Exercice 1: For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.

- 1. $f(x) = e^x 1$ on \mathbb{R} . 2. $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
- 3. $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
- 4. $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
- 5. $f(x_1, x_2) = x_1^2 / x_2$ on \mathbb{R}^2_{++} .
- 6. $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, on \mathbb{R}^2_{++} , where $0 \le \alpha \le 1$.

Exercice 2: For a differentiable objective function f_0 , using only the optimality condition : $\forall x \text{ feasible}, \nabla f_0(x^*)^\top (x - x^*) \ge 0$, derive optimality conditions in the following cases :

- 1. Unconstrained minimization : min. $f_0(x)$.
- 2. Equality constrained minimization : min. $f_0(x)$ s.t. Ax = b.
- 3. Minimization over nonnegative orthant : min. $f_0(x)$ s.t. $x \succeq 0$.

Exercice 3: Consider the optimization problem

min.
$$f_0(x_1, x_2)$$

s.t. $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$
 $x_1 \ge 0, \quad x_2 \ge 0$

Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the optimal value.

- 1. $f_0(x_1, x_2) = x_1 + x_2$.
- 2. $f_0(x_1, x_2) = -x_1 x_2$.
- 3. $f_0(x_1, x_2) = x_1$.
- 4. $f_0(x_1, x_2) = \max\{x_1, x_2\}.$
- 5. $f_0(x_1, x_2) = x_1^2 + 9x_2^2$.

Exercice 4: Prove that $x^* = (1, 1/2, -1)$ is optimal for the optimization problem :

min.
$$\frac{1}{2}x^{\top}Px + q^{\top}x + r$$

s.t. $-1 \le x_i \le 1, \quad i = 1, 2, 3,$

where :

$$P = \begin{pmatrix} 13 & 12 & -2\\ 12 & 17 & 6\\ -2 & 6 & 12 \end{pmatrix}, \quad q = \begin{pmatrix} -22.0\\ -14.5\\ 13.0 \end{pmatrix}, \quad r = 1.$$

Exercice 5: Consider the convex problem

min.
$$f_0(x)$$

s.t. $f_i(x) \le 0, \quad i = 1, ..., m$

September 7, 2023

Assume x^* and λ^* satisfy the KKT conditions :

$$f_i(x^*) \le 0, \qquad i = 1, \dots, m$$
$$\lambda_i^* \ge 0, \qquad i = 1, \dots, m$$
$$\lambda_i^* f_i(x^*) = 0, \qquad i = 1, \dots, m$$
$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0.$$

Show that $\nabla f_0(x^*)^\top (x - x^*) \ge 0$ for all feasible x.

Exercice 6: Solve by hand the following optimization problem :

min.
$$x_1^2 + x_2^2$$

s.t. $-2x_1 - x_2 + 10 \le 0$
 $-x_1 \le 0$

Exercice 7: Solve by hand the following optimization problem :

min.
$$5x_1^2 + 6x_2^2$$

s.t. $x_1 - 4 \le 0$
 $25 - x_1^2 - x_2^2 \le 0$

Exercice 8: Use the Lagrangian conditions to solve the following problem on the domain $\{(x_1, x_2) \in \mathbb{R}^2 | x_2 > 0\}$:

min.
$$x_1 + 2/x_2$$

s.t. $-x_2 + 1/2 \le 0$
 $-x_1 + x_2^2 \le 0$

Exercice 9: Consider an optimization problem with feasible set defined by inequalities only :

$$X = \{ x \mid f_i(x) \le 0, i = 1, \dots, p \}.$$

For any point $\overline{x} \in X$, define the active set

$$I(\overline{x}) = \{i \mid f_i(\overline{x}) = 0\}$$

Let us remind Slater's constraint qualification (SCQ), linear independence constraint qualification (LICQ), Mangasarian-Fromovitz constraint qualification (MFCQ) :

 $\begin{array}{ll} (\mathrm{SCQ}): & \exists x_0 & f_i(x_0) < 0, \quad i = 1, \ldots, p. \\ (\mathrm{LICQ}) \text{ at a point } \overline{x} \in X: & \{\nabla f_i(\overline{x}): i \in I(\overline{x})\} \text{ linearly independent} \\ (\mathrm{MFCQ}) \text{ at a point } \overline{x} \in X: & \exists d \quad \langle \nabla f_i(\overline{x}), d \rangle < 0 \quad \text{ for all } i \in I(\overline{x}) \end{array}$

- 1. Prove that if the f_i are all convex, then (SCQ) implies (MFCQ).
- 2. Prove that (LICQ) implies (MFCQ).

Exercice 10: Let $A \in \mathbb{R}^{p \times n}$.

1. For $p \ge n$ and rank A = n, solve the problem :

min.
$$||Ax - b||_2^2$$

2. For $p \leq n$ and rank A = p, consider the problem :

$$\min. \frac{1}{2} \|x\|_2^2$$

s.t. $Ax = b$

- (a) Write the Lagrangian $L(x, \nu)$, derive the dual function $g(\nu)$ and the dual problem.
- (b) Give Slater's sufficient condition for strong duality and solve the dual problem.
- (c) Write the KKT conditions.
- (d) Solve the primal and find x^* .

Exercice 11: constraint qualification Consider the optimization problem :

$$\min_{x \in \mathbb{R}^2} x_1^2 + x_2^2 \text{s.t.} (x_1 - 1)^2 + (x_2 - 1)^2 \le 1 (x_1 - 1)^2 + (x_2 + 1)^2 \le 1$$

- 1. Make a sketch of the problem. What is the optimal point x^* ? Are Slater's qualification constraints satisfied?
- 2. Write the Lagrangian and the KKT optimality conditions. Are there Lagrange parameters proving optimality of x^* ?
- 3. Write and solve the dual. Does strong duality hold? What is the optimum value for the dual?

Exercice 12: failure of KKT Consider the problem on \mathbb{R}^2 :

$$\begin{bmatrix} \min. (x_1 + 1)^2 + x_2^2 \\ \text{s.t.} - x_1^3 + x_2^2 \le 0 \end{bmatrix}$$

- 1. Sketch the feasible set and solve the problem.
- 2. Find multipliers λ_0, λ_1 satisfying the Fritz-John conditions.
- 3. Prove there exist no Lagrange multiplier vector for the optimal solution. Explain why not.

Exercice 13: subdifferential Prove the following functions $f : \mathbb{R} \to \mathbb{R}$ are convex and calculate ∂f :

1.
$$f(x) = |x|,$$

2. $f(x) = \imath_{\mathbb{R}_{+}}(x)$
3. $f(x) = \begin{cases} -\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{otherwise.} \end{cases}$
4. $f(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x = 0, \\ +\infty & \text{otherwise.} \end{cases}$

Exercice 14: Derive the Fenchel conjugates of the following functions.

- 1. affine function : f(x) = ax + b.
- 2. exponential : $f(x) = e^x$.
- 3. negative logarithm : $f(x) = -\log x$.
- 4. quadratic function : $f(x) = \frac{1}{2}x^{\top}Qx$ with $Q \in \mathbb{S}_{++}^n$.
- 5. square norm : $f(x) = \frac{1}{2} ||x||_2^2$
- 6. norm : f(x) = ||x||.
- 7. $f(x) = x \log x$ for $x \ge 0$ and $+\infty$ otherwise.
- 8. f(x) = 1/x for x > 0 and $+\infty$ otherwise.

Exercice 15: Derive the Fenchel conjugate and biconjugate of the following functions $(a > 0 \text{ and } all function are <math>\mathbb{R} \to \mathbb{R}$).

- 1. f(x) = a|x|. 2. $f(x) = \imath_{[-a,a]}(x)$. 3. $f(x) = +\infty$ for x > a and f(x) = 0 for $x \le a$.
- 4. $f(x) = i_{\{0\}}(x)$.

Exercice 16: Farkas' lemma Consider the following linear program (LP) with variable $x \in \mathbb{R}^n$ $(c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n} \text{ and } b \in \mathbb{R}^n \text{ are given})$:

$$p^*: \qquad \begin{bmatrix} \min. \ c^\top x \\ \text{s.t.} \ Ax = b \\ x \succeq 0 \end{bmatrix}$$

- 1. Write the Lagrangian and give the Lagrange dual function.
- 2. Write the dual problem.
- 3. Consider the case c = 0 and prove that exactly one of the assertions below holds, but not both :

Either :
$$\exists x \in \mathbb{R}^n, Ax = b, x \succeq 0$$
 or : $\exists y \in \mathbb{R}^m, A^\top y \succeq 0, b^\top y < 0$

Exercice 17: Lagrange and Fenchel duality for LPs

1. Let $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. Consider the following (primal) LP with variable $x \in \mathbb{R}^n$:

min.
$$c^{\top} x$$

s.t. $Ax = b$
 $x \succeq 0$

Find the dual problem using Lagrange duality. We suggest to denote y (resp. s) the vector of dual variables associated to equality (resp. inequality) constraints; note that s can be eliminated.

2. Write the KKT optimality conditions associated to the above LP optimization problem.

September 7, 2023

3. Define

$$f(x) = \begin{cases} c^{\top}x & \text{if } x \succeq 0, \\ +\infty & \text{otherwise.} \end{cases} \qquad \qquad \imath_{\{b\}}(x) = \begin{cases} 0 & \text{if } x = b, \\ +\infty & \text{otherwise.} \end{cases}$$

Derive the Fenchel conjugates of both functions.

- 4. Derive the Fenchel dual of the problem min $f(x) + i_{\{b\}}(Ax)$ and show that the Lagrange and Fenchel dual of the primal LP are the same.
- 5. Consider now the problem

$$\begin{bmatrix} \min. \ c^{\top} x - \mu \sum_{i=1}^{n} \log x_i \\ \text{s.t.} \ Ax = b \end{bmatrix}$$

Write the Lagrangian and the KKT optimality conditions. Show that the above problem can be considered as a perturbation of the previous problem.

Exercice 18: Consider the problem

min.
$$||x||_1$$
 s.t. $Ax = b$.

We write $A = [a_1, \ldots, a_n]$ where $(a_i)_{i=1,\ldots,n}$ are the columns of A.

- 1. Defining $x^+, x^- \succeq 0$ and decomposing $x = x^+ x^-$, write an equivalent problem.
- 2. Write the Lagrangian, derive the Lagrange dual function and the dual problem.
- 3. Write the KKT optimality conditions. Show that the optimal x has a nonzero *i*th component x_i only if $|a_i^{\top}u| = 1$.
- 4. Determine the Fenchel conjugates of $f(x) = ||x||_1$ and $g(y) = i_b(y)$.
- 5. Write the above optimization problem using the previous two functions and determine its Fenchel dual problem.

Exercice 19:

- 1. Let $f(x) = \frac{1}{2} ||x||_2^2$. Derive the Fenchel conjugate of f.
- 2. Let f be a function such that $f^* = f$, where f^* is the Fenchel conjugate of f.
 - (a) Write the Fenchel-Young inequality and show that necessarily $f(y) \ge \frac{1}{2} ||y||_2^2$ for all y.
 - (b) Deduce that $f^*(y) \le \frac{1}{2} \|y\|_2^2$.
- 3. Conclude about sufficient and necessary conditions for a function to be equal to its Fenchel conjugate.

Exercice 20: Fenchel weak/strong duality Let $f : \mathbb{R}^n \to] - \infty, +\infty]$ and $g : \mathbb{R}^m \to] - \infty, +\infty]$ be l.s.c. convex proper functions. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Consider the following primal optimization problem with value p^* and its associated dual problem with value d^* :

$$(p^{\star}): \min_{x \in \mathbb{R}^n} f(x) + g(Ax)$$
 $(d^{\star}): \max_{v \in \mathbb{R}^m} -f^{\star}(-A^{\top}v) - g^{\star}(v)$

- 1. Show that $d^* \leq p^*$ (weak duality).
- 2. Suppose $d^{\star} = p^{\star}$ (strong duality). Show that x^{\star}, v^{\star} are primal, dual optimal if and only if :

 $-A^{\top}v^{\star} \in \partial f(x^{\star})$ and $v^{\star} \in \partial g(Ax^{\star})$

Exercice 21: penalized linear regression Consider the following optimization problem, where $\lambda > 0, b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ are fixed :

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda}{2} \|x\|_2^2$$

- 1. Find the analytic optimal solution x^{\star} .
- 2. Note that the above problem can be written :

$$\min_{\substack{x \in \mathbb{R}^n, \xi \in \mathbb{R}^m \\ \text{s.t.}}} \frac{1}{2} \|\xi\|_2^2 + \frac{\lambda}{2} \|x\|_2^2$$
$$\text{s.t.} \quad \xi = Ax - b$$

- (a) Write the Lagrangian of the above constrained problem (where α denotes the vector of dual variables).
- (b) Write the KKT optimality conditions of the above constrained problem.
- (c) Solve the KKT conditions. Give first the optimal dual variable α^* , then derive the optimal primal variable x^* .
- (d) Compare with the original analytic solution.
- 3. We consider now the Fenchel dual problem of the original problem.
 - (a) Write the Fenchel dual. We suggest to write the problem in the form $\min_{x \in \mathbb{R}^n} f(x) + g(Ax)$
 - and recall properties of the Fenchel conjugate (scaled/translated function, case of $\frac{1}{2} \|.\|_2^2$). (b) Write the subdifferential conditions for (x^*, α^*) to be primal/dual optimal. Show that
 - (b) while the subdifferential conditions for (x, α) to be primar dual optimal. Show they correspond to the KKT conditions.

Exercice 22: For the following functions, derive the proximal operator $\operatorname{prox}_{\lambda f}$ (where $\lambda > 0$):

- 1. square loss : $f(x) = \frac{1}{2}x^2$.
- 2. absolute value : f(x) = |x|.
- 3. support function : $f(x) = \sigma_{[a,b]}(x) = \begin{cases} ax & \text{if } x \le 0 \\ bx & \text{if } x \ge 0 \end{cases}$ with $a \le b$.
 - Note that $\sigma_{[a,b]} = \imath^*_{[a,b]}$ is known as the support function of the set [a,b].
- 4. ReLU function : $f(x) = \sigma_{[0,1]}(x) = \max(x, 0)$.
- 5. dead-zone linear/ ω -insensitive loss : $f(x) = \max(0, |x| \omega)$.
- 6. Huber : $f(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \le \omega\\ \omega |x| \frac{\omega^2}{2} & \text{otherwise.} \end{cases}$
- 7. Log : $f(x) = -\log x$ if x > 0 and $+\infty$ otherwise.
- 8. Quadratic : $f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$ with $A \succeq 0$ and symmetric.

Exercice 23: Let $m \leq n$ be two integers, $A \in \mathbb{R}^{m \times n}$ a rank m matrix and $b \in \mathbb{R}^m$. Let $v \in \mathbb{R}^n$. 1. Consider the problem :

$$\min_{x} \frac{1}{2} \|x - v\|^2$$

s.t. $Ax = b$.

- (a) Write the KKT conditions.
- (b) Solve the KKT equations and find the optimal point.
- 2. Define $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ by f(x) = 0 if Ax = b and $f(x) = +\infty$ if $Ax \neq b$. Determine $\operatorname{prox}_f(v)$.