, the lower the order of the considered cumulants, the
lower the estimation errors should be. We here illustrate this
fact in the case of N = 3 skewed i.i.d. source signals taking
their values in the set {−1, 0, α} with the respective prob-
abilities { 1

1+α , α−1
α , 1

α(α+1)}. The parameter α allows us to
vary continuously the values of the cumulants of these source
signals, here denoted by MS(α) [36]. In our experiments, we
have used α = 3 or α = 1 +

√
2. The respective values

of the third and fourth order cumulants are C3{s(n)} = 2,
C4{s(n)} = 4 for α = 3 and C3{s(n)} = C4{s(n)} =

√
2

for α = 1 +
√

2. Finally, the length of the mixing filter was
L = 3 and the number of observed signals was Q = 4.

In Figure 4, the MSE of the estimated source signal is
plotted versus the number of samples. The results have been
obtained with `max = 3 iterations as described in Section
IV-B. As intuitively expected, we observe that the contrast
function based on third order statistics leads to a better per-
formance.

E. Experiment 5 – Non i.i.d. source signals

1) Considered signals and separation criterion: Different
non i.i.d. source signals have been considered to illustrate the
validity of the contrast functions in this context. Hereafter, we
shortly describe the models we have used for the N sources
si(n), i ∈ {1, . . . , N}.

• Multiplicative like models have been generated: each source
reads si(n) = ai(n)ζi(n) where ζi(n) is an i.i.d. normal-
ized Gaussian process. When in addition ai(n) is a mov-
ing average (MA) time series, we say that the sources are
“stochastic volatility” processes [5]. When ai(n) is pos-
itive and satisfies the following “auto-regressive” equa-
tion:

ai(n)2 = α0 +
P∑

k=1

αksi(n− k)2 (38)

we obtain the so-called ARCH(P ) model (autoregressive
conditionnal heteroscedastic of order P , see e.g. [41]).

• Pseudo-symbols of Continuous Phase Modulated signals
are unit modulus signals defined by the relation si(n +
1) = exp(ıπhia

i
n)si(n) where hi ∈]0, 1[ is a modula-

tion index and ai
n is the i.i.d. binary symbol sequence

transmitted by the i-th user.

Since non i.i.d. sources can be recovered only up to a scalar
filtering, we introduce the following separation criterion:

τ , 1− maxj ‖gj‖2j∑N
j=1 ‖gj‖2j

(39)

One can notice that 0 ≤ τ < 1 and, according to Definition 2,
we have τ = 0 if and only if one source is perfectly extracted.

2) Simulation results: We have considered the case of N =
3 non i.i.d. source signals, Q = 4 observation signals and
a mixing filter of length L = 3. Figure 5 represents the
average value of τ obtained for the first source which has been
extracted in the same way as in Section V-A with `max = 3
optimizations of quadratic contrasts and a separator of length
D = 6. These results are provided for mixtures obtained from
sources of the three types described above. We observe that the
separation is sucessful for all kind of sources. This suggests
that the condition from Proposition 5 may be not too restrictive
for many source models, although it may be difficult to check
theoretically.

Table IV is similar to Table II: the criterion τ is given with
respect to the number of successive optimizations for 1000 and
5000 available samples of CPM sources. Again, we obtain a
good separation performance after a few iterations. We also
report in Table V the influence of the length of the separator
for a fixed number of sources (N = 3) and length of the
mixing filter (L = 3). Interestingly, the method seems quite
robust with respect to an overestimation of the length of the
separator.

We have studied the influence of the number of sources and
of the length of the mixing filter in the case of CPM sources
(depending on the number of sources, the modulation indices
have been chosen in {0.2; 0.3; 0.4; 0.6; 0.7}). The values of
the criterion τ stem from an average on 100 realizations and
are given in Figure 6. The performance is particularly good
when the number of sources or the filter length is small. As
classically observed, the performance declines when either of
these quantities grows up.

F. Experiment 6 – The MIMO case using a deflation procedure

Using the proposed quadratic contrasts, we have tested a
separation procedure which extract all the sources. The method
is based on a deflation procedure and takes into account the
details given in Section IV-C.

We have considered N = 3 source signals mixed on Q = 6
sensors with a filter of length L = 3. The number of iterations
(i.e. successive optimizations) for each source extraction was
`max = 5. In Table VI (resp. Table VII) the case of i.i.d.
PAM4 (resp. non i.i.d.) source signals is considered. In Table
VII, τ1, τ2 and τ3 respectively denote the value of the criterion
defined in Equation (39) for the 1-st, 2-nd and 3-rd source.
(Of course, the maximum on j in (39) should not obtained for
the same value of j for two different criteria τi and τi′ with
i 6= i′ since this would mean that the same source would have
been recovered twice: we have introduced this constraint in
the way we calculate successively τ2 and τ3). As classically
observed in deflation separation methods, the performance is
better for the first extracted source signal. However, it appears
to remain quite satisfactory for the 3 extracted sources. More
importantly, the experiments in this subsection confirm the
validity of the comments made in Section IV-C.

VI. CONCLUSION

Starting from the idea of exploiting reference signals, we
have proposed quadratic contrasts. We have first proved their
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validity under some necessary conditions for the reference sys-
tem. Noticing how mild these conditions are, we have shown
that quadratic contrast functions may be used even in a totally
blind scenario. These conclusions hold for both i.i.d. and non
i.i.d. sources.

As shown by our simulation results, one may be impressed
by the capabilities of these new contrast functions. They in-
deed offer a performance which is, at least, as good as other
cumulant based contrasts like the absolute value of the kurto-
sis. Besides, their fast optimization capabilities make them ex-
tremely competitive compared with other existing approaches.

Concrete implementation issues have been discussed in the
paper. As explained, some details have to be taken into account
when one wants to combine these quadratic contrasts with
a deflation procedure. All elements are hence available to
the reader for the implementation of the proposed separation
method3.

APPENDIX I
PROOF OF PROPOSITION 1

For the sake of clarity, we will give the proof only for
the criterion CR,z{y(n)} derived from (11) where y(∗)1(n) =
y(∗)2(n) = y(n). It can be easily adapted to other cases.
Assuming that the conditions in Section III-C hold for the
references z (that is z is obtained by a filtering of the sources:
see Eq. (16)), we can write

κR,z{y(n)} =
N∑

j=1

∑

k∈Z
gj(k)2κR,z{sj(n− k)} (40)

and, using (13) and the unit-norm property of g(n), it follows

CR,z{y(n)} ≤
N∑

j=1

∑

k∈Z
|gj(k)|2|κR,z{sj(n− k)}| (41)

≤ κmax
R

N∑

j=1

∑

k∈Z
|gj(k)|2 = κmax

R . (42)

Recalling (14), property p1 in Definition 1 follows easily.
Whenever the above upper-bound is reached, which is possible
according to Assumption A2., then

N∑

j=1

∑

k∈Z
|gj(k)|2(κmax

R − |κR,z{sj(n− k)}|) = 0. (43)

All the terms in the above summation being positive, if I
contains a single element (i0, k0), one deduces that the global
Multi-Input / Single-Output filter {g} satisfies the equalization
condition (5). Hence Property p2 in Definition 1 holds when-
ever I contains a single element. Conversely, one can see that
if I contains several elements, say (j1, k1) ∈ I and (j2, k2) ∈
I, the filter given by gj1(k1) = gj2(k2) = 1√

2
and gj(k) = 0

otherwise, maximizes CR,z although it is not separating. Hence
there exist non separating filters which maximize CR,z and
Property p2 in Definition 1 does not hold any more. ¥

3The Matlab code used for our simulations are available at the address
http://www-syscom.univ-mlv.fr/toolbox/.

APPENDIX II
PROOF OF PROPOSITION 4

The reader should keep in mind that in a blind context, non
i.i.d. sources can only be recovered up to a scalar filtering
ambiguity. Hence, similarly to [42], we will consider the norms
of the components of the global filter and prove that only one
component is non zero. For any j ∈ {1, . . . , N}, we write the
j-th component of the filter {g} as {gj} = ‖gj‖j{g̃j} where
{g̃j} equals {gj}/‖gj‖j if ‖gj‖j 6= 0 and {g̃j} identically
vanishes if ‖gj‖j = 0. Defining ỹj(n) , {g̃j}sj(n), we
obtain4 by cumulant multilinearity and mutual independence
of the signals ỹj(n), j ∈ {1, . . . , N}:

κR,z{y(n)} =
N∑

j=1

‖gj‖2jκR,z{ỹj(n)}. (44)

Therefore, we have the following inequality:

CR,z{y(n)} ≤
N∑

j=1

‖gj‖2jCR,z{ỹj(n)}. (45)

Recalling (20) and the fact that ‖g̃j‖j = 1, this yields:

CR,z{y(n)} ≤
N∑

j=1

‖gj‖2jMj ≤Mmax

N∑

j=1

‖gj‖2j ≤Mmax.

The above inequality proves property p1’ in Definition 2. In
addition, if equality holds, we can write

N∑

j=1

‖gj‖2j
(Mmax −Mj

)
= 0 (46)

from which we deduce that for all j ∈ {1, . . . , N}, we have
either ‖gj‖j = 0 or Mj = Mmax. Hence, see that property
p2’ in Definition 2 is satisfied if I ′ contains one element only.
Conversely, if I ′ contains several elements, one can easily see
that the maximum value of the criterion may be reached by a
non separating filter. Proposition 4 follows. ¥

APPENDIX III
PROOF OF PROPOSITION 5

In order to simplify notations, the proof will be provided
only for the contrast given by Equation (19) which is derived
from fourth-order cumulants (R = 4). It can obviously be
adapted to other cases. The proof has been split into three
parts: first we find a lower-bound for Mj , then we find an
upper-bound and finally we conclude.

4 Similarly to Eq. (40), we implicitely assume in Eq. (44) that the conditions
in Section III-C hold for the references z (that is z is obtained by a filtering
of the sources: see Eq. (16)).
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A. Lower-bound

Using cumulant multilinearity and the independence of the
sources, we have:

κ4,z{ỹj(n)} =
∑

k1,k2,l1,l2

g̃j(k1)g̃∗j (k2)tj(l1)t∗j (l2)

Cum{sj(n− k1), s∗j (n− k2), sj(n− l1), s∗j (n− l2)}
=

∑

k1,k2,l1,l2

g̃j(k1)g̃∗j (k2)tj(l1)t∗j (l2) (47)

C(k1−k2,k1−l1,k1−l2)
4 {sj(n)}.

Reminding (20), for any p ∈ Z we can write the follow-
ing inequality, where we have considered the particular case
g̃j(n) = δn−p:

Mj ≥
∣∣ ∑

k1,k2,l1,l2

δ(k1 − p)δ(k2 − p)tj(l1)t∗j (l2)

C(k1−k2,k1−l1,k1−l2)
4 {sj(n)}

∣∣
=

∣∣ ∑

l1,l2

tj(l1)t∗j (l2)C
(0,p−l1,p−l2)
4 {sj(n)}

∣∣

≥ |tj(p)|2|C(0,0,0)
4 {sj(n)}|

−
∣∣ ∑

(l1,l2)6=(p,p)

tj(l1)t∗j (l2)C
(0,p−l1,p−l2)
4 {sj(n)}

∣∣.

In addition, we have:
∣∣ ∑

(l1,l2)6=(p,p)

tj(l1)t∗j (l2)C
(0,p−l1,p−l2)
4 {sj(n)}

∣∣ ≤

sup
(l1,l2)6=(p,p)

|C(0,p−l1,p−l2)
4 {sj(n)}|

∑

(l1,l2) 6=(p,p)

|tj(l1)||tj(l2)|

= sup
(l1,l2) 6=(0,0)

|C(0,l1,l2)
4 {sj(n)}|(‖tj‖2`1 − |tj(p)|2).

Combining the previous two inequalities and taking the supre-
mum over |tj(p)|, p ∈ Z we obtain:

Mj ≥ ‖tj‖2`∞
(
|C(0,0,0)

4 {sj(n)}|
+ sup

(l1,l2) 6=(0,0)

|C(0,l1,l2)
4 {sj(n)}|

)

− ‖tj‖2`1 sup
(l1,l2)6=(0,0)

|C(0,l1,l2)
4 {sj(n)}|. (48)

B. Upper-bound

According to (47), we can write:

|κ4,z{ỹj(n)}|
≤

∑

k1,k2,l1,l2

|g̃j(k1)||g̃∗j (k2)||tj(l1)||t∗j (l2)|

|C(k1−k2,k1−l1,k1−l2)
4 {sj(n)}|

≤ ‖tj‖2`∞
∑

k1,k2

|g̃j(k1)||g̃j(k2)|
∑

l1,l2

|C(k1−k2,l1,l2)
4 {sj(n)}|

≤ ‖tj‖2`∞
∑

l1,l2

∑
p

|C(p,l1,l2)
4 {sj(n)}|

∑

k

|g̃j(k)||g̃j(k − p)|

≤ ‖tj‖2`∞
∑

l1,l2

∑
p

|C(p,l1,l2)
4 {sj(n)}|

∑

k

|g̃j(k)|2

where in the last step we have used Cauchy-Schwarz inequal-
ity. We next note that, according to Parseval relation,

‖g̃j‖2j =
∑

(k1,k2)∈Z2

g̃∗j (k1)g̃∗j (k2)γj(k2 − k1)

=
∫ 1/2

−1/2

|G̃j(f)|2Γj(f) df

≥ Γmin
j

∫ 1/2

−1/2

|G̃j(f)|2 df = Γmin
j

∑

k

|g̃j(k)|2

where G̃j(f) is the frequency response of the filter {g̃j} and
Γjq(f) is the j-th source spectrum density. We deduce that

Mj ≤ (Γmin
j )−1‖tj‖2`∞

∑

l1,l2

∑
p

|C(p,l1,l2)
4 {sj(n)}|

= (Γmin
j )−1‖tj‖2`∞‖C

(·)
4 {sj(n)}‖`1 .

C. Conclusion of the proof

From the above upper and lower bounds, one can see that
the following condition is sufficient to ensure that Mj < Mj0

and hence to guarantee that the set I ′ in Equation (21) contains
a single element {j0}:

(Γmin
j )−1‖tj‖2`∞‖C

(·)
4 {sj(n)}‖`1 <

‖tj0‖2`∞
(
|C(0,0,0)

4 {sj(n)}|+ sup
(l1,l2)6=(0,0)

|C(0,l1,l2)
4 {sj(n)}|

)

− ‖tj0‖2`1 sup
(l1,l2)6=(0,0)

|C(0,l1,l2)
4 {sj(n)}|

This completes the proof of Proposition 5. ¥
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Fig. 1. MSE versus coefficient β (where the reference signal is z(n) =
βs1(n) + (1− β)s2(n)) for different number of samples.
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`max 1 2 3 4 5
K = 5000 samples 2.56× 10−2 8.32× 10−4 5.32× 10−4 5.15× 10−4 5.14× 10−4

K = 10000 samples 1.72× 10−2 5.22× 10−4 3.48× 10−4 3.37× 10−4 3.35× 10−4

TABLE I
EXTRACTION OF ONE SOURCE: AVERAGE MSE VERSUS NUMBER OF ITERATIONS. THE REFERENCE SYSTEM HAS BEEN RANDOMLY INITIALIZED.

`max 1 2 3 4 5
K = 5000 samples 8.22× 10−2 1.8× 10−2 6.36× 10−4 6.167× 10−4 6.163× 10−4

K = 10000 samples 4.36× 10−2 1.2× 10−2 2.95× 10−4 2.885× 10−4 2.882× 10−4

TABLE II
EXTRACTION OF ONE SOURCE: AVERAGE MSE VERSUS NUMBER OF ITERATIONS. THE REFERENCE SIGNAL IS ONE OBSERVED SIGNAL.

`max 1 2 3 4 5
K = 1000 samples 6.20× 10−2 5.3× 10−3 7.8× 10−4 5.33× 10−4 5.24× 10−4

K = 5000 samples 3.15× 10−2 3.0× 10−3 7.14× 10−5 3.3× 10−5 2.8× 10−5

TABLE IV
EXTRACTION OF ONE SOURCE FROM A MIXTURE OF 3 CPM SOURCES WITH INDICES 0.4, 0.75 AND 0.25 : τ VERSUS NUMBER OF ITERATIONS (Q = 4,

MEDIAN VALUE).

D 6 16 26 36 46 56 66
K = 10000 samples 2.57× 10−6 6.21× 10−6 1.03× 10−5 1.09× 10−5 1.52× 10−5 1.84× 10−5 2.1× 10−5

K = 15000 samples 1.29× 10−6 4.29× 10−6 4.31× 10−6 8.61× 10−6 9.44× 10−6 9.66× 10−6 1.19× 10−5

TABLE V
EXTRACTION OF ONE SOURCE FROM A MIXTURE OF 3 CPM SOURCES WITH INDICES 0.4, 0.7 AND 0.3: INFLUENCE OF THE LENGTH D OF THE

SEPARATING FILTER ON THE SEPARATION CRITERION τ (Q = 4, `max = 5, MEDIAN VALUE).
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Fig. 2. MSE versus coefficient β (where the reference signal is z(n) =
βs1(n) + (1− β)s2(n)) for different number of iterations.
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Number of samples 5000 10000 25000 50000
1-st source 3× 10−4 1.38× 10−4 1.25× 10−4 3.12× 10−5

2-nd source 4.9× 10−3 1.4× 10−3 4.71× 10−4 5.25× 10−4

3-rd source 6.0× 10−3 1.6× 10−3 1.194× 10−3 6.66× 10−4

TABLE VI
MIMO SEPARATION OF 3 I.I.D. PAM4 SOURCE SIGNALS (AVERAGE MSE).

Number of samples 1000 5000 10000 25000
τ1 1.181× 10−1 1.81× 10−2 1.59× 10−2 8.9× 10−3

ARCH(1) sources τ2 1.541× 10−1 3.37× 10−2 2.94× 10−2 1.39× 10−2

τ3 1.524× 10−1 5.96× 10−2 3.34× 10−2 2× 10−2

CPM sources τ1 1× 10−4 9× 10−6 5.6× 10−6 2.5× 10−6

(modulation indices: τ2 1.22× 10−2 2.3× 10−3 1.9× 10−3 4× 10−4

0.4, 0.75 and 0.25) τ3 2.59× 10−2 7.4× 10−3 5.2× 10−3 1× 10−3

TABLE VII
MIMO SEPARATION RESULTS WITH NON I.I.D. SOURCE SIGNALS (MEDIAN VALUE).

Number of samples 1000 5000 10000 25000
Contrast |C4{y(n)}|2 32.10 211.06 418.59 784.61

Quad. Contrasts (5 iterations) 1.23 7.39 13.46 37.01

TABLE III
COMPARISON OF THE AVERAGE EXECUTION TIME (IN S) FOR: 1) ONE

OPTIMIZATION OF THE CONTRAST |C4{y(n)}|2 — 2) `max = 5

OPTIMIZATIONS OF QUADRATIC CONTRASTS.
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Fig. 4. Average MSE versus number of samples considering contrasts based
on third and fourth order cumulants.
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and the Habilitation à Diriger des Recherches from
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