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Abstract—This paper deals with efficient optimization of cu-
mulant based contrast functions. Such a problem occurs in th
blind source separation framework, where contrast functims are  gne by one by optimizing for each a multi-input/single-auitp
criteria to be maximized in order to retrieve the sources. Moe (MISO) separating criterion. In this paper, we consider the
precisely, we focus on the extraction of one source signal dn I h which i .f bi Ci ith deflati
our method applies in deflation approaches, where the sourse 'att€r approach, which is often combined with a deflation
are extracted one by one. procedure to extract all the sources [7]-[9].

We propose new methods to maximize the kurtosis contrast ~Many separation criteria rely on higher-order statistiesg(
function. These methods are intermediate between a gradién the kurtosis contrast [8], [9]) or can be linked to higher-
and an iterative "fixed-point” optimization of so-called reference order statistics (e.g. the constant modulus contrast fomct
contrasts. They rely on iterative updates of the parametersvhich 100. Th A K id d Its. O
monotonically increase the contrast function value: we pait out [10]). ese criteria are nown to provide good results. On
the strong similarity with the EM (Expectation-Maximizati on) the other hand, contrast functions referred to as “referenc
method and with recent generalizations referred to as MM based” have been recently proposed [11], [12]. They are par-
(Minimization-Maximization). We also prove the global corver-  ticularly appealing because the corresponding maxingmati
gence of the algorithm to a stationary point. Simulations cafirm problem is quadratic with respect to the searched parameter

the convergence of our methods to a separating solution. Tle - . . AP
also show experimentally that our methods have a much lower Taking advantage of this quadratic feature, a maximization

computational cost than former classical optimization mehods. algorithm based on singular value decomposition (SVD) has
Finally, simulations suggest that the methods remain validinder been proposed [11], [13] and was shown to be significantly

weaker conditions than those required for proving convergece. quicker than other maximization algorithms. In the caserehe
Index Terms—contrast function, reference system, quadratic he “reference signal” is close to an actual source, the SVD
optimization, higher-order statistics, global convergewe based method is very efficient for the extraction of this seur
However, the method generally requires an additional “fixed
. INTRODUCTION point” like iteration to improve the separation quality [11
Also, the SVD based optimization is very sensitive to a rank
) _ ~estimation and thus it is not appropriate to use it within a
The general problem of signal restoration has been givgBfiation procedure. In this context, it should be replacgd b
a constant interest in the signal processing literature. é”gradient optimization [14].
particular, the source separation problem has receivecha co | this paper, we propose a new family of algorithms to
siderable attention due to its wide range of applicatiorisuyayimize a kurtosis based contrast function. All optiriizat
as communications, biology, seismology, radar, .... I8 thinethods derive from a basic algorithm which is first presginte
contribution, we assume that no information on the mixing,4 \vhose global convergence to a stationary point is proved
system is used for the separation, but only the observatiofi§en, the necessity of a renormalization step is discussed,
may be used: this context is referred tobdisd. The problem \yhich yields the first algorithm applicable in practice. &y,
of (blind) equalization in digital communications is & ibh he method is extended by introducing two different number
connected one [1]. It is known that such techniques can Bg jieration parameters. Depending on these parameters, a
used for throughput increase. _ trade-off can be adjusted between performance and speed of
In a multi-input/multi-output (MIMO) convolutive context he optimization method. The proposed method is inspired
solutions through the optimization of so-called contrastct  fnction, which has been proposed in [14]. On the other hand,
tions [2]. Among the possible approaches, the source Sgn@le gradient optimization of the kurtosis contrast functig],
can be either separated simultaneously [3]-[6] or extthCify] has been used for long. Our method is different from both
1 _ , o gradient optimization methods, but it can be interpretedeas
Copyright (c) 2011 IEEE. Personal use of this material isnpited. ing int diate bet the two: indeed. a “ref ed
However, permission to use this material for any other psegomust be 'Ng INtErMediate between the two. indeed, a ‘reterencedas
obtained from the IEEE by sending a request to pubs-perons@ieee.org. iterative optimization is regularly interrupted and staragain

A. Generalities
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with the initialization point newly obtained. In this papéie p) corresponds to the sources. In other words, the global sys-
main novelties which did not appear in [14], [15] are théem {W x M} is the identity up to some possible ambiguities

following ones: to be specified next.
. a detailed proof of the global convergence of the opti- More specifically, our approach is an iterative one and
mization algorithms, we will focus on the extraction of a single source. The

« a link with EM (Expectation-Maximization) and MM extraction of all sources can then be performed through a
(Minimization-Maximization) algorithms, which justifies deflation procedure [8], [16], [17]. In this MISO contexteth
the convergence of the “fixed-point” method introducegonsidered problem consists in estimating one row ' }.
in [11], The corresponding row is Bx @ LTI vector filter {w}, called

. the possibility in the new method to adjust two paramete@§lualizer. Its impulse responsesign) and the output of the
for improved performance. separation procedure is the scalar signal

Section Il describes the considered model and assumptions. y(n) = Z w(p)x(n — p). (2
In Section 111, the contrast function and the separatinghoet pez
are given. The ideas on which the optimization method reli%;ea"y, y(n) should restore one of the componest&n), i €
are explained in Section IV whereas the technical detgig,m’N}’ of the source vector: in other words, under
and the complete proof are relegated to Appendices A

i i ) - gccessful separatiog(n) should be equal to a scalar filtering
B. Section IV-B also establishes the connection with othg* one of the scalar source signaign),i € {1,...,N}. It

optimizatipn methods. Se(_:tion v i_s devoted to_impr_ovemqus also well-known that the remaining scalar filtering ambi-
and practical implementation details: the practical athars uity reduces to a delay and a scalar factor in the case of
(Alg.2) is described in this section. Finally, Section VI presenﬁ

i X , S.d. sources (see [2], [8], [11] for more details). In orde
simulations results and Section VII concludes the paper. , gpiain tractable expressions, we define the correspgndin

1 x N global LTI vector filter {g} by its impulse response
B. Notations g(n) £ 3z, w(p)M(n — p). Then we have

In the whole papern stands for a generic integen (€ _ _ Iy
Z) and the cumulant of a set of random variables is denoted y(n) Zg(n P)s(p) = tg}sin) - @)
Cum {.}. The signals can be complex- or real-valued.
For any jointly stationary signalsz(n) and y(n),
we set C{y} = Cum{y(n),y(n)*,y(n),y(n)*} and
C.{y} £ Cum{y(n),y(n)*, z(n),z(n)*}. For the

pEL

The notations are summed up in Figure 1. Note that in
simulations, the filters{w} and {v} appearing in Figure 1
will be chosen as FIR of lengtly (see Section V-B).

sources, we Wwill adopt also the specific notation (g} := {w*M]}
ki = Cum{s;(n),s;(n)*,si(n),s;(n)*}. Finally, brackets (1% N)
{.} will be used as shorthand notations to denote linear time | |
invariant (LTI) filters andx denotes filter convolution. The mixing separator
R A AR el S RPN B o7 I Y 7 TS
g ' (Nx1) | (@xN) @x1) | (1xQ) [(A1x1)
Il. MODEL AND ASSUMPTIONS reference
A. Convolutive mixture {v} z(n)

We consider an observeg@-dimensional Q € N,Q > 2) (1xQ) {1x1)
discrete-time signal. Itath sample is denoted by the column | |
vectorx(n). Assuming a noise-free linear convolutive model, {t} := {v+ M}
the observatiox(n) results from a linear time invariant (LTI) (1 x N)
multichannel system described by the input-output refatio

x(n) =Y M(p)s(n —p) = {M}s(n). )

pEL

Fig. 1. System and notations summary

In the above equationM(n) represents &) x N matrix B. Assumptions on the sources_ _ _

corresponding to the impulse response of the LTI mixing T0 be able to carry out the estimation blindly, some assump-
system. For simplicity, we will use the shorthand notatiorf¥ons about the source signals are required. In this paper, w
{M} to denote this MIMO LTI filter and{M}s(n) to denote Will adopt the following assumptions:

the above sum. The vector of source signalss@irce$ s(n) Al. For alli, the source sequenggn) is stationary, zero-
is an N-dimensional {V € N*) unknown and unobserved mean and with unit variance. In addition, the fourth-order
column vector. The objective is to restore the soutdeslly, cumulantss; £ Cum {s;(n), s(n)*, s;(n), si(n)*} exist
that is from the only use of the observations. and are assumed to be nonzero.

We assume that the LTI mixing system admits a left LTI in- A2. The source vector processegn),i € {1,...,N}

verse{W} such thaty(n) £ {W}x(n) = > ez W(p)x(n— are statistically mutually independent.
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I1l. SEPARATION METHOD argument. More preciselyy 7 (w) is the vector composed
A. Contrast function of all partial derivatives of7(w), whereasv,Z(w,v) (resp.
Cly} V2Z(w,v)) is the vector of partial derivatives @{w, v) w.r.t.

. It has been provgd in [?], [9] that the cr.ite.r.i ¥ | w (resp.v). It follows from the symmetry off and from the
is a contrast function: this means by definition that wheghain rule that:

maximized with respect to the separating filter, this cidter

leads to the separation of one source signal. In this papery,Z(w,v) = VoZ(v,w) and:
we propose new methods to maximize this kurtosis contrast VI (w) = 2ViZ(w,w) = 2VoZ(w,w) (6)
function. ’ ’

Our approach is tightly related to the concept of “referencé&n algorithm is proposed in the next section, which takes
based” contrast functions [11]. We introduce a so-called-“r advantage of the properties #fand 7 in order to efficiently
erence signal” which is the output oflax @ LTI "reference maximize the kurtosis criterioff. One should note in passing
filter” denoted by{v} (see Figure 1). The "reference filter"that it is equivalent to maximize the square modulus or the
{v} is driven by the observationgn). Ideally, the "reference modulus of the criterion. In (5), the square modulus has been
filter” should be as close as possible to a separating filtértroduced to ensure the differentiability @fand 7.

Similarly to Equations (2)-(3), we introduce the corresgiog
1x N global LTI filter {t} = {vxM} and the reference signal

B. Optimization algorithm
then reads: P 9

We now introduce our new algorithm for maximization of
N . . . .
the kurtosis based contrast. We first give the basic and
z(n) = {t}s(n) = Zzti(p)si(” —p) or simplest version of the algorithm and give its convergence
=1pcz properties. Further refinements and practical considersti

Q . . .
will be addressed in Sections IV-A and V.
2(n) = {vix(n) =Y wvi(p)ziln —p) (4) _
i=1 pez Algorithm Alg.0
« Initialize vy and the corresponding reference signal

In our previous work [11] , we have given the condition
required by the reference signal to obtain new contrast-func z0(n) = {vo}x(n). _
tions. These conditions are very weak and practically asway ® FOTF=0.1,2,.... kmax — 1, repeat(MO-U).

12

<

satisfied. In our new point of view, the reference signaligiar | (M0)  * Setd, = ViZ(vk,vk),
cially introduced in an algorithm for the purpose of faeiting * One-dimensional optimization:
the maximization of the kurtosis contrast function. It heng o = argmaxo Z(vi, + ady, vi).

appears as an efficient way of exploiting the properties ef th  (U) Update:viii1 < vi + axdy.

criterion to be maximized. This is in contrast to our former . L .
The proposed algorithm shows strong similarities with a

works, where the reference signal could be be interpreted as . ;
a prior knowledge on the source to be extracted. Based %"%re]epest ascent algorithm. Indeed, according to (6), te- al

the latter idea, we have proposed a “fixed-point” algorithrﬁ'thm moves from one point to another following the gradient

. . direction of the criterion7. The noticeable difference is
where the reference is successively updated by the newe;o%cat during the one-dimensional ontimization. the conside
estimate. We will see how this method re-enters in our géne(r:%terion ngI(W Vi) with v, fixed ingtead ot7(x:v) The con
; ; ; » Vi k . -
point of view. In particular, we prove the global convergaﬂ.-ncyergence of the algorithm to a satisfying solution pointdeen

of our algorithm to a stationary point, which implies tha S : Co )
" . . requires justification. The following assumption is regdir
conditions on the reference signal are no longer requined.

passing, we better understand the behavior and propefties o A3- For alli € {1,..., N}, the sources processegn)
cumulant based contrast functions. are i.i.d. and the fourth order cumulantshave the same
Let us introduce the following criteria: sign for alli € {1,..., N}.
) Now, we can state the following proposition which is proved
T(w) = Cly} and: in Appendix A:
E{ly(n)|?}? ' Proposition 1: Assume that the sequendey)ien is ob-
C.{y} 2 tained according to algorithmlg.0 with k.. infinite and

I(w,v) = (5) thatallvy, k are contained in a compact set. Then, under
W) ‘E{|y(n)|2}E{|z(n)|2} Vi, k €N ined i pact s J

o _ ) _assumption#\1-A3, any convergent sub-sequence(of)xen
The criterion7 is the well-known kurtosis contrast functiongonyerges to a poing* such thatv.7 (v*) = 0.

[8], [9] whereasZ corresponds to so-called “reference con-
trasts” which have been introduced [11]. Obviously, we have
the symmetryZ(w, v) = Z(v, w) and both criteria are linked ©- Comments
by the relation7(w) = Z(w,w). Note in passing that the Proposition 1 asserts the global convergence of the al-
criteria are normalized so as to satifyAw,v) = Z(w,v) gorithm to a stationary point of the criteriof. However,
and 7 (Aw) = J(w). similarly to the behavior of a steepest ascent algorithrigrl

We introduce a gradient operat® and partial gradient corresponding to minima of the criterion should never be
operatorsv; (resp.Vs) with respect to the first (resp. secondpbtained. Also, although the algorithm might always cogeer
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to a saddle-point in theory, such a point is unstable and we done by introducing a re-normalizing step in our algamith
did not observe any convergence to such a point in practigehich yields algorithmAlg.1:

It hence follows that, practically, the algorithm yields kefi Algorithm Alg.1

v* which maximizes7 (v). Since it is known that any local Inital q th - ai r Jnal
maximum of the criterion corresponds to a separating filter * nitialize vo an € corresponding reference signha
[8], it follows thatthe filters obtained with our algorithm are 20(n) = {vo}x(n). Do
separating ones in practi¢avith only theoretical exceptions.| ° Fork=0,1,2,..., kmax — 1, repea(M0™-U):
This justifies the importance of Proposition 1. (MO)  x Setdy = ViZ(vy, Vi),

The previous result can also be understood from a different * One-dimensional optimization:
point of view: one can see that at each step, the algorithm Q) = argmaXq I(vi + adg, vi). _
Alg.0 maximizesw — Z(w,v},) along a gradient direction. * Setvpp1 «— vy + apdy and renormalize:
This can be interpreted as a one-dimensional maximizafion| o Vil — _ kil CARYTD)
a “reference-based” contrast along the gradient directitie (E{{Vi+1}x(n)[2})Y
proposed algorithm can thus be understood as an interreedjat  (U) Update:vi i « Vi1

method Iylr?g between the following two metho_ds: It is known that the unit-power constraint is equivalent to
» agradient ascent on the kurtosi{w): the difference is 5 ynjt-norm constraint on the separating or reference filter
that a “reference-based” criterion is consideredNig.0  , consequently, the points obtained after renormalizatipn

during each one-dimensional optimization. Alg.1 belong to the unit-sphere. In addition, it must be stressed
- agradientascent on a “reference-based” conf@st v)  ihat for \ £0

with fixed “reference”v [14]. In [14] v is kept un-
changed during the whole optimization, whereas here on I(Aw,v) =ZI(w,v) and: 7 (\w) = J(w). (7)
the contrary,v is updated after each one—dimensionaH
optimization.
According to the latter point of view, the idea that the refere
signal may contaira priori information on the separator re- v, 7(\w,v) = lvlf(w,v) and: V.7 (\w) = le(w).
enters, since the original “reference”™g and corresponds to A A 3
the initialization point of algorithnmAlg.0. )
Note finally that for many sources, assumptid® is valid: Due to the scale invariance properties in Equations (7) and
in the context of digital communications in particular, th€8), it follows that the pointsi(e. the separators) generated by
cumulants are generally negative and can also often be akorithmsAlg.0 and Alg.1 correspond to each other up to a
sumed i.i.d. [18]. Consequently, Proposition 1 generadiidh scaling factor. This is illustrated in Figure 2 with a schéima
for digital communication signals. Nevertheless some aign representation of the successive points generatefldnyt and
such as those stemming from a continuous phase modulatkig.0. In this figure, the criterion7 has the same value all
(CPM) may be noni.i.d. [7]. An interesting question thus-coralong each line passing through the origin.
sists in knowing whether Proposition 1 remains true without It follows from the previous paragraph, that both algorithm
AssumptionA3. This issue will be addressed in simulations iAlg.0 and Alg.1 are theoretically equivalent and both are
Section VI, from which it will appear that the answer is likel convergent according to Proposition 1. However, one can
to be positive. Another indication that Proposition 1 islik now understand from Figure 2 that a drift is observed when
to be true without assumptioA3 is provided by the fact that performing Alg.0: the power of the separator’s output in-
the different contrast functions (both "reference-basadtl creases and may diverge unacceptably leading to a numerical
kurtosis) have been proved in the general context of nah i.ioverflow if a great number of iterationk,,., is required
signals with no condition on the signs of the cumulants. by the algorithm. This phenomenon is avoided with the re-
normalizing step ofAlg.1. This is also the reason why we
IV. CONVERGENCE ISSUES did not considerAlg.0 in simulations. Finally, it has been

This section is concerned with convergence issues of tigsumed in Proposition 1 that the sequence of péints.cn
proposed algorithms. First, we explain how a renormalizati IS contained in a compact set. This condition is required
step should be introduced and we justify the reasons whyift Order to be able to state the convergence result, but it
does not change the convergence properties of the algoriti§@uses no difficulty in practice since one often consideRs Fl
Then, the basic ideas underlying the validityAdt).0 are dis- Separators. In the latter case indeed, introducing a nazimg

cussed. Finally, a connection with other optimization roeh Step ensures that the compactness assumption of Propdsitio
is made. is satisfied.

hence follows that for any £ 0, the gradient directions at
vj Or at \vy, are the same and more precisely:

A. Renormalization B. Validity of algorithmAlg.0 and Alg.1

It is known that the separating property of a separator is The complete proof of the convergence/d§.0 (and hence
unaffected by a scaling factor, because of the unavoidabiy.1) is provided in Appendix A. In this Section, we state
scaling ambiguity in BSS. Therefore, it is common in BS&nd discuss the main point on which all the results are based.
to impose the unit-power constraifi{ |y(n)|?} = 1. This can We systematically consider that the signals satisfy uaitgr
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’ signal. Starting from an initial "reference’, corresponding
to a rough estimate of one MISO separating filter, it iter-
atively produces a sequence of better estimatgsfor the
separating system. This point of view reveals the simifarit
of our method with Expectation-Maximization (EM) or Gen-
eralized Expectation-Maximization (GEM) methods [19]. An
EM algorithm indeed maximizes a likelihood functidi{v)

by producing a set of successive estimatesobtained by
iteratively maximizing a so-called Q-function :

Vi+1 = arg max Q(v, vy) (11)
v

In EM methods, the Q-function is obtained by introducing
some hidden data in the model and taking the expectation of
the complete log-likelihood.
_ _ _ _ _ - In many contexts and specifically in our situation, it is
Zr'% /fl'g_l_sgmaico,c?g?gfio: igf ;ggejgfecdem;g?gzsifgglvgpagg-%y difficult (or impossible) to identify any hidden variableoi
Alg.1 before renormalization, and,, is the sequence generated Alg.1. tunately, there exist generalizations of EM methods, which
depending on context, are referred to as Bound Optimization
Algorithms [20], Surrogate Objective Functions [21] or MM
constraint and we hence discuss the convergencal@fl.. (Maximization-Minimization or Minimization-Maximizatin)

However, all the properties implicitly apply talg.0. methods [22], [23]. In contrast to EM methods, MM methods
1) Discussion and preliminary resultsThe results in this do not require to identify a complete data set and take advan-
paper mainly rely on the proposition which follows. tage of convexity and inequalities satisfied by the objectiv

Proposition 2: We assume that assumptioh3 and the function.
constraintsE{|y(n)|*} = E{|z(n)]*} = 1 hold. Then, if = The MM (and EM) methods, which are based on (11)
|C{z}| < |C.{y}|, either one of the following situation holdsexhibit interesting convergence properties under the itiond

(but not both): that at each step, the Q-function satisfies:
(i) [CAy} < |C{y}| Y. L(v) > and L(v:) — 12
(i) for all i andk, |gi(p)|2 — |ti(p)|2, Whel’egi(p) andti(p) v, (V) = Q(V,Vk) (Vk) Q(Vk,vk) (12)
are defined in Equations (3)-(4). Such a condition can be proved in the EM context using
As particular cases, we have the following implications: Jensen’s inequality. It follows from this condition that:
C<ie = leisicm @ AV 2L0k) 7 S0k v Ve Vi)
IC{z} <ICAy} = [CAy} <IC{y}[  (10) =0

. _ > Q(Vkt1, Vi)
The proof of the above result is relegated to Appendix B
since the technical details are not required for a globakund = Qvi, vi) = L{vk)
standing. However, the important ideas can now be undeatstowhere the last inequality follows from (11). Consequeritig
Remind that the ultimate goal is to extract one source arid thabjective criterion monotonically increases, which réstih
in our contrast function approach, this will be achieved bye convergence of the algorithm.

maximizing % - due to scaling ambiguity, this amounts One can see that algorithAig.0 satisfies almost all proper-

to finding y(n) which maximize§C{y}| under the constraint ties of the MM maximizgtion methods with corresponding
E{|y(n)?} = 1. The idea is to construct iteratively a signaf® J and Q corresponding t&. However, there remain the

sequencey®) (n),k = 0,1,... of estimates of a sourcefollowing differences betweeAlg.0 and the MM methods:
such that|C{y™}| increases and converges to a maximum ¢ Instead of (11),Alg.0 performs a one-dimensional op-
value (while keeping the constraii{|y* (n)]?} = 1). timization and we are only able to ensure the weaker
For this purpose, AlgorithmAlg.1 replaces the original cri- condition onvyi1: Q(Viy1,ve) = Q(ve, vi). Such
terion |C{y}| by the sequence of criteritl.{y}| where z algorithms are referred to GEM in [19].

takes the successive valugé”,k = 0,1,.... The novel  Inour method, the inequality (12) holds only fersuch

criteria are quadratic and can thus be efficiently optimized —thatQ(v,vy) > Q(vx, vi) (see Equations (9) and (10)).
Algorithm Alg.1 finally constructs the sequence such that However, since one maximize@(v,vy) with respect
|Cy<k71){y(’“)}| > |C{y*~V}|. Proposition 2 then asserts to v, this does not alter the monotonic increase of the
that we have|C{y™}| > [Cyan{y®}| > |C{y*—D}| criterion.

and hence we have inded@{y®*}| > |C{y*~D}|: the
I . ; _ . V. IMPROVEMENTS AND PRACTICAL IMPLEMENTATION
criterion hence monotonically increases, which is the dasi )
of our algorithm. A. Reference-based contrast functions and reference apdat
2) Related optimization method3he algorithmAlg.0 (or A natural idea in order to improve algorithAig.0 or Alg.1
Alg.1) can be seen as iterative estimation algorithm of a sourcensists in replacing the stéll0) or (M0O’) by a more efficient
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operation: for instance, one can replace the optimizationga and letC(v) be the cumulant matrix defined component-wise
a line in (MO) by a global optimization. The stgfM0) would by
then becomevy, «— argmaxy, Z(v,vy). One can see that
this algorithm corresponds to the "fixed-point” like algbm
proposed in [11], where the global optimization has bee&there z;(n),z;(n) are the components and j of x(n)
performed using an SVD decomposition. Alternatively, ib carespectively. Using these notations, it is shown in Appendi
be seen from (11) that this corresponds to an EM (or MM}, that the criteriorf reads:

like algorithm. Considering the sensitivity of such an SVD-

(C(v);,; = Cum{z;(n), 25 (n), 2(n), 2*(n)} (16)

based optimization, it has been proposed to use a gradier(w,v) = |Z(w,v)| where:
like optimization or to use algorithmlg.1 [14], [15]. In the N wC(v)w#
following algorithm, we propose to perform a given number I(w,v) = (vRvH)(wRw™) (17)

of gradient optimization steps. ) _ T
Then (see Appendix C), the gradient directi®hZ(v,w)
9T

Algorithm Alg.2 corresponds to the complex gradient veatbe= 2L given
« Initialize vy and the corresponding reference signabelow: -
zo(n) = {vo}x(n). N
e FOork = 0,1,...,knax — 1, setvg = v, and repeat o7 _ Zf(w7v>£ with: (18)
(M1-U): ow* =~ ow
(M1) Fori=0,1,2,...,lnax — 1 repeat(M0’): oL 1 w*C(v) 4. w'R
: 3 —v.T(% A= TRel ~ WCWWT) s
(MO) - Setd; = ViI(vi, Vi) ow  vRv! | wRw! (wRw)?
- One-dimensional optimization: (29)

a = argmax, Z(v; + ad;, vi).
- Set:vi41 < Vi + ad; and renormalize:
Vi1

At step (M0’) of algorithm Alg.1 (respectivelyAlg.2), the
vectord, (respectivelyd;) is given by the above equations

Vi1 — — 172 wherev and w are set tow = v = v, (respectively
(U) Update:v :Ev{l{VZ+1}X(n)| 2 w = Vv;,, v = v;). Because of the renormalization step,
poate-vi+1 bmax® the multiplicative termvRv” is equal to 1 and need not be

Note that a parametéy,., has been introduced in algorithmcomputed in the algorithm.
Alg.2 in addition to k.. Depending on these two param- Finally, according to Appendix C, the step-size of the one-
eter valuesAlg.2 is intermediate between algorithilg.1 dimensional optimization (that is the value @f in Alg.1 or
(lmax = 1) and a "fixed-point” like algorithm as proposedof & in Alg.2) is a root of a second order polynomiala? +
in [11] (Imax infinite). In addition, one can see that algorithmeia + ao. The coefficientsay, a1, a0 are given in Appendix
Alg.2 belongs to the class of MM methods as described in Equations (29), (30), (31), where one should det d,,
Section IV-B2. It follows thatAlg.2 monotonically increases v = v, andw = v, in Alg.1 (or w = v, in Alg.2). Checking
the criterion, which justifies its convergence. These arguis1 which root yields the greatest value of the criterion yietlis
also explain the convergence of the “fixed-point” algorithm searched step-size.
[11]. One can notice that, similarly to “reference-based” cattra
in [11], Z(w,v, ) depends quadratically ow. It follows that
the one-dimensional optimization step in algorithiig.1 and

B. Implementation . . . : 4
Alg.2 is easier to perform than in a classical gradient ascent
We now describe how the method of algorittkfg.2 can method.

be implemented in practiéeWe consider FIR separators of
given lengthD. The conditions under which such a separator VI. SIMULATIONS
exists can be found in [7], [11]. The separating filkelis then

replaced by the following x QD vector which concatenatesA' Performance of the algorithms

the vectors of the separator impulse response: 1) Validity and separation quality:
N a) Simulation settingsFor different number of samples,
w = (w(0),w(l),...,w(D —1)) (13) N = 3 complex valued i.i.d. QAM4 sources have been gen-

erated taking values ifie’™/4, e=*/4 e t137/4 =37/41 ith
equal probabilityl /4. They have been mixed by mixing filters
with randomly driven coefficients, length = 3, and@Q = 4
x(n) £ (x(n)T x(n-1)T ... x(n—D+ 1)T)T. sensors. The separating FIR separator has been searched wit
(14) lengthD = N(L — 1) = 6. An inverse of lengthD exists
. ) generically for the FIR randomly chosen mixing system (see
Now, let R be the covariance matrix of(n) [7], [11] and references therein for details).
R 2 E{x(n)x(n)"} (15) We t(_ested the validity of aIgorithmAIg.l gnd AIg.2.. A _
comparison has also been made with a gradient maximization
2The Matlab code corresponding to our method is available a©f the criterion 7 (kurtosis) as in [8]. The latter has been
http:/mww-public.it-sudparis.es/castella/toolbox/ programmed with an optimal step-size at each line-seafoh. T

Similarly, we definev £ (v(0),v(1),...,v(D — 1)) and the
following @D x 1 column vector:
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corresponding optimal step is obtained as a root of a fourthWe show here that algorithlg.2 combines the advantages
order polynomial, similarly to our algorithms. In additian of both methods. It has been observed in the previous section
comparison with a gradient optimization of a reference 8asthatAlg.1 andAlg.2 yield a separation which is as good as the
contrast function as in [14] is available through the theiltas separation provided by a kurtosis maximization. Now, thieeh
wherekn.x = 1 in Alg.2. The initialization ofAlg.1/Alg.2 last columns in Table | clearly indicate that a good choice of
has been set t&¢ = (0,...,0,1,0,...,0), where the valud  k.x, lmax l€ads to a significantly lower computational time.
is situated at a center position of the vectofor next to the This is particularly striking with large number of samples,
center on the left ifv is of even length). With no additional where the execution time is significantly reduced (see for
assumption, there is no other possibility than choosing amample the values in bold in Table I).

arbitrary value for the initialization point. Due to the fabat To ensure a fair comparison, we checked the influence of the
the mixing system is random, the effect of the initial valse inumber of iterations: the number of iterations is giverkhy,
averaged in our experiment and similar average values dhoinl a kurtosis gradient optimization, whereas the total nemb
be obtained with any other initialization of the algorithms of iterations is given by the produét,..lm.x in the case of

b) Extraction of one sourceThe separation results areAlg.2 (Alg.1 is a particular case ohlg.2 where /. = 1).
reported in Table | where the average and median valuesTdfe results corresponding to a fixed number of iterations are
the mean square error (MSE) on the reconstructed source iardables lll, 1V, V for respectivelyl000, 5000 and 10000
given. The top row corresponds to a gradient maximization e¥ailable samples. The results corresponding to 100Gidesa
the criterion.7 (kurtosis). The second row collects the resultsave already been gathered in Table I. One can notice that
provided byAlg.1, which is the algorithm closest to a gradienalgorithmAlg.2 leaves a degree of freedom through the choice
on J, as explained in Section IlI-C. The successive rowsf kmax andlma.x. This is further investigated next.
show the results provided b&lg.2 with different values of  3) Complexity analysisThe previous experimental results
the parameters,,.x, lmax: @ lower row indicates that the cor-can be explained by some elements concerning the complexity
responding algorithm is farther from a gradient maximizati of Alg.2. A careful inspection indeed reveals that the most time
of J and closer to a “reference-based” approach of sourcensuming steps iAlg.2 are:
separation. Finally, last row gives the results for a gratlie (j) the estimation oiC(v) defined in Equation (16),
optimization of a “reference-based” contrast function. (i) the computation of the criterion valug(v;, v,) and its

From the first two rows of Table I, it can be observed thata gradientV,Z(v;, v),
gradient maximization of the kurtosis and algoritiig.1 both  (iii) the computation of the optimal step size, which is give
yield similar values of the MSE. This confirms the validity of by the polynomial roots of the numerator in (28).
the methodAlg.1 and its convergence to a separating poingp, the one hand, step (i) involves the estimation of the cu-
Additionally, an equally good (or even better) value of thg, jants in Equation (16). Its complexity is thus an incregsi
MSE can be obtained by using algoritiig.2, which proves fnction of both the number of samplds and the number
its validity. of parameters provided by) and D. On the other hand,

c) Extraction of all sourcesit has been illustrated that steps (i) and (jii) do not involve any estimator from the set
reference-based contrasts may be unsatisfying in a deflatig sample data. Indeed, the criterion and its derivative are
scenario [14]. We hence tested here the behavior of ogiven by Equations (17)-(19) and the quantities necessary f
Optimization algOI’itth in a deflation scenario. The r&ulbomputing the opumal Steps are given in Equations (28) to
are provided in Table Il and show thatg.2 behaves equally (31): all these equations do not involve any estimator, but
well as a kurtosis maximization. only the matrice®R andC(v) which are estimated and stored
previously. Consequently, the complexity of steps (i) and

| extracted Souxtg;:'bdd 0;;;9' 020%(15| 0?&9' (iii) together consequently only depends on the number of
average Alg.2 00026 | 00043 | 00076 parameters, that is o@ and D. Let 3(T,Q, D) denote the
di Kurtosis 0.0007 | 0.0034 | 0.0060 complexity of step (i) andy(Q@, D) denote the complexity of
median Alg.2 0.0005 | 0.0033 | 0.0059 steps (i) and ().
TABLE Il Now, it can be seen from the description Afg.2 that

AVERAGE AND MEDIAN MSE FOR A DEFLATION EXTRACTION OFN = 3 AN i i
step (i) is repeated times through the algorithm because
QAM4 SOURCEST = 5000 SAMPLES, Q = 4, L = 3. h P @)  rep F]“ax | 9 h 9 h
Emax = 50, lmax = 20. NUMBER OF MONTE-CARLO RUNS = 1000. the matrix C(X)_ changes only a_t each update step. The
overall complexity and computational load related to step

(i) is thus O(km.x0(T,Q, D)). On the contrary, steps (i)

. ] . and (ii) are repeated,,.«/max times through the algorithm,
2) Computgtlonal load:On the one hand, methods_ relyin hich yields a complexity related to steps (i) and (iii) of
on the kurtosis contrast function are known to provide good
) order O(kmaxlmaxy(®@, D)). It follows that the order of the
results. On the other hand, it has been shown that r(atferen((‘;((;ﬁ| lexity of Alg.2 is:
based contrast functions yield methods which are signitfigan plexity g.cls
quicker. However, the result quality depends on the closene O(kmaxﬁ(T, Q, D) + kmaxlmax(Q, D)) (20)
of the reference to an actual source, and reference-based
contrast functions hence require to be used with a so calletiere 3 and ~ are increasing functions of their parameters.

"fixed-point” iteration [11]. It is out of the scope of the paper to specify furtherand
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average MSE median MSE average execution time (s)
separation method Number of samples Number of samples Number of samples
parameters| kmax | lmax 500 1000 5000 10000] 500 1000 5000 100000 500 1000 5000 1000Q
kurtosis 1000 0.0489 0.0033 0.0028 0.002p 0.0007 0.0008 0.0006 0.000p 1.68 259 9.79 21.54

Alg.1 1000 0.0312 0.0034 0.0028 0.0025 0.0011 0.0009 0.0007 0.0006 1.29 248 1598 26.02
Alg.2 200 0.0311 0.0033 0.0028 0.002p 0.0010 0.0009 0.0006 0.0006 0.52 0.78  3.48 5.40
Alg.2 100 0.0282 0.0025 0.0025 0.002# 0.0006 0.0005 0.0005 0.000p 0.42 0.56 1.92 2.82
Alg.2 50 0.0335 0.0027 0.0026 0.002p 0.0007 0.0006 0.0005 0.000p 0.37 0.45 1.13 1.54
Alg.2 25 40 0.0427 0.0029 0.0027 0.002p 0.0009 0.0007 0.0005 0.00060.34 0.39 0.74 0.90
Alg.2 10 100 0.0628 0.0054 0.0028 0.002p 0.0014 0.0010 0.0006 0.0006 0.32 0.35 0.50 0.51
Alg.2 8 125 0.0682 0.0063 0.0029 0.002p 0.0017 0.0011 0.0006 0.000f 0.32 0.34  0.47 0.46
Alg.2 5 200 0.1112 0.0100 0.0030 0.002f 0.0034 0.0014 0.0006 0.0006 0.31 0.34 0.42 0.38
reference 1 1000 || 0.5654 0.3567 0.1206 0.087D 0.5355 0.2764 0.0529 0.0297 0.31 0.33  0.36 0.28
TABLE |

MSE AND EXECUTION TIME FOR DIFFERENT SEPARATION METHODS(QAM4 SOURCES RANDOM MIXING FILTER WITH N=3 INPUTS, Q=4 SENSORS
AND LENGTH L=3. 1000 MONTE-CARLO REALIZATION)

iterations 12 50 100 500
method kurt kurt Alg.1 Alg.2 kurt Alg.1 Alg.2 kurt Alg.1 Alg.2
Kmax 12 50 50 2 100 100 4 500 500 4
param - ax - - 1 25 - 1 25 - 1 125
average MSE 0.279 | 0.0266 0.0267 0.0261 0.0194 0.0177 0.0154 0.0078 0.0065 0.0054
median MSE 0.0199 | 0.0195 0.0199 0.0182 0.0120 0.0119 0.0108 0.0022 0.0022 0.001¢
average time (s) 0.14 0.15 0.13 0.09 0.27 0.25 0.11 1.33 1.29 0.47
TABLE Il

AVERAGE AND MEDIAN MSE FOR DIFFERENT VALUES OFkmax, Imax- NUMBER OF SAMPLES= 1000,NUMBER OF MONTE-CARLO RUNS=1000.

iterations 12 50 100 500
method kurt kurt Alg.1 Alg.2 kurt Alg.1 Alg.2 kurt Alg.1 Alg.2
aram Kmax 12 50 50 25 100 100 25 500 500 25
p e B i, 1 2 - 1 4 - 1 20
average MSE || 0.0251 | 0.0245 0.0244 0.0242 0.0151 0.0151 0.0151] 0.0051 0.0052 0.0049
median MSE 0.0181 | 0.0177 0.0177 0.0173 0.0098 0.0098 0.0097 0.0019 0.0019 0.001§
average time (s)|| 0.66 0.68 0.99 0.54 1.20 1.87 0.55 5.14 8.34 0.62
TABLE IV

AVERAGE AND MEDIAN MSE FOR DIFFERENT VALUES OFkmax; lmax. NUMBER OF SAMPLES= 5000,NUMBER OF MONTE-CARLO RUNS = 1000.

iterations 12 50 100 500
method kurt kurt Alg.1 Alg.2 kurt Alg.1 Alg.2 kurt Alg.1 Alg.2
Kmax 12 50 50 25 100 100 20 500 500 10
param g ax - - 1 2 - 1 5 - 1 50
average MSE 0.0250 | 0.0243 0.0243 0.0244 0.0156 0.0156 0.0157 0.0053 0.0054 0.0057
median MSE 0.0188 | 0.0184 0.0183 0.0184 0.0104 0.0103 0.0103 0.0021 0.0021 0.0021
average time (s)|| 1.59 1.61 1.92 1.03 3.18 3.76 0.88 15.48 18.54 0.64
TABLE V

AVERAGE AND MEDIAN MSE FOR DIFFERENT VALUES OFkmax, Imax. NUMBER OF SAMPLES= 10000,NUMBER OF MONTE-CARLO RUNS= 1000.

~, but in our experiments, we observed that the computationalThe above analysis confirms the experimental results and
load given by3(T,Q, D) clearly increased with" and that the fact that the computational load Afg.2 highly depends
B(T, @, D) became much bigger thar{@, D) for T' > 1000. on the numbefl of samples for large value df,.x (see the
The complexity ofAlg.1 (or equivalentlyAlg.0) is given by top four rows in Table I). On the contrary, whép. is great
the above results with,,. = 1, that is: and k. small, the computational load is quite independent
of T (see the rows at bottom of Table ). Finally, for large
O(kmax(ﬁ(TanD) +7(Q,D))) number of samples, the ter®(7T, Q, D) dominates and the
Finally, note that a gradient optimization of the kurtosime COMPlexity is directly proportional t@m.. The analysis can
trast function [8] has a complexity which is of the same ord@€ Summed up by a few empirical rules to indicate W
of magnitude as\lg.1: indeed at each iteration, such an algo2Nd/max should be chosen:
rithm performs steps which complexity roughly correspamd t « increasingk,.x generally ensures a better convergence,
the steps (i),(ii) and (iii) described above. It follows thhe o for large number of sample¥ (approximately?T >
execution time of a kurtosis maximization is proportioral t 10000), increasingk,.x leads to a prohibitive compu-
kmax a@nd is close to the execution time Afg.1. tational load.ky,.x Should be as small as possible (say

(21)
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kmax < 10), whereas it is possible to increagg., to process. The separation quality of the third recoveredcsour
obtain better performance, is indeed worse than the quality of the second, which is worse
« for small number of sampled'(=~ 1000), kmax Should be than the quality of the first one: this is due to accumulation
great enough (approximately,.. > 20) to avoid poor errors. This drawback of deflation methods is well-known and
separation quality. can be compensated by solutions proposed previously, such a
The main advantage ohlg.2 consists in the possibility of reinitialization [7].
adjusting the above parameters.

B. Experimental study without assumptiag

In this Section, we provide experiments where Assumption
A3 is no longer satisfied. This issue may be important since
AssumptionA3 is not necessarily satisfied in some practical
applications.

1) Different signs of the sources’ cumulants1 order to (a) Original sources
study the influence of the cumulants sign, we generated two
zero-mean, unit variance, uniformly distributed, i.i.dusces
(cumulant value -1.2) and one unit-variance Laplace i.i.d.
source (cumulant value +3). The successive sources have
been retrieved using a deflation approach. The separation
results and average MSE values are gathered in Table VI.
The values indicate that the method seems still valid, aljho

6 % 2 0 @ 4 %

AssumptionA3 is violated in this experiment. (b) Observations (first two sensors only)
| extracted source numbdf 1st [ 2nd [ 3rd | . . ’%
1] F 1 % £ %
average kurtosis 0.0253 | 0.0402 | 0.0694 1ottt ! zﬂé L
9 Alg.2 0.0218 | 0.0385 | 0.0772 s P gﬁ' E
. kurtosis 0.0233 | 0.0162 | 0.0176 ’ : T >
median Alg.2 0.0193 | 0.0160 | 0.0183 o % . o &
" T gw * 4 m ‘,;x:“
TABLE VI ‘ i

AVERAGE AND MEDIAN MSE FOR A DEFLATION EXTRACTION OFN = 3
SOURCES 2 UNIFORM’S, 1 DOUBLE-SIDED EXPONENTIAL 7" = 5000
SAMPLES, @Q = 4, L = 3. kmax = 5, lmax = 200. NUMBER OF
MONTE-CARLO RUNS= 1000.

(c) Separated sources

Fig. 3. Typical separation result of two CPM sources (N=230Q=5).

2) Non i.i.d. sources: continuous phase modulatioffe
considered Continuous Phase Modulation (CPM) source sig- VII. CONCLUSION

nals, which are of particular interest in a communication In this paper, new methods have been proposed for the
application. These sources are I;I]On Li.d. elmd Ten‘f:_? do BAfhose of maximizing the kurtosis contrast function. They
satls_fy AssumptlorAS. However , the genera scalar |ter|ngt ke advantage of the specificity of the kurtosis criteriod a
ambiguity that generally remains when separating non. i.i. ly on the link between so-called “reference-based” @mttr
sources has been characterized in the case of a k”rtogd'b?ﬁnctions and the kurtosis. More precisely, we can say that
contrast function [7], [24], [25]. It is hence interestimyry . 1ethods Alg.0, 1 and 2) perform several incomplete

in simulation our optimization method with CPM SOUTCeS, imizations of a “reference-based” contrast: in otherdso

A typical source separation result is given on Figure 3: {he reference is regularly updated before convergenceeof th
illustrates that our method seems to perform similarly t8

. , ; timization. As we showed, this establishes a connectitn w
the kurtosis based method [7]. We performed simulations er EM and MM iterative optimization methods

conditions simil_ar to the ones iq [7]: we considered thrge The advantage of our methods is twofold. First, we can
CPM sources_wnh m.odulatlon indices 0'75_' 0.4and0.2 Wh'(fneoretically prove the convergence to a stationary paing
have been mixed with the MIMO c.ha.nﬁeh [7]. We also .fo the separation property of all global maxima of the kugos
performed the symb_ol dgcodmg S|m|larly. to [7] _The bIEhis implies in practice the convergence of the method to a
error rate (BER) is given in Table VIl for different signal toseparating filter. In addition, the methadg.2 allows one to
noise ratios (SNR). Table VIII provides similar results for adjust two iteration number E)arameters in order to imprhee t
randomly driven mixing filter. It appears that algorithiig.2 performance. In practice, an appropriate tuning of the remb
provides good results at a much lower computational cost th iterations and reference updates allows one to signifi-

with the method proposed ip [7]. In pass‘”g’ we can als_t‘%ntly reduce the computational load. Simulations haveedd
note that the separation quality degrades during the Ctm'at'showed that algorithnilg.2 is particularly appealing, as it

3The parameters and the impulse response of this filter aitalaleaat yields an impressive improvement in_terms of compu_tational
http://ww public.it-sudparis.eul ~castellal Channel CPM Bpeed for large number of samples. Finally, our resultsigeov
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method kurtosis Alg.2 (Imax = 125, kmax = 8)
execution time| =~ 6.8s =~ 6.6s =~ 6.55 =~ 0.92s ~ 0.91s =~ 0.89s
SNR in dB ) 25 15 oo 25 15
15U source:r; 2.0e-6 4.2e-5 2.7e-3 3.0e-4 4.8e-5 1.7e-3
2nd source:ry | 7.5e-4 1.2e-3 9.9e-3 4.2e-4 4.3e-4 3.2e-3
3 source:rs | 6.0e-3 6.2e-3 3.1e-2 4.3e-3 4.6e-3 1.7e-2
TABLE VII

ESTIMATION OF THEBER FOR A FIXED4 X 3 MIXING FILTER AND FOR DIFFERENT VALUES OF THESNR. THE NUMBER OF MONTE-CARLO RUNS WAS
1000 (SEE[7] FOR A COMPARISON.

method kurtosis Alg.2 (Imax = 125, kmax = 8) Alg.2 (Imax = 40, kmax = 25)
execution time| = 5.0s ~ 5.1s ~ 8.8s =~ 0.70s ~ 0.72s ~ 1.1s ~ 0.77s ~ 0.79s ~ 1.2s
SNR in dB ) 25 15 0o 25 15 0o 25 15
15U source:r; 6.8e-4 1.3e-3 1.7e-2 2.0e-3 2.5e-3 1.7e-2 5.9e-4 1.6e-3 1.8e-2
2nd source:ry | 2.4e-3 3.8e-3 3.4e-2 8.1e-3 7.9e-3 3.1e-2 3.9e-3 4.2e-3 3.2e-2
3 source:rs 7.0e-3 9.6e-3 5.9e-2 1.3e-2 1.8e-2 5.5e-2 1.0e-2 1.4e-2 5.9e-2
TABLE VIl

ESTIMATION OF THEBERFOR A4 X 3 MIXING FILTER WITH RANDOM COEFFICIENTS AND FOR DIFFERENT VAUES OF THESNR. THE NUMBER OF
MONTE-CARLO RUNS WAS1000 (SEE[7] FOR A COMPARISON.

a justification for the “fixed-point” iterations introducédthe APPENDIXB
context of “reference” contrast functions. PROOF OFPROPOSITION2
A. Lemma

For the sake of clarity, we first prove an independent
lemma in the real valued case. Here, y denote vectors
with respective components;, ;. Let ¢! denote the set of
Proof: Let T = {v|VJ(v) = 0} be the set of absolutely summable sequences andded;cz be a bounded

APPENDIX A
PROOF OF PROPOSITIONL

stationary points of7. Following the general framework of @d positive sequence. Let us defibey) = >, ciziy;

global convergence analysis [26], [27], we define the atgori and||z[| = /(x,x).

Alg.0 as a point to set mapping denoted here y. The Lemma 1:Let x andy be vectors in/* with non-negative

sequence of pointévy, ey is generated such that it satisfie§omponentsyi € Z, z; > 0,y; > 0). Assume in addition that

vis1 € Ao(vy). More precisely, the algorithrd, can be 2oicz Ti = Yiez ¥i = L If [Ix[|* < (x,y), then:

decomposed indy = ngo. Here Go : v — (v,—d) .with. x=y & ”sz < (x,y) (24)

d = ViZ(v,v) and S, is a line search along the direction .

—d. Itis proved in [26, p.210] that the line search is a closed Proof: First note that for any sequence if the sums

mapping at points wherel # 0, from which follows the 2.i ;2 @ilvi| and3>; a;af converge and that, .) defines

closedness of the algorith, outsideT. a scalar product. Then, obviously, = y implies |ly||* <
Finally, —7 is a descent function. Consider indeed éx,y>. 9 )

separating filtew, setd = V,Z(v, v) and definew = v+ad Conversely, assume thigg'||* < (x,y). Noting that we have

p S )
wherea > 0 maximizesZ(v + ad, v). Then: alg,o assumefx|| < (x,y) and complnlng these assurannons
with the Cauchy-Schwarz inequality, we obtaigr,y)* <

T 2 T(v,v) < maxZ(v + ad,v) = T(w,v)  (22) IIx[I?lyI? < (x,¥y)? and thus, because the componentsof

a>0 andy are non-negativéx,y) = ||x||||y||. The vector andy
<I(w,w) 2 J(w) (23) are hence collinear and the conditidn, _, z; = >, vi = 1
shows that in fack = y. [ |
Inequality (23) follows from (9) where y(n) = The above lemma will be used in the following corollary form:
{w}z(n) — {v}z(n) Corollary 1: Letx andy be vectors irf! with non-negative
Efwmepz and 2(n) = ez The Y y 9

definition of a descent function further requires thatdog I, COMponents\i € Z, z; > 0,y; > 0). Assume in addition that

the strict inequality7(v) < J(w) holds. Assume precisely >icz &i = iz ¥i = L. If [x]|* < (x,y), then either one of

v ¢ T, that is V7 (v) # 0. Since V1Z(v,v) = $VI(v,v), the following conditions holds (but not both simultanegysl

one can see thal = V,Z(v,0) # 0. Then, from the () (x,y) <[yl

definition of V1, the functiona — Z(v + ad,v) is strictly (i) x=y

increasing in a neighborhood ef = 0, which implies that

the inequality (22) is a strict one and thggv) < J(w) as B. Proof of Proposition 2

required. We are now in position to prove Proposition 2.
Proposition 1 then follows from Zangwill's global conver- Proof: Let us define the following scalar product

gence theorem [26, p.187]. B (xy). = Zﬁil kil >z zi(p)yi(p)* and denote byg? and
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t* the vectorsg® = (|gi(p)*)ix and t> = (|ti(p)[*)ix-

the relations (2)-(3), and assumpti&3, we can write:

C{y} = (", t%),  [C{y}| = (&".8%) = II&7II%;

I(w + pd,v) =

1

11

Now, we have:
Using the independence of the sources, the above notations,

1 [(E +pd)C(v)(w + pd) "

VRVP | (w + pd)R(w + id) ") } -

and: [C{z}| = (t2,t2), = ||t*|

vRv#

p*(dC(v)d") + 2uRwC(v)d"] + wC(v)w!
p2(dRd") + 2uR[wRd"| + wRwH

Now, since the components @? and t2 are non-negative and thus:

and satisfy}" | 3z [:(0)? = Y, X ez [i@)? =1

because of the constraift{|y(n)|*} = E{|z(n)]*} = 1, 0I(w+pd,v) _
the conditions of Corollary 1 hold. Hence, we deduce that Iz )
it [C{2}] < [C.{y}], either (g2, %), < g2 or g® = £  __2 B } 28)
holds (but not both): these are respectively conditionsud ~ YRy | (u2(dRA™) + 2uR[wRd"”| + wRwH )2
(i) of Proposition 2. here:
(9) follows from the fact thaiC.{y}| < |C{y}| holds in
both cases (i) and (ii) of the first part of the proposition. as = dC(v)d”R[wRd"”] — R[wC(v)d”]dRd"  (29)
(10) follows from the fact that if there is a strict inequglit ay = QC(X)QHEREH _ EC(X)EHQRQH (30)

IC.{y}| < |C{y}|, (ii) cannot hold and we have (i) necessarily.
]

ap = RwC(v)d"|wRw — wC(v)wRwRd"] (31)

If follows that the optimal step is such that the numerator of

APPENDIXC
CRITERION DERIVATIVE AND OPTIMAL STEP

We here justify the results summed up in Section V-B.
Remind the definition ofw,v in Equation (13) and the 1]
definition ofx(n) in Equation (14). It is then straightforward
to see that the processed output and the “reference” signal
defined in Equations (3) and (4) can be written as: [2

y(n) = wx(n) and: z(n) = vx(n).

(3]

Now, by construction, the matric& andC(v) in Equations [l
(15), (16) are hermitian and we have:
(5]
C-{y(n)} = wC(v)w" (25)

E{ly(n)P’} = wRw"  and:E{|z(n)]*} = vRv"" (26) (g

Equation (17) then easily follows from its definition in (5).

The complex derivative operator is defined kgg = 7]

1 0. 9. H H H

5 (82% — zazg) and the complex conjugate derivative opera-
9. &1 0. 0.

torby 57 = 3 9z T Z—azg)’ wherezg, zg are the complex -

and imaginary part of. For any real-valued quantity, we have
2 = (2:)". It follows that the gradient direction in (18) is

* - ~ 0\ k 9
indeedd £ 2L = (2Z) = (2Z(w,v)ZZ) . One can g
then verify the following derivation rules (see [28] for neor
details): [10]
owRw" . . 0wC(v)w” .
T =W R and: T =W C(X) [11]
(27)
and Equation (19) then follows. [12]

Now, to derive the optimal step size at each one-
dimensional optimization of the algorithms note that from
(17), Zotedy) _ 97(w + pd,v) Y gince the [13]
algorithms searches for a maximum point and sidces
positive, the optimal step should be such t%&%ﬂ =0.

(28) vanishes.
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