Théorie du signal SIC3601

Marc Castella

Télécom SudParis

January 11, 2024

Introduction

- Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Ø Systèmes à temps continu: filtrage et modulations
- 8 Echantillonnage
- Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Organisation du module

- $10 \times 1h$ cours amphi \rightarrow synthèse de l'essentiel et commentaires
- A la suite de chaque amphi, 10imes2h TD o exercices
- Documents téléchargeables sur moodle et à l'adresse: http://www-public.tem-tsp.eu/~castella/
- → Tout ce qui est vu en cours et TD est au programme de l'examen.

Examen

QCM (Questions à choix multiples) exclusivement.

• Amener un stylo noir (ou bleu foncé) et un correcteur blanc: détection des cases cochées par niveau de gris.

• Aucun document, aucun dispositif électronique autorisés;

Plan du cours

- I. Introduction: généralités, rappels transformée de Fourier temps continu
- II. Transformées temps discret: transf. en z, transf. Fourier
- III. Filtres numériques: filtres temps discret
- IV. Représentations énergétiques: puissance, énergie, densité spectrale
- V. Signaux aléatoire (1/2) stationnarité, ergodicité, autocorrélation
- VI. Signaux aléatoire (2/2) densité spectrale de puissance, bruit blanc
- VII. Systèmes à temps continu: filtrage, modulations
- VIII. Echantillonnage: théorème de Shannon-Nyquist
 - IX. Transformée de Fourier discrète et FFT: transformées de Fourier
 - X. Signaux à bande étroite: transf. Hilbert, signal analytique, enveloppe complexe, modèle bande de base équivalent

Qu'est-ce qu'un signal?

 signal = toute grandeur (physique ou non) qui contient une information. Cette grandeur dépend d'un paramètre (par exemple temps, espace, ...)

Qu'est-ce qu'un signal?

- signal = toute grandeur (physique ou non) qui contient une information. Cette grandeur dépend d'un paramètre (par exemple temps, espace, ...)
- Exemples de signaux:
 - son audio: scalaire temporel s(t)
 - pression fonction de l'altitude: scalaire spatial
 - image: scalaire bidimensionnel s(x, y)
 - vidéo: scalaire spatio-temporel s(x, y, t)
 - ▶ signal acoustique stéréo: signal vectoriel $\begin{pmatrix} s_g(t) \\ s_d(t) \end{pmatrix}$
 - image couleur, vidéo couleur,...

Qu'est-ce qu'un signal?

- signal = toute grandeur (physique ou non) qui contient une information. Cette grandeur dépend d'un paramètre (par exemple temps, espace, ...)
- Exemples de signaux:
 - son audio: scalaire temporel s(t)
 - pression fonction de l'altitude: scalaire spatial
 - image: scalaire bidimensionnel s(x, y)
 - vidéo: scalaire spatio-temporel s(x, y, t)
 - ▶ signal acoustique stéréo: signal vectoriel $\begin{pmatrix} s_g(t) \\ s_d(t) \end{pmatrix}$
 - image couleur, vidéo couleur,...
- Traitement du signal = science de l'ingénieur concernée par les méthodes permettant de traiter l'information

- Souvent: numérique = digital \leftrightarrow échantillonné
- Il existe des signaux naturellement quantifiés

Signal déterministe / aléatoire

- déterministe: x(t) est une fonction
 - <u>Ex</u>: signal de laboratoire, généré par un GBF (sinusoïde, créneau, échelon, ...)
 - ightarrow évolution prévisible par un modèle
- aléatoire: x(t) est une variable aléatoire à tout instant t
 - Ex: bruit, signal de communication, signal issu d'une mesure,...
 - $\rightarrow\,$ signal non prévisible et non reproductible à l'identique
- Selon contexte, un même signal peut être vu comme aléatoire ou déterministe → modèle

 \underline{Ex} : signal sinusoïdal avec phase ou amplitude aléatoire / fluctuations au niveau «microscopique»

Principe d'une chaîne de communication

Applications du traitement du signal

- Télécommunications
- Image: restauration, débruitage, fusion de données, segmentation
- Sonar, radar: détection, classification,
- Acoustique et audio: annulation d'écho, reconnaissance de parole
- $\bullet\,$ Instrumentation et capteurs $\rightarrow\,$ contrôle non destructif, surveillance
- Sismologie, géologie, optique, biomédical,...

Applications du traitement du signal

- Télécommunications
- Image: restauration, débruitage, fusion de données, segmentation
- Sonar, radar: détection, classification,
- Acoustique et audio: annulation d'écho, reconnaissance de parole
- $\bullet\,$ Instrumentation et capteurs $\rightarrow\,$ contrôle non destructif, surveillance
- Sismologie, géologie, optique, biomédical,...
- ⇒ Traitement du signal à l'interface des sciences de l'ingénieur, de la physique, des mathématiques appliquées
- \rightarrow Pour retrouver information dans signal observé: effectuer une transformation. . .

Transformée de Fourier

• Transformée de Fourier:

$$x(t) \xrightarrow{\mathrm{TF}} X(f) \triangleq \int_{\mathbb{R}} x(t) e^{-\mathrm{i}2\pi ft} dt$$

• Transformée inverse:

$$X(f) \xrightarrow{\mathrm{TF}^{-1}} x(t) = \int_{\mathbb{R}} X(f) e^{+i2\pi ft} df$$

 $\rightsquigarrow |X(f)|$ donne le spectre en amplitude.

Transformée de Fourier

• Transformée de Fourier:

$$x(t) \xrightarrow{\mathrm{TF}} X(f) \triangleq \int_{\mathbb{R}} x(t) e^{-\mathrm{i}2\pi ft} dt$$

Transformée inverse:

$$X(f) \xrightarrow{\mathrm{TF}^{-1}} x(t) = \int_{\mathbb{R}} X(f) e^{+i2\pi ft} df$$

 $\rightsquigarrow |X(f)|$ donne le spectre en amplitude.

• Cas de signaux *T*-périodiques: série de Fourier

$$x(t) = \sum_{k \in \mathbb{Z}} X_k e^{i2\pi k \frac{t}{T}} \qquad X_k = \frac{1}{T} \int_0^T x(t) e^{-i2\pi k \frac{t}{T}} dt$$

 \rightsquigarrow Signal périodique \leftrightarrow Spectre de raies discrètes

Linéarité

- Linéarité
- Symétrie: $x^*(t) \xrightarrow{\mathrm{TF}} X^*(-f)$

- Linéarité
- Symétrie: $x^*(t) \xrightarrow{\mathrm{TF}} X^*(-f)$
- \Rightarrow symétrie hermitienne de la TF d'un signal réel

- Linéarité
- Symétrie: $x^*(t) \xrightarrow{\mathrm{TF}} X^*(-f)$
- $\Rightarrow\,$ symétrie hermitienne de la TF d'un signal réel
 - Théorème du retard / translation:

$$x(t-t_0) \xrightarrow{\mathrm{TF}} e^{-i2\pi f t_0} X(f)$$

- Linéarité
- Symétrie: $x^*(t) \xrightarrow{\mathrm{TF}} X^*(-f)$
- $\Rightarrow\,$ symétrie hermitienne de la TF d'un signal réel
 - Théorème du retard / translation:

$$x(t-t_0) \xrightarrow{\mathrm{TF}} e^{-i2\pi f t_0} X(f)$$

- Modulation:

$$e^{i2\pi f_0 t} x(t) \xrightarrow{\mathrm{TF}} X(f - f_0)$$

- Linéarité
- Symétrie: $x^*(t) \xrightarrow{\mathrm{TF}} X^*(-f)$
- \Rightarrow symétrie hermitienne de la TF d'un signal réel
 - Théorème du retard / translation:

$$x(t-t_0) \xrightarrow{\mathrm{TF}} e^{-i2\pi f t_0} X(f)$$

- Modulation:

$$e^{i2\pi f_0 t} x(t) \xrightarrow{\mathrm{TF}} X(f - f_0)$$

 \Rightarrow La multiplication par $e^{\mathrm{i}2\pi f_0 t}$ translate le spectre

• Changement d'échelle: $x(at) \xrightarrow{\text{TF}} \frac{1}{|a|} X(\frac{f}{a})$ (avec $a \neq 0$)

- Changement d'échelle: $x(at) \xrightarrow{\text{TF}} \frac{1}{|a|} X(\frac{f}{a})$ (avec $a \neq 0$)
- Dérivation:

$$\frac{dx(t)}{dt} \xrightarrow{\mathrm{TF}} \mathrm{i}2\pi f X(f) \qquad tx(t) \xrightarrow{\mathrm{TF}} -\frac{1}{\mathrm{i}2\pi} \frac{dX(f)}{df}$$

- Changement d'échelle: $x(at) \xrightarrow{\text{TF}} \frac{1}{|a|} X(\frac{f}{a})$ (avec $a \neq 0$)
- Dérivation:

$$\frac{dx(t)}{dt} \xrightarrow{\mathrm{TF}} \mathrm{i}2\pi f X(f) \qquad tx(t) \xrightarrow{\mathrm{TF}} -\frac{1}{\mathrm{i}2\pi} \frac{dX(f)}{df}$$

• Convolution: $x(t) \star y(t) \triangleq \int_{\mathbb{R}} x(\theta) y(t-\theta) \, d\theta$

$$x(t) \star y(t) \stackrel{\mathrm{TF}}{\longrightarrow} X(f) Y(f)$$

- Changement d'échelle: $x(at) \xrightarrow{\text{TF}} \frac{1}{|a|} X(\frac{f}{a})$ (avec $a \neq 0$)
- Dérivation:

$$\frac{dx(t)}{dt} \xrightarrow{\mathrm{TF}} \mathrm{i}2\pi f X(f) \qquad tx(t) \xrightarrow{\mathrm{TF}} -\frac{1}{\mathrm{i}2\pi} \frac{dX(f)}{df}$$

• Convolution:
$$x(t) \star y(t) \triangleq \int_{\mathbb{R}} x(\theta) y(t-\theta) \, d\theta$$

$$x(t) \star y(t) \xrightarrow{\mathrm{TF}} X(f)Y(f)$$

• relation de Parseval:

$$\int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df$$

Fonction porte et sa transformée de Fourier

Autour de la TF d'une porte...

Difficulté de localisation temporelle par la TF

Difficulté de localisation temporelle par la TF

Limitations de la TF

Transformée de Fourier est adaptée à de nombreux signaux mais:

- Caractérisation globale
 - \Rightarrow obligatoirement temps différé
- Difficulté de synthèse des signaux ayant des irrégularités locales
- Difficulté à analyser certains signaux
- $\rightarrow~$ II existe d'autres représentations:
 - temps/fréquence
 - temps/échelle
 - ▶ ...

Energie et puissance

• Energie de
$$x(t)$$
: $E_x \triangleq \int_{\mathbb{R}} |x(t)|^2 dt$

- Puissance: $P_x \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$
- $\rightarrow\,$ Classification en énergie/puissance finie/infinie.

Energie et puissance

• Energie de
$$x(t)$$
: $E_x \triangleq \int_{\mathbb{R}} |x(t)|^2 dt$

• Puissance:
$$P_x \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

- $\rightarrow\,$ Classification en énergie/puissance finie/infinie.
 - énergie finie \Rightarrow puissance nulle

 $\Leftrightarrow P_x > 0 \Rightarrow E_x = \infty$

Energie et puissance

• Energie de
$$x(t)$$
: $E_x \triangleq \int_{\mathbb{R}} |x(t)|^2 dt$

• Puissance:
$$P_x \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

- $\rightarrow\,$ Classification en énergie/puissance finie/infinie.
 - ${\scriptstyle \bullet}\,$ énergie finie \Rightarrow puissance nulle

$$\Leftrightarrow P_x > 0 \Rightarrow E_x = \infty$$

• En traitement du signal: puissance et énergie sans dimension.

Si x(t): tension appliquée à une résistance R, puissance physique: $P_{\text{elec}}(t) = \frac{|x(t)|^2}{R}$.

Exemples de signaux

• impulsion rectangulaire

$$\Pi_T(t) = \begin{cases} 1 & \text{si } t \in [-T/2, T/2] \\ 0 & \text{sinon.} \end{cases}$$

$$E_{\Pi_T} = T \qquad P_{\Pi_T} = 0$$

Exemples de signaux

• échelon de Heaviside u(t)=1 si $t\geq 0,0$ sinon.

$$E_u = \infty$$
 $P_u = 1/2$

Exemples de signaux

- exponentielle complexe $x(t) = C e^{i 2 \pi f_0 t} E_x = \infty$ $P_x = |C|^2$
- sinusoïde $y(t) = A\cos(2\pi f_0 t + \varphi) ~ E_y = \infty \qquad P_y = |A|^2/2$
- \rightsquigarrow pour un signal T_0 -périodique: $P_x = rac{1}{T_0} \int_{-T_0/2}^{T_0/2} |x(t)|^2 \, dt$

Exemples de signaux

• rampe linéaire
$$v(t) = t$$
 si $t \ge 0, 0$ sinon. $E_v = \infty$ $P_v = \infty$

Signaux d'énergie finie

Utile de considérer les espaces vectoriels de signaux. En particulier: Energie finie $\Leftrightarrow \int_{\mathbb{R}} |x(t)|^2 dt < \infty \Leftrightarrow x(t) \in L^2(\mathbb{R})$

Signaux d'énergie finie

Utile de considérer les espaces vectoriels de signaux. En particulier: Energie finie $\Leftrightarrow \int_{\mathbb{R}} |x(t)|^2 dt < \infty \Leftrightarrow x(t) \in L^2(\mathbb{R})$

- produit scalaire $\langle x, y \rangle \triangleq \int_{\mathbb{R}} x(t) y^*(t) \, dt$
- norme et distance entre signaux:

$$\|\tilde{x} - x\| = \left(\int_{\mathbb{R}} |\tilde{x}(t) - x(t)|^2 dt\right)^{1/2}$$

- \rightsquigarrow erreur quadratique moyenne
 - inégalité de Cauchy-Schwarz: $|\langle x,y \rangle| \leq \|x\|.\|y\|$
 - projection orthogonale

Inter- et auto-corrélation en énergie

Pour des signaux d'énergie finie:

• Inter-corrélation de x(t) et y(t) en énergie:

$$\gamma^e_{xy}(\tau) := \int_{\mathbb{R}} x(t) y^*(t-\tau) \, dt, \quad \forall \tau \in \mathbb{R}$$

• Auto-corrélation de x(t) en énergie:

$$\gamma_x^e(\tau) = \int_{\mathbb{R}} x(t) x^*(t-\tau) \, dt, \quad \forall \tau \in \mathbb{R}$$

•
$$\gamma^e_x(\tau) = \gamma^e_{xx}(\tau)$$

Inter- et auto-corrélation en puissance

Pour des signaux de puissance finie, énergie infinie:

• Inter-corrélation de x(t) et y(t) en puissance:

$$\gamma_{xy}^p(\tau) := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T x(t) y^*(t-\tau) \, dt, \quad \forall \tau \in \mathbb{R}$$

• Auto-corrélation de x(t) en puissance: $\gamma^p_x(\tau)=\gamma^p_{xx}(\tau)$

$$\gamma_x^p(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T x(t) x^*(t-\tau) \, dt, \quad \forall \tau \in \mathbb{R}$$

• Auto-corrélation égale à la puissance et maximale en zéro:

$$\gamma_x^p(0) = P_x > 0$$

Introduction

- 2 Transformées temps discret
 - 3) Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Systèmes à temps continu: filtrage et modulations
- B Echantillonnage
- Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Coefficients et définition

Soit u fonction T-périodique et $\omega = \frac{2\pi}{T}$.

Coefficients de Fourier $(c_n)_{n \in \mathbb{Z}}$

$$\forall n \in \mathbb{Z}: \quad c_n = \frac{1}{T} \int_0^T u(t) e^{-in\omega t} dt$$

 $(c_n)_{n\in\mathbb{Z}}$ définis dès que u intégrable sur [0,T], donc par ex: • $u \in L^1(0,T)$,

- $u \in L^2(0,T)$ (puisque $L^2(0,T) \subset L^1(0,T)$),
- *u* continue par morceaux.

Série de Fourier $\sum_{n\in\mathbb{Z}}c_ne^{\mathrm{i}n\omega t}$

Coefficients et définition Pour u fonction T-périodique et $\omega = \frac{2\pi}{T}$.

Coefficients de Fourier $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$

$$\forall n \in \mathbb{N}: \quad a_n = \frac{2}{T} \int_0^T u(t) \cos(n\omega t) \, dt \qquad b_n = \frac{2}{T} \int_0^T u(t) \sin(n\omega t) \, dt$$

• Lien avec les coefficients $(c_n)_{n\in\mathbb{Z}}$

$$\forall n \in \mathbb{N}: \quad \begin{array}{l} a_n = c_{-n} + c_n \qquad c_n = (a_n - \mathbf{i}b_n)/2\\ b_n = (c_{-n} - c_n)/\mathbf{i} \qquad c_{-n} = (a_n + \mathbf{i}b_n)/2 \end{array}$$

Série de Fourier

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t) \quad \left(= \sum_{n \in \mathbb{Z}} c_n e^{in\omega t} \right)$$

Fonction de carré sommable

Pour $u \in L^2(0,T)$:

- Produit scalaire: $\langle u, v \rangle = \frac{1}{T} \int_0^T u(t) v(t)^* dt$
- La famille $(t\mapsto e^{\mathrm{i}n\omega t})_{n\in\mathbb{Z}}$ est une base orthonormée.
 - inégalité de Bessel,
 - ► approximation de *u* par un polynôme trigonométrique: tronquer de la série de Fourier.

Relation de Parseval

$$||u||_{2}^{2} = \frac{1}{T} \int_{0}^{T} |u(t)|^{2} dt = \sum_{n \in \mathbb{Z}} |c_{n}|^{2}$$

 \leadsto convergence de la série vers u au sens $\|.\|_2$

> $L^2(0,T)$ est un espace de Hilbert.

Représentation ponctuelle

- Convergence dans L^2 donne égalité presque partout (et non pas ponctuelle)!
- Existence des coefficients de Fourier pour $u\in L^1(0,T)$ et $u\in L^2(0,T)\subset L^1(0,T)$ non nécessaire.

--- Hypothèses pour une représentation ponctuelle? Type de convergence?

```
Theorem (Dirichlet)

Si u est C<sup>1</sup> par morceaux et T-périodique, alors:

\sum_{n=-N}^{N} c_n e^{in\omega t} \xrightarrow[N \to +\infty]{} \frac{1}{2}(u(t^+) + u(t^-))
```

Formulaire, fonction u T-périodique

Coefficients et série de Fourier, avec $\omega = \frac{2\pi}{T}$

$$\begin{aligned} \forall n \in \mathbb{Z}, \quad & c_n = \frac{1}{T} \int_0^T u(t) e^{-i\omega nt} dt \\ \forall n \in \mathbb{N}, \quad & a_n = \frac{2}{T} \int_0^T u(t) \cos(\omega nt) dt \qquad & b_n = \frac{2}{T} \int_0^T u(t) \sin(\omega nt) dt \\ \text{série Fourier:} \quad & \sum_{n \in \mathbb{Z}} c_n e^{i\omega nt} = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(\omega nt) + b_n \sin(\omega nt) \end{aligned}$$

• Lien entre les $(c_n)_{n \in \mathbb{Z}}$ et les $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{C}}$.

Relation de Parseval

$$\frac{1}{T} \int_0^T |u(t)|^2 dt = \sum_{n \in \mathbb{Z}} |c_n|^2 = \frac{|a_0|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} |a_n|^2 + |b_n|^2$$

Signaux à temps discret

On considère des signaux à temps discret $x_n, n \in \mathbb{Z}$

- sans quantification de l'amplitude ($x_n \in \mathbb{R}$)
- $x_n, n \in \mathbb{Z}$ provient ou non d'un échantillonnage.

Signaux à temps discret

On considère des signaux à temps discret $x_n, n \in \mathbb{Z}$

- sans quantification de l'amplitude ($x_n \in \mathbb{R}$)
- $x_n, n \in \mathbb{Z}$ provient ou non d'un échantillonnage.

Exemples de signaux à temps discret:

Signaux à temps discret

On considère des signaux à temps discret $x_n, n \in \mathbb{Z}$

- sans quantification de l'amplitude ($x_n \in \mathbb{R}$)
- $x_n, n \in \mathbb{Z}$ provient ou non d'un échantillonnage.

Exemples de signaux à temps discret:

• Transformée de Fourier à temps discret (TFTD) du signal $x_n, n \in \mathbb{Z}$:

$$X(\tilde{f}) \triangleq \sum_{n \in \mathbb{Z}} x_n e^{-\mathrm{i} 2\pi n \tilde{f}}$$

• Transformée de Fourier à temps discret (TFTD) du signal $x_n, n \in \mathbb{Z}$:

$$X(\tilde{f}) \triangleq \sum_{n \in \mathbb{Z}} x_n e^{-\mathrm{i} 2\pi n \tilde{f}}$$

- $X(\tilde{f})$ de période $1 \rightsquigarrow \tilde{f}$ fréquence normalisée, au choix: $\tilde{f} \in [0,1]$ ou $\tilde{f} \in [-\frac{1}{2}, \frac{1}{2}]$

• Transformée de Fourier à temps discret (TFTD) du signal $x_n, n \in \mathbb{Z}$:

$$X(\tilde{f}) \triangleq \sum_{n \in \mathbb{Z}} x_n e^{-\mathrm{i} 2\pi n \tilde{f}}$$

- $X(\tilde{f})$ de période $1 \rightsquigarrow \tilde{f}$ fréquence normalisée, au choix: $\tilde{f} \in [0,1]$ ou $\tilde{f} \in [-\frac{1}{2},\frac{1}{2}]$
- si x_n échantillonné à f_e , fréquence réelle $f = \tilde{f}f_e = rac{\hat{f}}{T_e}$

• Transformée de Fourier à temps discret (TFTD) du signal $x_n, n \in \mathbb{Z}$:

$$X(\tilde{f}) \triangleq \sum_{n \in \mathbb{Z}} x_n e^{-\mathrm{i} 2\pi n \tilde{f}}$$

- $X(\tilde{f})$ de période $1 \rightsquigarrow \tilde{f}$ fréquence normalisée, au choix: $\tilde{f} \in [0,1]$ ou $\tilde{f} \in [-\frac{1}{2},\frac{1}{2}]$

- si x_n échantillonné à f_e , fréquence réelle $f = \tilde{f}f_e = rac{\hat{f}}{T_e}$
- $X(\tilde{f})$ est la série de Fourier associée aux coefficients $x_n, n \in \mathbb{Z}$ et donc:

$$x_n = \int_{-1/2}^{1/2} X(\tilde{f}) e^{+i2\pi n\tilde{f}} d\tilde{f} = \int_0^1 X(\tilde{f}) e^{+i2\pi n\tilde{f}} d\tilde{f}$$

• Transformée de Fourier à temps discret (TFTD) du signal $x_n, n \in \mathbb{Z}$:

$$X(\tilde{f}) \triangleq \sum_{n \in \mathbb{Z}} x_n e^{-\mathrm{i} 2\pi n \tilde{f}}$$

- $X(\tilde{f})$ de période $1 \rightsquigarrow \tilde{f}$ fréquence normalisée, au choix: $\tilde{f} \in [0,1]$ ou $\tilde{f} \in [-\frac{1}{2},\frac{1}{2}]$

- si x_n échantillonné à f_e , fréquence réelle $f = \tilde{f}f_e = rac{\hat{f}}{T_e}$
- $X(\tilde{f})$ est la série de Fourier associée aux coefficients $x_n, n \in \mathbb{Z}$ et donc:

$$x_n = \int_{-1/2}^{1/2} X(\tilde{f}) e^{+i2\pi n\tilde{f}} d\tilde{f} = \int_0^1 X(\tilde{f}) e^{+i2\pi n\tilde{f}} d\tilde{f}$$

• Propriétés de la TFTD: transparents 14 et suivants

TFTD: exemple et remarques

• <u>Ex</u>:

$$r_n^{(N)} = \begin{cases} 1 & \text{si } n = 0, \dots, N-1, \\ 0 & \text{sinon.} \end{cases}$$
$$R^{(N)}(\tilde{f}) = \frac{\sin \pi N \tilde{f}}{\sin \pi \tilde{f}} e^{-i2\pi \frac{N-1}{2}\tilde{f}}$$

- La TFTD n'est pas l'échantillonnée de la transformée de Fourier à temps continu (TFTC).
- La TFTD n'est pas la transformée de Fourier discrète (TFD)
- Il existe aussi une Transformée de Fourier rapide (FFT: Fast Fourier transform)

Transformée en \boldsymbol{z}

• La transformée en z du signal $x_n, n \in \mathbb{Z}$ est la série formelle:

$$X[z] \triangleq \sum_{n \in \mathbb{Z}} x_n z^{-n}$$

Transformée en \boldsymbol{z}

• La transformée en z du signal $x_n, n \in \mathbb{Z}$ est la série formelle:

$$X[z] \triangleq \sum_{n \in \mathbb{Z}} x_n z^{-n}$$

• Domaine de convergence de la série X[z]: anneau \mathcal{D} R_2 $\mathfrak{I}(z)$ $\mathcal{D} = \{z \in \mathbb{C} \mid R_1 < |z| < R_2\}$ $\mathfrak{R}(z)$ Eventuellement: $\circ R_1 = 0, R_2 = +\infty, \dots$ $\circ R_2 < R_1$ et $\mathcal{D} = \emptyset$

Transformée en \boldsymbol{z}

• La transformée en z du signal $x_n, n \in \mathbb{Z}$ est la série formelle:

$$X[z] \triangleq \sum_{n \in \mathbb{Z}} x_n z^{-n}$$

• Domaine de convergence de la série X[z]: anneau \mathcal{D} R_2 $\mathcal{D} = \{z \in \mathbb{C} \mid R_1 < |z| < R_2\}$ \mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_1 $\mathcal{R}_2 = \{z \in \mathbb{C} \mid R_1 < |z| < R_2\}$ Eventuellement: $\circ R_1 = 0, R_2 = +\infty, \dots$ $\circ R_2 < R_1$ et $\mathcal{D} = \emptyset$

• Transformée en z : fonction holomorphe X[z] avec la couronne de convergence associée \mathcal{D} .

Inversion de la transformée en z

Comment déterminer $x_k, k \in \mathbb{Z}$ à partir de X[z]?

Inversion de la transformée en z

Comment déterminer $x_k, k \in \mathbb{Z}$ à partir de X[z]?

- Formule de Cauchy: $x_k = \frac{1}{\mathrm{i}2\pi} \int_{\mathcal{C}} X[z] z^{k-1} dz$
- \rightsquigarrow valeur identique de l'intégrale pour tout ${\cal C}$ à condition de préciser le domaine d'holomorphie ${\cal D}$

Inversion de la transformée en z

Comment déterminer $x_k, k \in \mathbb{Z}$ à partir de X[z]?

- Formule de Cauchy: $x_k = \frac{1}{i2\pi} \int_{\mathcal{C}} X[z] z^{k-1} dz$
- \rightsquigarrow valeur identique de l'intégrale pour tout ${\cal C}$ à condition de préciser le domaine d'holomorphie ${\cal D}$
 - Autre méthode utilisée en pratique pour des fractions rationnelles: développement en série

• Ex:
$$x_n = a^n$$
 si $n \ge 0$ et $x_n = 0$ sinon $(a \in \mathbb{C}^*)$

$$X[z] = \sum_{n \in \mathbb{Z}} x_n z^{-n}$$

• Ex:
$$x_n = a^n$$
 si $n \ge 0$ et $x_n = 0$ sinon $(a \in \mathbb{C}^*)$

$$X[z] = \sum_{n=0}^{+\infty} a^n z^{-n}$$
 ne converge que si $|az^{-1}| < 1$

• <u>Ex</u>: $x_n = a^n$ si $n \ge 0$ et $x_n = 0$ sinon $(a \in \mathbb{C}^*)$

$$X[z] = \sum_{n=0}^{+\infty} a^n z^{-n}$$

 $\rightarrow X[z] = \frac{1}{1 - az^{-1}}$ sur le domaine $\mathcal{D} = \{|z| > |a|\}$

• <u>Ex</u>: $x_n = a^n$ si $n \ge 0$ et $x_n = 0$ sinon $(a \in \mathbb{C}^*)$

$$X[z] = \sum_{n=0}^{+\infty} a^n z^{-n}$$

 $\rightarrow X[z] = \frac{1}{1 - az^{-1}} \text{ sur le domaine } \mathcal{D} = \{|z| > |a|\}$

•
$$Y[z] = \frac{1}{1 - az^{-1}} \text{ sur } \overline{\mathcal{D}} = \{|z| < |a|\}$$
 ??

• Ex:
$$x_n = a^n \text{ si } n \ge 0 \text{ et } x_n = 0 \text{ sinon } (a \in \mathbb{C}^*)$$

 $X[z] = \sum_{n=0}^{+\infty} a^n z^{-n}$
 $\rightarrow X[z] = \frac{1}{1 - az^{-1}} \text{ sur le domaine } \mathcal{D} = \{|z| > |a|\}$
• $Y[z] = \frac{1}{1 - az^{-1}} \text{ sur } \overline{\mathcal{D}} = \{|z| < |a|\} ??$
 $Y[z] = \frac{-1}{(az^{-1})(1 - a^{-1}z)} = \frac{-1}{az^{-1}} \sum_{n=0}^{+\infty} a^{-n} z^n = -\sum_{n=-\infty}^{-1} a^n z^{-n}$

 $\rightarrow y_n = -a^n \text{ si } n \leq -1 \text{ et } y_n = 0 \text{ si } n \geq 0.$

 \rightsquigarrow Domaines différents $\Rightarrow y_n \neq x_n$ et pourtant même expression de la transformée en z.

Importance du domaine

<u>Ex</u>: X[z] admet deux singularités (pôles) en p_1, p_2 .

$$x_k = \frac{1}{i2\pi} \int_{\mathcal{C}} X[z] z^{k-1} dz$$
$$= \sum_j \operatorname{Res} \left[X[z] z^{k-1}, p_j \right]$$

Singularités a_j à prendre en compte:

- pour \mathcal{C}_1 : $0, p_1$ et p_2
- pour \mathcal{C}_2 : 0 et p_1
- pour \mathcal{C}_3 : 0
- \rightarrow signal différent pour des domaines différents!
 - Fraction rationnelle: série distincte sur chaque domaine (**** développement éléments simples)

Si
$$x_n \xrightarrow{\mathrm{Tz}} X[z]$$
 et $y_n \xrightarrow{\mathrm{Tz}} Y[z]$ alors:

• linéarité:
$$\lambda x_n + \mu y_n \xrightarrow{\mathrm{Tz}} \lambda X[z] + \mu Y[z]$$

Si
$$x_n \xrightarrow{\mathrm{Tz}} X[z]$$
 et $y_n \xrightarrow{\mathrm{Tz}} Y[z]$ alors:
• linéarité: $\lambda x_n + \mu y_n \xrightarrow{\mathrm{Tz}} \lambda X[z] + \mu Y[z]$

• symétries:
$$x_{-n} \xrightarrow{\mathrm{Tz}} X[z^{-1}] \qquad x_n^* \xrightarrow{\mathrm{Tz}} (X[z^*])^*$$

Si $x_n \xrightarrow{\mathrm{Tz}} X[z]$ et $y_n \xrightarrow{\mathrm{Tz}} Y[z]$ alors:

- linéarité: $\lambda x_n + \mu y_n \xrightarrow{\mathrm{Tz}} \lambda X[z] + \mu Y[z]$
- symétries: $x_{-n} \xrightarrow{\mathrm{Tz}} X[z^{-1}] \qquad x_n^* \xrightarrow{\mathrm{Tz}} (X[z^*])^*$
- théorème du retard:

$$x_{n-1} \xrightarrow{\mathrm{Tz}} z^{-1} X[z] \qquad x_{n-n_0} \xrightarrow{\mathrm{Tz}} z^{-n_0} X[z]$$

Si $x_n \xrightarrow{\mathrm{Tz}} X[z]$ et $y_n \xrightarrow{\mathrm{Tz}} Y[z]$ alors:

- linéarité: $\lambda x_n + \mu y_n \xrightarrow{\mathrm{Tz}} \lambda X[z] + \mu Y[z]$
- symétries: $x_{-n} \xrightarrow{\mathrm{Tz}} X[z^{-1}] \qquad x_n^* \xrightarrow{\mathrm{Tz}} (X[z^*])^*$
- théorème du retard:

$$x_{n-1} \xrightarrow{\mathrm{Tz}} z^{-1}X[z]$$
 $x_{n-n_0} \xrightarrow{\mathrm{Tz}} z^{-n_0}X[z]$

• convolution:

$$x_n \star y_n = \sum_{k \in \mathbb{Z}} x_k y_{n-k} \xrightarrow{\mathrm{Tz}} X[z] Y[z]$$
• Lien transformée en z et TFTD: si le cercle unité appartient au domaine de convergence:

$$X(\tilde{f}) = X\left[e^{\mathrm{i}2\pi\tilde{f}}\right]$$

• Lien transformée en z et TFTD: si le cercle unité appartient au domaine de convergence:

$$X(\tilde{f}) = X\left[e^{\mathrm{i} 2\pi \tilde{f}}\right]$$

 \rightarrow les propriétés de la TFTD en découlent (linéarité, symétries, retard/modulation, convolution)

• Lien transformée en z et TFTD: si le cercle unité appartient au domaine de convergence:

$$X(\tilde{f}) = X\left[e^{\mathrm{i} 2\pi \tilde{f}}\right]$$

 \rightarrow les propriétés de la TFTD en découlent (linéarité, symétries, retard/modulation, convolution)

• Parseval:

$$\sum_{n=-\infty}^{+\infty} |x_n|^2 = \int_{-1/2}^{1/2} |X(\tilde{f})|^2 d\tilde{f} = \frac{1}{i2\pi} \int_{\mathcal{C}} X[z] X[1/z^*]^* \frac{dz}{z}$$

• Lien transformée en z et TFTD: si le cercle unité appartient au domaine de convergence:

$$X(\tilde{f}) = X\left[e^{\mathrm{i} 2\pi \tilde{f}}\right]$$

 $\rightarrow\,$ les propriétés de la TFTD en découlent (linéarité, symétries, retard/modulation, convolution)

• Parseval:

$$\sum_{n=-\infty}^{+\infty} |x_n|^2 = \int_{-1/2}^{1/2} |X(\tilde{f})|^2 d\tilde{f} = \frac{1}{i2\pi} \int_{\mathcal{C}} X[z] X[1/z^*]^* \frac{dz}{z}$$

• lien avec transformée de Laplace: $\int x(t) e^{-pt} \, dt \leftrightarrow \sum x_n z^{-n}$ avec $z \leftrightarrow e^p$

Zéros/pôles d'une transformée en z

• Exemple:
$$X[z] = \frac{(z-z_1)(z-z_2)}{(z-p_1)(z-p_2)}$$

• TF temps discret:

Introduction

- Transformées temps discret
- 3 Filtres numériques (temps discret)
 - 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Ø Systèmes à temps continu: filtrage et modulations
- 8 Echantillonnage
- Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Système

- Modéliser ce qui se passe lors:
 - transmission du signal (canal de propagation,...)
 - traitement du signal (restauration au récepteur,...)
 - toute autre modification

Système

- Modéliser ce qui se passe lors:
 - transmission du signal (canal de propagation,...)
 - traitement du signal (restauration au récepteur,...)
 - toute autre modification
- Système: dispositif qui à un signal d'entrée associe un signal de sortie

$$\underbrace{x_n}_{L[.]} \qquad \underbrace{y_n = L[x_k, k \in \mathbb{Z}](n)}_{}$$

• linéarité

$$\lambda^{(1)}x_n^{(1)} + \lambda^{(2)}x_n^{(2)}$$
 $L[.]$
 $y_n = \lambda^{(1)}y_n^{(1)} + \lambda^{(2)}y_n^{(2)}$
 $= \lambda^{(1)}L[x_k^{(1)}, k \in \mathbb{Z}](n) + \lambda^{(2)}L[x_k^{(2)}, k \in \mathbb{Z}](n)$

• linéarité

$$\lambda^{(1)}x_n^{(1)} + \lambda^{(2)}x_n^{(2)}$$
 $L[.]$
 $y_n = \lambda^{(1)}y_n^{(1)} + \lambda^{(2)}y_n^{(2)}$
 $= \lambda^{(1)}L[x_k^{(1)}, k \in \mathbb{Z}](n) + \lambda^{(2)}L[x_k^{(2)}, k \in \mathbb{Z}](n)$

• instantanéité: la sortie ne dépend que du présent

$$x_n \longrightarrow L[.] \qquad y_n = L[x_k, k \in \mathbb{Z}](n) = L[x_n](n)$$

• linéarité

$$\lambda^{(1)}x_n^{(1)} + \lambda^{(2)}x_n^{(2)}$$
 $L[.]$
 $y_n = \lambda^{(1)}y_n^{(1)} + \lambda^{(2)}y_n^{(2)}$
 $= \lambda^{(1)}L[x_k^{(1)}, k \in \mathbb{Z}](n) + \lambda^{(2)}L[x_k^{(2)}, k \in \mathbb{Z}](n)$

• instantanéité: la sortie ne dépend que du présent

$$x_n \longrightarrow L[.] \qquad y_n = L[x_k, k \in \mathbb{Z}](n) = L[x_n](n)$$

• causalité: la sortie ne dépend que du passé

$$\underbrace{x_n}_{L[.]} \underbrace{y_n = L[x_k, k \in \mathbb{Z}](t) = L[x_k, k \le n](n)}_{}$$

• linéarité

$$\lambda^{(1)}x_n^{(1)} + \lambda^{(2)}x_n^{(2)}$$
 $L[.]$
 $y_n = \lambda^{(1)}y_n^{(1)} + \lambda^{(2)}y_n^{(2)}$
 $= \lambda^{(1)}L[x_k^{(1)}, k \in \mathbb{Z}](n) + \lambda^{(2)}L[x_k^{(2)}, k \in \mathbb{Z}](n)$

• instantanéité: la sortie ne dépend que du présent

$$x_n \longrightarrow L[.] \qquad y_n = L[x_k, k \in \mathbb{Z}](n) = L[x_n](n)$$

• causalité: la sortie ne dépend que du passé

$$\underbrace{x_n}_{L[.]} \underbrace{y_n = L[x_k, k \in \mathbb{Z}](t) = L[x_k, k \le n](n)}_{}$$

• invariance:

Exemples de systèmes

	linéaire	instantané	causal	invariant
$y_n = (x_n)^2$	non	oui	oui	oui
$y_n = \sin(x_n)$	non	oui	oui	oui
$y_n = m_n x_n$	oui	oui	oui	non
$y_n = \sum_{k=-\infty}^{+\infty} h_{n,k} x_k$	oui	non	non	non
$y_n = \frac{1}{2M+1} \sum_{k=n-M}^{n+M} x_k$	oui	non	non	oui
$y_n = \frac{1}{M} \sum_{k=n-M+1}^n x_k$	oui	non	oui	oui

• **Filtre** = système linéaire, invariant dans le temps (et continu)

- **Filtre** = système linéaire, invariant dans le temps (et continu)
 - réponse impulsionnelle h_n :

- Filtre = système linéaire, invariant dans le temps (et continu)
 - réponse impulsionnelle h_n :

- Filtre = système linéaire, invariant dans le temps (et continu)
 - réponse impulsionnelle h_n :

- Filtre = système linéaire, invariant dans le temps (et continu)
 - réponse impulsionnelle h_n :

⇒ convolution discrète:

$$y_n = x_n \star h_n = \sum_{k \in \mathbb{Z}} x_k h_{n-k} = h_n \star x_n = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$

• Filtrage et convolution 1D:

$$x_n \qquad y_n = h_n \star x_n = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$

• Filtrage et convolution 1D:

$$x_n \longrightarrow h_n \qquad y_n = h_n \star x_n = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$

• Convolution pour une image 2D: $y_{m,n} = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h_{k,l} x_{m-k,n-l}$

• Filtrage et convolution 1D:

$$\underbrace{x_n}_{h_n} \underbrace{y_n = h_n \star x_n}_{k \in \mathbb{Z}} = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$

- Convolution pour une image 2D: $y_{m,n} = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h_{k,l} x_{m-k,n-l}$
- Si un seul pixel blanc:

$$x_{m,n} = \delta_{m,n} := \begin{cases} 1 & \text{si } m = n = 0, \\ 0 & \text{sinon.} \end{cases}$$

Alors: $y_{m,n} = h_{m,n}$

• Filtrage et convolution 1D:

$$x_n \longrightarrow h_n \qquad y_n = h_n \star x_n = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$

- Convolution pour une image 2D: $y_{m,n} = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h_{k,l} x_{m-k,n-l}$
- Si un seul pixel blanc:

$$x_{m,n} = \delta_{m,n} := \begin{cases} 1 & \text{si } m = n = 0, \\ 0 & \text{sinon.} \end{cases}$$

Alors: $y_{m,n} = h_{m,n}$

ightarrow exemple sur une image réelle: effet de flou, bougé, \ldots

Effet d'une convolution/filtrage 2D (1/6)

Effet d'une convolution/filtrage 2D (2/6)

Effet d'une convolution/filtrage 2D (3/6)

Effet d'une convolution/filtrage 2D (4/6)

III-10

Effet d'une convolution/filtrage 2D (5/6)

Effet d'une convolution/filtrage 2D (6/6)

Fonction de transfert en z

• Filtre: système linéaire invariant

$$\begin{array}{c|c} x_n & & h_n & \\ \hline X[z] & & H[z] & & Y[z] \end{array}$$

- réponse impulsionnelle: h_n
- fonction de transfert en z: $H[z] = \sum_{n \in \mathbb{Z}} h_n z^{-n}$
- relations entrée-sortie:

$$y_n = h_n \star x_n = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$
$$Y[z] = H[z]X[z]$$

Rq:
$$y_n = h_n \star x_n = x_n \star h_n = \sum_{k \in \mathbb{Z}} x_k h_{n-k}$$

Réponse en fréquence

• Filtre: système linéaire invariant

$$\begin{array}{c|c} x_n & & h_n & y_n \\ \hline X(\tilde{f}) & & H(\tilde{f}) & Y(\tilde{f}) \end{array}$$

- réponse impulsionnelle: h_n
- ▶ fonction de transfert en z: $H[z] = \sum_{n \in \mathbb{Z}} h_n z^{-n}$
- \blacktriangleright réponse en fréquence: $H(\tilde{f}) = \sum_{n \in \mathbb{Z}} h_n e^{-\mathfrak{i} 2\pi n \tilde{f}}$
- relations entrée-sortie:

$$y_n = h_n \star x_n = \sum_{k \in \mathbb{Z}} h_k x_{n-k}$$
$$Y(\tilde{f}) = H(\tilde{f}) X(\tilde{f})$$

Rq:
$$y_n = h_n \star x_n = x_n \star h_n = \sum_{k \in \mathbb{Z}} x_k h_{n-k}$$

Causalité

$$\begin{array}{c|c} x_n \\ \hline X[z] \end{array} \qquad \begin{array}{c|c} h_n \\ \hline H[z] \end{array} \qquad \begin{array}{c|c} y_n = h_n \star x_n = \sum_k h_k x_{n-k} \\ \hline Y[z] = H[z] X[z] \end{array}$$

• Filtre causal n'utilise que les $x_k, k \leq n$ pour calculer y_n : $y_n = \sum_{k \geq 0} h_k x_{n-k}$

 \rightarrow Le filtre h_k est causal $\Leftrightarrow h_k = 0, \forall k < 0.$

Causalité

$$\begin{array}{c|c} x_n \\ \hline X[z] \end{array} \begin{array}{c} h_n \\ H[z] \end{array} \begin{array}{c} y_n = h_n \star x_n = \sum_k h_k x_{n-k} \\ \hline Y[z] = H[z] X[z] \end{array}$$

• Filtre causal n'utilise que les $x_k, k \le n$ pour calculer y_n : $y_n = \sum_{k \ge 0} h_k x_{n-k}$

 \rightarrow Le filtre h_k est causal $\Leftrightarrow h_k = 0, \forall k < 0.$

 $\begin{array}{l} \rightarrow \ H[z] \text{ est causal } \Leftrightarrow H[z] = \sum_{k \ge 0} h_k z^{-k} \text{ converge sur} \\ \mathcal{D} = \{ z \in \mathbb{C} \mid |z| > R_1 \} \cup \{ \infty \} \end{array}$

Stabilité

$$\begin{array}{c|c} x_n \\ \hline X[z] \end{array} \qquad \begin{array}{c|c} h_n \\ H[z] \end{array} \qquad \begin{array}{c|c} y_n = h_n \star x_n = \sum_k h_k x_{n-k} \\ \hline Y[z] = H[z] X[z] \end{array}$$

● Filtre **stable** lorsque: entrée bornée ⇒ sortie bornée

Stabilité

$$\begin{array}{c|c} x_n \\ \hline X[z] \end{array} \qquad \begin{array}{c|c} h_n \\ \hline H[z] \end{array} \qquad \begin{array}{c|c} y_n = h_n \star x_n = \sum_k h_k x_{n-k} \\ \hline Y[z] = H[z] X[z] \end{array}$$

- Filtre **stable** lorsque: entrée bornée ⇒ sortie bornée
- ightarrow Stabilité $\Leftrightarrow \sum_{k\in\mathbb{Z}} |h_k| < +\infty$
- $\rightarrow H[z] \text{ est stable } \Leftrightarrow \text{ le cercle unité appartient au domaine de convergence de } H[z]$

Stabilité et causalité

• Un filtre H[z] est stable et causal \Leftrightarrow domaine de convergence de H[z] du type $\{z \in \mathbb{C} \mid |z| > R\} \cup \{\infty\}$ avec R < 1

Stabilité et causalité

• Un filtre H[z] est stable et causal \Leftrightarrow domaine de convergence de H[z] du type $\{z \in \mathbb{C} \mid |z| > R\} \cup \{\infty\}$ avec R < 1

• Si *H*[*z*] fraction rationnelle:

H[z] stable et causal \Leftrightarrow tous les pôles du filtre sont à l'intérieur du cercle unité et d^o numérateur $H[z] \leq d^o$ dénominateur H[z] (en tant que fraction rationnelle en z).

<u>Rq</u>: Condition sur les d^o: permet que $\lim_{|z|\to\infty} H[z]$ soit fini çàd causalité: $H[z] = h_0 + h_1 z^{-1} + h_2 z^{-2} + \dots$ sans puissance > 0 de z
Stabilité en automatique / élec ?

Si H[z] fraction rationnelle: H[z] stable et causal ⇔ tous les pôles du filtre sont à l'intérieur du cercle unité et d^o numérateur H[z] ≤ d^o dénominateur H[z].

• Avec $z = e^p$, correspondances en temps continu: Transf. $z \leftrightarrow$ Transf. Laplace $z \leftrightarrow p$ $|z| = 1 \leftrightarrow$ axe imaginaire pur $|z| < 1 \leftrightarrow \Re\{p\} < 0$

 \rightsquigarrow condition de stabilité «pôles à partie réelle < 0»: vrai pour des systèmes causaux (ce qui est le cas en physique, automatique,...)

Filtrage et équations de récurrence

• Cas de filtres rationnels: $H[z] = \frac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$

• Lien entrée-sortie:
$$\begin{array}{c} x_n \\ \overline{X[z]} \end{array} \begin{array}{c} h_n \\ H[z] \end{array} \begin{array}{c} y_n = h_n \star x_n \\ \overline{Y[z]} = H[z]X[z] \end{array}$$
$$\Rightarrow \qquad Y[z](1 + \sum_{i=1}^p a_i z^{-i}) = (\sum_{j=0}^q b_j z^{-j})X[z] \end{array}$$

et par utilisation du théorème du retard:

$$\forall n: \quad y_n + \sum_{i=1}^p a_i y_{n-i} = \sum_{j=0}^q b_j x_{n-j}$$

⇒ Equation de récurrence associée au filtre

Filtre réponse impulsionnelle finie (RIF)

• Définition:
$$H[z] = \sum_{j=0}^{q} b_j z^{-j}$$
 d'où la réponse impulsionnelle:
 $h_n = \begin{cases} b_n & \text{si } 0 \le n \le q \\ 0 & \text{sinon.} \end{cases}$

 \rightarrow réponse impulsionnelle finie (RIF)

Filtre réponse impulsionnelle finie (RIF)

• Définition:
$$H[z] = \sum_{j=0}^{q} b_j z^{-j} d'$$
où la
réponse impulsionnelle:
 $h_n = \begin{cases} b_n & \text{si } 0 \le n \le q \\ 0 & \text{sinon.} \end{cases}$
• réponse impulsionnelle finie (RIF)
• Equation temporelle:
 $y_n = \sum_{j=0}^{q} b_j x_{n-j}$
 \rightarrow moyenne mobile (moving
average: MA)
 $x_n \rightarrow b_0$
 $+ y_n$

 x_n

Filtres récursifs (ou RII)

• Définition:
$$H[z] = \frac{b_0}{1 + \sum_{i=1}^p a_i z^{-i}}$$

 \rightarrow réponse impulsionnelle infinie (RII)

• Equation temporelle:

$$y_n = b_0 x_n - \sum_{i=1}^{n} a_i y_{n-i}$$

 \rightarrow filtre (purement) récursif / filtre AR: auto-régressif

Cas général: filtres ARMA

Conception/choix d'un filtre numérique

• Filtres RIF:

$$H[z] = \sum_{j=0}^{q} b_j z^{-j} \qquad y_n = \sum_{j=0}^{q} b_j x_{n-j}$$

- exemple synthèse en TD
- avantages/inconvénients:
 - + stabilité
 - + phase linéaire
 - temps calcul, retards importants
- Filtres RII / récursifs:

$$H[z] = \frac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}} \qquad y_n = \sum_{j=0}^{q} b_j x_{n-j} - \sum_{i=1}^{p} a_i y_{n-i}$$

- synthèse en fonction d'un gabarit donné: non traité!
- avantanges/inconvénients:
 - + bonne performance
 - + peu de coefficients et faible temps calcul
 - instabilité possible

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Systèmes à temps continu: filtrage et modulations
- B Echantillonnage
- Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Energie et puissance

• Energie de
$$x_n$$
: $E_x \triangleq \sum_{n \in \mathbb{Z}} |x_n|^2$
• Puissance: $P_x \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N |x_n|^2$

 $\rightarrow\,$ Classification en énergie/puissance finie/infinie.

Energie et puissance

• Energie de
$$x_n$$
: $E_x \triangleq \sum_{n \in \mathbb{Z}} |x_n|^2$
• Puissance: $P_x \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N |x_n|^2$

- $\rightarrow\,$ Classification en énergie/puissance finie/infinie.
 - énergie finie \Rightarrow puissance nulle

$$\Leftrightarrow P_x > 0 \Rightarrow E_x = \infty$$

Energie et puissance

• Energie de
$$x_n$$
: $E_x \triangleq \sum_{n \in \mathbb{Z}} |x_n|^2$
• Puissance: $P_x \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N |x_n|^2$

- $\rightarrow\,$ Classification en énergie/puissance finie/infinie.
 - $\bullet \ \text{énergie finie} \Rightarrow \text{puissance nulle}$
- $\Leftrightarrow P_x > 0 \Rightarrow E_x = \infty$
 - En traitement du signal: puissance et énergie sans dimension.

Si x_n : tension appliquée à une résistance R, puissance physique: $P_{\rm elec} = \frac{|x_n|^2}{R}$.

• impulsion rectangulaire
$$x_n = \begin{cases} 1 & \text{si } n \in \{-N, \dots, N\} \\ 0 & \text{sinon.} \end{cases}$$

 $E_x = 2N + 1 \qquad P_x = 0$

• impulsion rectangulaire
$$x_n = \begin{cases} 1 & \text{si } n \in \{-N, \dots, N\} \\ 0 & \text{sinon.} \end{cases}$$

 $E_x = 2N + 1 \qquad P_x = 0$

• échelon de Heaviside $x_n = 1$ si $n \ge 0, 0$ sinon. $E_x = \infty$ $P_x = 1/2$

• impulsion rectangulaire
$$x_n = \begin{cases} 1 & \text{si } n \in \{-N, \dots, N\} \\ 0 & \text{sinon.} \end{cases}$$

 $E_x = 2N + 1 \qquad P_x = 0$

- échelon de Heaviside $x_n = 1$ si $n \ge 0, 0$ sinon. $E_x = \infty$ $P_x = 1/2$
- exponentielle complexe $x_n = e^{i2\pi f_0 n}$: $E_x = \infty$ $P_x = 1$

• impulsion rectangulaire
$$x_n = \begin{cases} 1 & \text{si } n \in \{-N, \dots, N\} \\ 0 & \text{sinon.} \end{cases}$$

 $E_x = 2N + 1 \qquad P_x = 0$

- échelon de Heaviside $x_n = 1$ si $n \ge 0, 0$ sinon. $E_x = \infty$ $P_x = 1/2$
- exponentielle complexe $x_n = e^{i2\pi f_0 n}$: $E_x = \infty$ $P_x = 1$

• sinusoïde
$$x_n = \cos(2\pi f_0 n + \varphi)$$
:
 $E_x = \infty$ $P_x = 1/2$ $(2f_0 \notin \mathbb{Z})$

• impulsion rectangulaire
$$x_n = \begin{cases} 1 & \text{si } n \in \{-N, \dots, N\} \\ 0 & \text{sinon.} \end{cases}$$

 $E_r = 2N + 1 \qquad P_r = 0$

- échelon de Heaviside $x_n = 1$ si $n \ge 0, 0$ sinon. $E_x = \infty$ $P_x = 1/2$
- exponentielle complexe $x_n = e^{\mathrm{i} 2\pi f_0 n}$: $E_x = \infty$ $P_x = 1$

• sinusoïde
$$x_n = \cos(2\pi f_0 n + \varphi)$$
:
 $E_x = \infty$ $P_x = 1/2$ $(2f_0 \notin \mathbb{Z})$

• rampe linéaire $x_n = n$ si $n \ge 0, 0$ sinon. $E_x = \infty$ $P_x = \infty$

Signaux d'énergie finie

Utile de considérer les espaces vectoriels de signaux. En particulier: Energie finie $\Leftrightarrow \sum_{n\in\mathbb{Z}} |x_n|^2 < \infty \Leftrightarrow x_n \in \mathrm{L}^2(\mathbb{Z})$

Signaux d'énergie finie

Utile de considérer les espaces vectoriels de signaux. En particulier: Energie finie $\Leftrightarrow \sum_{n\in\mathbb{Z}} |x_n|^2 < \infty \Leftrightarrow x_n \in \mathrm{L}^2(\mathbb{Z})$

• produit scalaire
$$\langle x,y
angle riangle \sum_{n\in \mathbb{Z}} x_n y_n^*$$

• norme et distance entre signaux:

$$\|\tilde{x} - x\| = \left(\sum_{n \in \mathbb{Z}} |\tilde{x}_n - x_n|^2\right)^{1/2}$$

- \rightsquigarrow erreur quadratique moyenne
 - \bullet inégalité de Cauchy-Schwarz: $|\langle x,y\rangle|\leq \|x\|.\|y\|$
 - projection orthogonale

Inter- et auto-corrélation en énergie

Pour des signaux d'énergie finie:

• Inter-corrélation de x_n et y_n en énergie:

$$\gamma^{e}_{xy}(k) := \sum_{n \in \mathbb{Z}} x_{n} y^{*}_{n-k}, \quad \forall k \in \mathbb{Z}$$

• Auto-corrélation de x_n en énergie:

$$\gamma_x^e(k) := \sum_{n \in \mathbb{Z}} x_n x_{n-k}^*, \quad \forall k \in \mathbb{Z}$$

•
$$\gamma^e_x(k) = \gamma^e_{xx}(k)$$

Interprétations de la corrélation

$$\gamma^{e}_{xy}(k) := \sum_{n \in \mathbb{Z}} x_{n} y^{*}_{n-k}, \quad \forall k \in \mathbb{Z}$$

• Lien avec le produit scalaire:

$$\boxed{ \gamma^e_{xy}(k) = \langle x_{.}, y_{.-k} \rangle }$$

$$\gamma^e_x(k) = \langle x_{.}, x_{.-k} \rangle$$

- $\rightsquigarrow\,$ La corrélation est une mesure de colinéarité entre les signaux.
 - Lien avec la **convolution**:

$$\boxed{\gamma^e_{xy}(k) = x_k \star y^*_{-k}}$$
$$\gamma^e_x(k) = x_k \star x^*_{-k}$$

• $\gamma_x^e(0) = E_x$: énergie du signal. $\Rightarrow \gamma_x^e(0) > 0$

• $\gamma^e_x(0) = E_x$: énergie du signal. $\Rightarrow \gamma^e_x(0) > 0$

• Symétrie hermitienne (en effet: $\sum_{n \in \mathbb{Z}} x_n y_{n+k}^* = \sum_{n \in \mathbb{Z}} x_{n-k} y_n^*$)

$$\gamma^e_{xy}(-k) = \gamma^e_{yx}(k)^*$$

- $\gamma^e_x(0) = E_x$: énergie du signal. $\Rightarrow \gamma^e_x(0) > 0$
- Symétrie hermitienne (en effet: $\sum_{n \in \mathbb{Z}} x_n y_{n+k}^* = \sum_{n \in \mathbb{Z}} x_{n-k} y_n^*$)

$$\gamma^e_{xy}(-k) = \gamma^e_{yx}(k)^*$$

• Majoration (Cauchy-Schwarz):

$$\begin{aligned} |\gamma_{xy}^e(k)| &= |\langle x_., y_{.-k}\rangle| \leq \\ & \left(\sum_{n \in \mathbb{Z}} |x_n|^2 \sum_{n \in \mathbb{Z}} |y_{n-k}|^2\right)^{1/2} = \sqrt{\gamma_x^e(0)\gamma_y^e(0)} \end{aligned}$$

- $\gamma^e_x(0) = E_x$: énergie du signal. $\Rightarrow \gamma^e_x(0) > 0$
- Symétrie hermitienne (en effet: $\sum_{n \in \mathbb{Z}} x_n y_{n+k}^* = \sum_{n \in \mathbb{Z}} x_{n-k} y_n^*$)

$$\gamma^e_{xy}(-k) = \gamma^e_{yx}(k)^*$$

• Majoration (Cauchy-Schwarz):

$$\begin{aligned} |\gamma_{xy}^e(k)| &= |\langle x_{.}, y_{.-k}\rangle| \leq \\ &\left(\sum_{n \in \mathbb{Z}} |x_n|^2 \sum_{n \in \mathbb{Z}} |y_{n-k}|^2\right)^{1/2} = \sqrt{\gamma_x^e(0)\gamma_y^e(0)} \end{aligned}$$

 $\rightarrow \ |\gamma^e_x(k)| \leq \gamma^e_x(0)$: autocorrélation maximale en zéro.

- $\gamma^e_x(0) = E_x$: énergie du signal. $\Rightarrow \gamma^e_x(0) > 0$
- Symétrie hermitienne (en effet: $\sum_{n \in \mathbb{Z}} x_n y_{n+k}^* = \sum_{n \in \mathbb{Z}} x_{n-k} y_n^*$)

$$\gamma^e_{xy}(-k) = \gamma^e_{yx}(k)^*$$

• Majoration (Cauchy-Schwarz):

$$\begin{aligned} |\gamma_{xy}^e(k)| &= |\langle x_., y_{.-k} \rangle| \leq \\ & \left(\sum_{n \in \mathbb{Z}} |x_n|^2 \sum_{n \in \mathbb{Z}} |y_{n-k}|^2 \right)^{1/2} = \sqrt{\gamma_x^e(0)\gamma_y^e(0)} \end{aligned}$$

→ $|\gamma_x^e(k)| \le \gamma_x^e(0)$: autocorrélation maximale en zéro. • Semi-définie positivité (en effet: $\sum_{n \in \mathbb{Z}} |\sum_{i=1}^N \lambda_i x_{n-n_i}|^2 \ge 0$)

$$\sum_{i,j=1}^{N} \lambda_i \lambda_j^* \gamma_x^e(n_j - n_i) \ge 0, \qquad (\lambda_i \in \mathbb{C}, n_i \in \mathbb{Z})$$

Utilisation de la corrélation

- Cas d'un signal RADAR:
 - signal émis: x_n
 - ▶ signal reçu: $y_n = \rho x_{n-n_0}$ version atténuée et retardée de x_n

Utilisation de la corrélation

- Cas d'un signal RADAR:
 - signal émis: x_n
 - ▶ signal reçu: $y_n = \rho x_{n-n_0}$ version atténuée et retardée de x_n

$$\gamma_{yx}^{e}(k) = \sum_{n \in \mathbb{Z}} y_n x_{n-k}^*$$
$$= \sum_{n \in \mathbb{Z}} \rho x_{n-n_0} x_{n-k}^*$$
$$= \rho \gamma_x^{e}(k-n_0)$$

 \Rightarrow Corrélation maximale pour $k = n_0$

• Illustration dans un cas particulier: robustesse!

Corrélation Cas non bruité

Corrélation Cas bruité

Densité spectrale d'énergie (1/2)

• La densité spectrale d'énergie est la transformée de Fourier de l'auto-corrélation en énergie.

$$\gamma^e_x(k) \xrightarrow{\mathrm{TFTD}} \Gamma^e_x(\tilde{f})$$

càd:

$$\Gamma^e_x(\tilde{f}) = \sum_{k \in \mathbb{Z}} \gamma^e_x(k) e^{-i2\pi k \tilde{f}} \qquad \gamma^e_x(k) = \int_{[0,1]} \Gamma^e_x(\tilde{f}) e^{+i2\pi \tilde{f}k} d\tilde{f}$$

Densité spectrale d'énergie (1/2)

• La densité spectrale d'énergie est la transformée de Fourier de l'auto-corrélation en énergie.

$$\gamma^e_x(k) \stackrel{\text{TFTD}}{\longrightarrow} \Gamma^e_x(\tilde{f})$$

càd:

$$\Gamma^e_x(\tilde{f}) = \sum_{k \in \mathbb{Z}} \gamma^e_x(k) e^{-i2\pi k \tilde{f}} \qquad \gamma^e_x(k) = \int_{[0,1]} \Gamma^e_x(\tilde{f}) e^{+i2\pi \tilde{f}k} d\tilde{f}$$

• Propriété essentielle:
$$\int_{[0,1]} \Gamma^e_x(\tilde{f}) \, d\tilde{f} = \gamma^e_x(0) = E_x$$

⇒ Energie dans une bande de fréquences = intégrale densité spectrale d'énergie sur la bande

Densité spectrale d'énergie (2/2)

Pour un signal déterministe, d'énergie finie:

$$\gamma_x^e(k) = x_k \star x_{-k}^* \xrightarrow{\text{TFTD}} \Gamma_x^e(\tilde{f}) = |X(\tilde{f})|^2$$
Densité spectrale d'énergie (2/2)

Pour un signal déterministe, d'énergie finie:

$$\gamma_x^e(k) = x_k \star x_{-k}^* \xrightarrow{\text{TFTD}} \Gamma_x^e(\tilde{f}) = |X(\tilde{f})|^2$$

↔ On retrouve l'identité de Parseval:

$$E_x = \sum_{n \in \mathbb{Z}} |x_n|^2 = \int_{[0,1]} |X(\tilde{f})|^2 d\tilde{f}$$
$$= \int_{[0,1]} \Gamma_x^e(\tilde{f}) d\tilde{f}$$

Densité interspectrale d'énergie

• Densité interspectrale d'énergie $\Gamma_{xy}^e(\tilde{f})$:

$$\gamma^e_{xy}(k) \stackrel{\text{TFTD}}{\longrightarrow} \Gamma^e_{xy}(\tilde{f})$$

• Pour des signaux d'énergie finie:

$$\gamma_{xy}^e(k) = x_k \star y_{-k}^* \stackrel{\text{TFTD}}{\longrightarrow} \Gamma_{xy}^e(\tilde{f}) = X(\tilde{f})Y^*(\tilde{f})$$

Filtrage des signaux (énergie finie)

$$\begin{array}{c|c} x_n & & h_n & y_n \\ \hline X(\tilde{f}) & & H(\tilde{f}) & Y(\tilde{f}) \end{array}$$

• $Y(\tilde{f})=H(\tilde{f})X(\tilde{f})$ et donc: $|Y(\tilde{f})|^2=|H(\tilde{f})|^2|X(\tilde{f})|^2$

Filtrage des signaux (énergie finie)

$$\begin{array}{c|c} x_n & & h_n \\ \hline X(\tilde{f}) & & H(\tilde{f}) \end{array} \begin{array}{c} y_n \\ \hline Y(\tilde{f}) \end{array}$$

•
$$Y(\tilde{f}) = H(\tilde{f})X(\tilde{f})$$
 et donc: $|Y(\tilde{f})|^2 = |H(\tilde{f})|^2 |X(\tilde{f})|^2$

• Densité spectrale d'énergie:

$$\Gamma^e_y(\tilde{f}) = |H(\tilde{f})|^2 \Gamma^e_x(\tilde{f})$$

Filtrage des signaux (énergie finie)

$$\begin{array}{c|c} x_n \\ \hline X(\tilde{f}) \end{array} \begin{array}{c} h_n \\ H(\tilde{f}) \end{array} \begin{array}{c} y_n \\ Y(\tilde{f}) \end{array} \begin{array}{c} u_n \\ U(\tilde{f}) \end{array} \begin{array}{c} g_n \\ U(\tilde{f}) \end{array} \begin{array}{c} v_n \\ V(\tilde{f}) \end{array}$$

•
$$Y(\tilde{f})=H(\tilde{f})X(\tilde{f})$$
 et donc: $|Y(\tilde{f})|^2=|H(\tilde{f})|^2|X(\tilde{f})|^2$

• Densité spectrale d'énergie:

$$\Gamma_y^e(\tilde{f}) = |H(\tilde{f})|^2 \Gamma_x^e(\tilde{f})$$

→ Généralisation: (formule des interférences)

$$\Gamma_{yv}(\tilde{f}) = H(\tilde{f})G(\tilde{f})^*\Gamma_{xu}(\tilde{f})$$

Inter- et auto-corrélation en puissance

Pour des signaux de puissance finie, énergie infinie:

• Inter-corrélation de x_n et y_n en puissance:

$$\gamma_{xy}^p(k) := \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N x_n y_{n-k}^*, \quad \forall k \in \mathbb{Z}$$

• Auto-corrélation de x_n en puissance: $\gamma^p_x(k) = \gamma^p_{xx}(k)$

$$\gamma_x^p(k) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N x_n x_{n-k}^*, \quad \forall k \in \mathbb{Z}$$

• Auto-corrélation égale à la puissance et maximale en zéro:

$$\gamma_x^p(0) = P_x > 0$$

Densité spectrale de puissance

• La densité spectrale de puissance est la transformée de Fourier de l'autocorrélation en puissance.

$$\gamma^p_x(k) \xrightarrow{\text{TFTD}} \Gamma^p_x(\tilde{f})$$
 et donc:

$$\int_{[0,1]} \Gamma^p_x(\tilde{f}) \, d\tilde{f} = \gamma^p_x(0) = P_x$$

- ⇒ Puissance dans une bande de fréquences = intégrale densité spectrale de puissance sur la bande
 - Filtrage:

$$\xrightarrow{x_n} H(\tilde{f}) \xrightarrow{y_n}$$

$$\Gamma^p_y(\tilde{f}) = |H(\tilde{f})|^2 \Gamma^p_x(\tilde{f})$$

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Ø Systèmes à temps continu: filtrage et modulations
- 8 Echantillonnage
- Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Probabilités: rappels (1/4)

Espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$

- Ω: ensemble des événements élémentaires
- $\omega \in \Omega$: ω est un événement élémentaire
- *A*: ensemble des événements (pas que élémentaires) auxquels on sait associer une probabilité.
- \rightarrow Si $A \in \mathcal{A}$, c'est que $A \subset \Omega!$
- \rightarrow Si $A \in \mathcal{A}$, $\mathbb{P}(A)$ a un sens!

Probabilités: rappels (2/4)

Variable aléatoire X.

- $X: \Omega \to \mathbb{R}, \ \omega \mapsto X(\omega)$
- \to en fonction de l'événement élémentaire $\omega,$ qui survient on a une «valeur aléatoire» $X(\omega).$
- \rightarrow On écrit X au lieu de $X(\omega)$ (abréviation: va=variable aléatoire).

•
$$\mathbb{P}(X \in A) = \mathbb{P}(\{\omega \mid X(\omega) \in A\})$$

• va continue: densité de probabilité f_X telle que: $\mathbb{P}(X \in A) = \int_A f_X(x) dx$ va discrète: pour toutes les valeurs de X possibles, $\mathbb{P}(X = x)$

• Fonction de répartition:
$$F_X(x) = \mathbb{P}(X \le x)$$

Probabilités: rappels (3/4)

Espérance mathématique

• C'est une intégrale sur tous les événements élémentaires possibles.

$$\mathbb{E}\{X\} = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)$$

• Pour une va continue:

$$\mathbb{E}\{X\} = \int x f_X(x) \, dx$$

et pour une variable discrète:

$$\mathbb{E}\{X\} = \sum \qquad x \mathbb{P}(X = x)$$

x valeur possible de X

Probabilités: rappels (4/4)

Vecteur aléatoire (ici: $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$ couple de dimension 2)

- va continue: densité de probabilité $f_{X,Y}(x,y)$ suite du transparent: va continue!
- indépendance lorsque $f_{X,Y}(x,y) = f_X(x)f_Y(y)$
- décorrélation lorsque $\mathbb{E}\{XY\} = \mathbb{E}\{X\}\mathbb{E}\{Y\}$
- Si X et Y indépendantes,

$$\mathbb{E}\{XY\} = \int xy f_{X,Y}(x,y) \, dx dy = \int xy f_X(x) f_Y(y) \, dx dy$$
$$= \left(\int x f_X(x) \, dx\right) \left(\int y f_Y(y) \, dy\right) = \mathbb{E}\{X\} \mathbb{E}\{Y\}$$

 $\rightarrow\,$ indépendance $\Rightarrow\,$ décorrélation, réciproque fausse.

Signal aléatoire (à temps discret) := famille indexée de variables aléatoires $\{x_n(.)\}_{n \in \mathbb{Z}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

Signal aléatoire (à temps discret) := famille indexée de variables aléatoires $\{x_n(.)\}_{n \in \mathbb{Z}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

• n fixé: $\omega \mapsto x_n(\omega)$ est une variable aléatoire

Signal aléatoire (à temps discret) := famille indexée de variables aléatoires $\{x_n(.)\}_{n \in \mathbb{Z}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

- n fixé: $\omega \mapsto x_n(\omega)$ est une variable aléatoire
- ω fixé: $n \mapsto x_n(\omega)$ est une suite: une trajectoire du signal aléatoire

Signal aléatoire (à temps discret) := famille indexée de variables aléatoires $\{x_n(.)\}_{n \in \mathbb{Z}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

- n fixé: $\omega \mapsto x_n(\omega)$ est une variable aléatoire
- ω fixé: $n\mapsto x_n(\omega)$ est une suite: une trajectoire du signal aléatoire
- **<u>Rq</u>:** on notera simplement x_n le signal aléatoire
 - Autres noms: série chronologique/temporelle

Exemple de signal aléatoire

Sinusoïde avec phase aléatoire + bruit additif

Signaux aléatoires temps discret: exemples

(a_n)_{n∈Z} suite de va dans un alphabet fini (par ex. ±1)
 → symboles de télécom (souvent i.i.d.)
 → signal temps continu émis: x(t) = ∑_{k∈Z} a_kp(t - kT)

Signaux aléatoires temps discret: exemples

- (a_n)_{n∈Z} suite de va dans un alphabet fini (par ex. ±1)
 → symboles de télécom (souvent i.i.d.)
 → signal temps continu émis: x(t) = ∑_{k∈Z} a_kp(t kT)
- chaîne de Markov: $x_n \in \{\omega_1, \dots, \omega_K\}$ et pour tout n:

$$\mathbb{P}(x_{n+1} = \omega_{i_{n+1}} | x_n = \omega_{i_n}, x_{n-1} = \omega_{i_{n-1}}, \dots, x_0 = \omega_{i_0})$$

= $\mathbb{P}(x_{n+1} = \omega_{i_{n+1}} | x_n = \omega_{i_n}) = p_{i_n i_{n+1}}$

Signaux aléatoires temps discret: exemples

- (a_n)_{n∈Z} suite de va dans un alphabet fini (par ex. ±1)
 → symboles de télécom (souvent i.i.d.)
 → signal temps continu émis: x(t) = ∑_{k∈Z} a_kp(t kT)
- chaîne de Markov: $x_n \in \{\omega_1, \dots, \omega_K\}$ et pour tout n:

$$\mathbb{P}(x_{n+1} = \omega_{i_{n+1}} | x_n = \omega_{i_n}, x_{n-1} = \omega_{i_{n-1}}, \dots, x_0 = \omega_{i_0})$$

= $\mathbb{P}(x_{n+1} = \omega_{i_{n+1}} | x_n = \omega_{i_n}) = p_{i_n i_{n+1}}$

• processus harmonique: $x_n = \sum_p U_p e^{i2\pi n f_p}$ où: f_p : fréquences données,

 U_p : va complexes, centrées et décorrélées

Loi d'un signal aléatoire

• Ensemble fini d'indices (n_1, \ldots, n_M) : Loi du vecteur $(x_{n_1}, \ldots, x_{n_M}) \leftrightarrow$ connaître pour tout borélien **B**:

$$\mathbb{P}\big((x_{n_1},\ldots,x_{n_M})\in\mathbf{B}\big)$$

• signal $(x_n)_{n \in \mathbb{Z}}$: indices en nombre infini!

Loi d'un signal aléatoire

• Ensemble fini d'indices (n_1, \ldots, n_M) : Loi du vecteur $(x_{n_1}, \ldots, x_{n_M}) \leftrightarrow$ connaître pour tout borélien **B**:

$$\mathbb{P}\big((x_{n_1},\ldots,x_{n_M})\in\mathbf{B}\big)$$

• signal $(x_n)_{n \in \mathbb{Z}}$: indices en nombre infini!

La loi du processus $(x_n)_{n\in\mathbb{Z}}$ est donnée par l'ensemble des lois de dimension finie.

Loi d'un signal aléatoire

• Ensemble fini d'indices (n_1, \ldots, n_M) : Loi du vecteur $(x_{n_1}, \ldots, x_{n_M}) \leftrightarrow$ connaître pour tout borélien **B**:

$$\mathbb{P}\big((x_{n_1},\ldots,x_{n_M})\in\mathbf{B}\big)$$

• signal $(x_n)_{n \in \mathbb{Z}}$: indices en nombre infini!

La loi du processus $(x_n)_{n\in\mathbb{Z}}$ est donnée par l'ensemble des lois de dimension finie.

- → Il suffit de connaître $\mathbb{P}((x_{n_1}, \ldots, x_{n_M}) \in \mathbf{B})$ pour n_1, \ldots, n_M quelconques et $M \in \mathbb{N}^*$ fini quelconque.
- <u>Rq</u>: ∃ relations de compatibilité entre lois dimension finie ↔ th. de Kolmogorov

Moments

Si loi de $(x_n)_{n \in \mathbb{Z}}$ non entièrement connue, regarder déjà:

• moyenne: $m_x(n) = \mathbb{E}\{x_n\}$ statistiques du second ordre • fonction d'autocorrélation:

$$\gamma_x(n,p) = \mathbb{E}\{(x_n - m_x(n))(x_p - m_x(p))^*\}$$

• fonction d'intercorrélation:

$$\gamma_{xy}(n,p) = \mathbb{E}\{(x_n - m_x(n))(y_p - m_y(p))^*\}$$

Moments

Si loi de $(x_n)_{n\in\mathbb{Z}}$ non entièrement connue, regarder déjà:

$$\gamma_x(n,p) = \mathbb{E}\{(x_n - m_x(n))(x_p - m_x(p))^*\}$$

• fonction d'intercorrélation:

$$\gamma_{xy}(n,p) = \mathbb{E}\{(x_n - m_x(n))(y_p - m_y(p))^*\}$$

• <u>Rq</u>: possibilité de regarder au delà du second ordre et définir des moments d'ordre supérieur

Signal gaussien

• x_n $(n \in \mathbb{Z})$ est un signal aléatoire gaussien lorsque pour tout ensemble d'indices (n_1, \ldots, n_M) , le vecteur $(x_{n_1}, \ldots, x_{n_M})$ est gaussien.

Signal gaussien

- x_n $(n \in \mathbb{Z})$ est un signal aléatoire gaussien lorsque pour tout ensemble d'indices (n_1, \ldots, n_M) , le vecteur $(x_{n_1}, \ldots, x_{n_M})$ est gaussien.
- signal gaussien: caractérisé par ses statistiques du second ordre (moyenne, corrélation)

Signal gaussien

- x_n $(n \in \mathbb{Z})$ est un signal aléatoire gaussien lorsque pour tout ensemble d'indices (n_1, \ldots, n_M) , le vecteur $(x_{n_1}, \ldots, x_{n_M})$ est gaussien.
- signal gaussien: caractérisé par ses statistiques du second ordre (moyenne, corrélation)
- Rappels et remarques: (revoir le cours de probas!)
 - vecteur gaussien caractérisé par moyenne et covariance
 - décorrélation \Rightarrow indépendance uniquement dans le cas gaussien
 - indépendance \Rightarrow décorrélation
 - vecteur gaussien \Rightarrow marginales gaussiennes
 - ► marginales gaussiennes + indépendance ⇒ vecteur gaussien
 - ► stabilité par transf. affine (~→ par filtrage également)
 - le cas gaussien se prête bien au calcul
 - modélisation gaussienne souvent utilisée (au moins en première approche)

Stationnarité au sens strict

Certains signaux ont des propriétés statistiques qui ne changent pas au cours du temps:

 $(x_n)_{n \in \mathbb{Z}}$ stationnaire au sens strict lorsque, pour M, n_1, \ldots, n_M et k quelconques:

 (x_{n_1},\ldots,x_{n_M}) et $(x_{n_1+k},\ldots,x_{n_M+k})$ ont même loi

stationnarité \leftrightarrow loi identique après décalage dans le temps

Stationnarité au sens strict

Certains signaux ont des propriétés statistiques qui ne changent pas au cours du temps:

 $(x_n)_{n \in \mathbb{Z}}$ stationnaire au sens strict lorsque, pour M, n_1, \ldots, n_M et • k quelconques:

 (x_{n_1},\ldots,x_{n_M}) et $(x_{n_1+k},\ldots,x_{n_M+k})$ ont même loi

stationnarité \leftrightarrow loi identique après décalage dans le temps

 \Rightarrow En particulier pour signal stationnaire strict:

$$\mathbb{E}\{x_n\} = \mathbb{E}\{x_{n+k}\}$$
$$\mathbb{E}\{(x_n - m_x)(x_p - m_x)^*\} = \mathbb{E}\{(x_{n+k} - m_x)(x_{p+k} - m_x)^*\}$$

Stationnarité au sens large

 $(x_n)_{n \in \mathbb{Z}}$ stationnaire au sens large lorsque:

- $\mathbb{E}\{x_n\} = m_x$ indépendant de n

-
$$\mathbb{E}\{(x_n - m_x)(x_p - m_x)^*\} = \gamma_x(n - p)$$

ne dépend que de la différence $n - p$

Stationnarité au sens large

- $(x_n)_{n \in \mathbb{Z}}$ stationnaire au sens large lorsque:
 - $\mathbb{E}\{x_n\} = m_x$ indépendant de n

-
$$\mathbb{E}\{(x_n - m_x)(x_p - m_x)^*\} = \gamma_x(n - p)$$

ne dépend que de la différence $n - p$

 \bullet stationnarité au sens strict \Rightarrow stationnarité au sens large

Stationnarité au sens large

- $(x_n)_{n \in \mathbb{Z}}$ stationnaire au sens large lorsque:
 - $\mathbb{E}\{x_n\} = m_x$ indépendant de n
 - $\mathbb{E}\{(x_n m_x)(x_p m_x)^*\} = \gamma_x(n p)$ ne dépend que de la différence n - p
- \bullet stationnarité au sens strict \Rightarrow stationnarité au sens large
- Rq: stationnaire sens large = au second ordre = faiblement stationnaire
 - on suppose souvent le signal centré: $m_x = 0$ (voir transp. 18)

Stationnarité: exemple

 $x_n = \cos(\omega_0 n + \Phi)$ avec:

 $\omega_0 \in \mathbb{R}$, constante Φ va uniformément répartie sur $[0, 2\pi]$ $(f_{\Phi} = \frac{1}{2\pi} \mathbb{1}_{[0, 2\pi]})$:

Stationnarité: exemple

 $x_n = \cos(\omega_0 n + \Phi)$ avec:

 $\omega_0 \in \mathbb{R}$, constante

 Φ va uniformément répartie sur $[0, 2\pi]$ $(f_{\Phi} = \frac{1}{2\pi} \mathbb{1}_{[0, 2\pi]})$:

$$\mathbb{E}\{x_n\} = \int_{\mathbb{R}} \cos(\omega_0 n + \varphi) f_{\Phi}(\varphi) \, d\varphi$$

Stationnarité: exemple

 $x_n = \cos(\omega_0 n + \Phi)$ avec:

 $\omega_0 \in \mathbb{R}$, constante

 Φ va uniformément répartie sur $[0, 2\pi]$ $(f_{\Phi} = \frac{1}{2\pi} \mathbb{1}_{[0, 2\pi]})$:

$$\mathbb{E}\{x_n\} = \int_{\mathbb{R}} \cos(\omega_0 n + \varphi) f_{\Phi}(\varphi) \, d\varphi = \int_0^{2\pi} \cos(\omega_0 n + \varphi) \frac{1}{2\pi} \, d\varphi$$
$$= 0$$
Stationnarité: exemple

 $x_n = \cos(\omega_0 n + \Phi)$ avec:

 $\omega_0 \in \mathbb{R}$, constante

 Φ va uniformément répartie sur $[0, 2\pi]$ $(f_{\Phi} = \frac{1}{2\pi} \mathbb{1}_{[0, 2\pi]})$:

$$\mathbb{E}\{x_n\} = \int_{\mathbb{R}} \cos(\omega_0 n + \varphi) f_{\Phi}(\varphi) \, d\varphi = \int_0^{2\pi} \cos(\omega_0 n + \varphi) \frac{1}{2\pi} \, d\varphi$$
$$= 0$$
$$\mathbb{E}\{x_n x_{n-k}^*\} = \int_0^{2\pi} \cos(\omega_0 n + \varphi) \cos(\omega_0 (n-k) + \varphi) \frac{1}{2\pi} \, d\varphi$$
$$= \frac{\cos(\omega_0 k)}{2}$$

 \Rightarrow stationnaire au sens large

Simulations signal sinusoïdal, phase aléatoire

Simulations signal sinusoïdal, phase aléatoire

Non stationnarité: exemple

 $x_n = \cos(\omega_0 n + \Phi)$ avec:

 $\omega_0 \in \mathbb{R}$, constante Φ va uniformément répartie sur $[0, \frac{\pi}{2}]$ $(f_{\Phi} = \frac{2}{\pi} \mathbb{1}_{[0, \pi/2]})$:

$$\mathbb{E}\{x_n\} = \int_0^{\frac{\pi}{2}} \cos(\omega_0 n + \varphi) \frac{2}{\pi} d\varphi = \frac{2}{\pi} (\cos(\omega_0 n) - \sin(\omega_0 n))$$
$$\mathbb{E}\{x_n x_{n-k}^*\} = \int_0^{\frac{\pi}{2}} \cos(\omega_0 n + \varphi) \cos(\omega_0 (n-k) + \varphi) \frac{2}{\pi} d\varphi$$
$$= \frac{\cos(\omega_0 k)}{2} - \frac{\sin(\omega_0 (2n-k))}{\pi}$$

 \Rightarrow non stationnaire

Corrélation

- $(x_n)_{n \in \mathbb{Z}}$: signal stationnaire au sens large; $m_x = \mathbb{E}\{x_n\}$.
 - Fonction d'autocorrélation de $(x_n)_{n \in \mathbb{Z}}$:

$$\gamma_x(k) \triangleq \mathbb{E}\{(x_n - m_x)(x_{n-k} - m_x)^*\}$$

• Intercorrélation de deux signaux stationnaires sens large:

$$\gamma_{xy}(k) \triangleq \mathbb{E}\{(x_n - m_x)(y_{n-k} - m_y)^*\}$$

Cas des signaux centrés

Désormais signaux supposés centrés et stationnaires (sens large):

- $\mathbb{E}\{x_n\} = m_x = 0$ (pour tous les signaux)
- \rightarrow Expressions simplifiées:
 - Autocorrélation:

$$\gamma_x(k) \triangleq \mathbb{E}\{x_n x_{n-k}^*\}$$

Intercorrélation:

$$\gamma_{xy}(k) \triangleq \mathbb{E}\{x_n y_{n-k}^*\}$$

Cas des signaux centrés

Désormais signaux supposés centrés et stationnaires (sens large):

- $\mathbb{E}\{x_n\} = m_x = 0$ (pour tous les signaux)
- \rightarrow Expressions simplifiées:
 - Autocorrélation:

$$\gamma_x(k) \triangleq \mathbb{E}\{x_n x_{n-k}^*\}$$

Intercorrélation:

$$\gamma_{xy}(k) \triangleq \mathbb{E}\{x_n y_{n-k}^*\}$$

• Dans l'espace des va $L^2(\Omega)$, produit scalaire: $\langle X, Y \rangle := \mathbb{E}\{XY^*\}$ $\rightarrow \gamma_{xy}(k) = \langle x_., y_{.-k} \rangle$ mesure une colinéarité

• Symétrie hermitienne:

$$\gamma_{xy}(k) = \mathbb{E}\{x_n y_{n-k}^*\}$$
$$= \mathbb{E}\{x_{n+k} y_n^*\} = (\gamma_{yx}(-k))^*$$

• Symétrie hermitienne:

$$\gamma_{xy}(k) = (\gamma_{yx}(-k))^*$$
$$\gamma_x(k) = \gamma_x(-k)^*$$

• Symétrie hermitienne:

$$\gamma_{xy}(k) = (\gamma_{yx}(-k))^*$$
$$\gamma_x(k) = \gamma_x(-k)^*$$

• Majoration (Cauchy-Schwarz):

$$\begin{aligned} |\gamma_{xy}(k)| &= |\langle x_{.}, y_{.-k} \rangle| \\ &\leq \left(\mathbb{E}\{|x_{n}|^{2}\} \mathbb{E}\{|y_{n-k}|^{2}\} \right)^{1/2} = \sqrt{\gamma_{x}(0)\gamma_{y}(0)} \end{aligned}$$

• Symétrie hermitienne:

$$\gamma_{xy}(k) = (\gamma_{yx}(-k))^*$$
$$\gamma_x(k) = \gamma_x(-k)^*$$

• Majoration (Cauchy-Schwarz):

$$|\gamma_{xy}(k)| \le \sqrt{\gamma_x(0)\gamma_y(0)}$$

 $\to |\gamma_x(k)| \leq \gamma_x(0)$: autocorrélation maximale en zéro \leadsto puissance $\gamma_x(0) > 0!$

• Symétrie hermitienne:

$$\gamma_{xy}(k) = (\gamma_{yx}(-k))^*$$
$$\gamma_x(k) = \gamma_x(-k)^*$$

• Majoration (Cauchy-Schwarz):

$$|\gamma_{xy}(k)| \le \sqrt{\gamma_x(0)\gamma_y(0)}$$

- $\to |\gamma_x(k)| \leq \gamma_x(0)$: autocorrélation maximale en zéro \leadsto puissance $\gamma_x(0) > 0!$
 - Semi-définie positivité (en effet: $\mathbb{E}\{|\sum_{i=1}^{N} \lambda_i x_{n-n_i}|^2\} \ge 0$)

$$\sum_{i,j=1}^{N} \lambda_i \lambda_j^* \gamma_x(n_j - n_i) \ge 0, \qquad (\lambda_i \in \mathbb{C}, n_i \in \mathbb{Z})$$

Puissance

• Puissance de $(x_n)_{n \in \mathbb{Z}}$, stationnaire sens large:

$$P_x \triangleq \mathbb{E}\{|x_n|^2\}$$

•
$$P_x = \gamma_x(0)$$
 (avec $(x_n)_{n \in \mathbb{Z}}$ centré)

Puissance

• Puissance de $(x_n)_{n \in \mathbb{Z}}$, stationnaire sens large:

$$P_x \triangleq \mathbb{E}\{|x_n|^2\}$$

- $P_x = \gamma_x(0)$ (avec $(x_n)_{n \in \mathbb{Z}}$ centré)
- \rightsquigarrow Comment avoir $\mathbb{E}\{|x_n|^2\}$ en pratique à partir de données?
 - Rappel pour signal déterministe: $P_x = \lim_{N \to +\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x_n|^2$
- → Lien entre les deux définitions?

Puissance

• Puissance de $(x_n)_{n \in \mathbb{Z}}$, stationnaire sens large:

$$P_x \triangleq \mathbb{E}\{|x_n|^2\}$$

- $P_x = \gamma_x(0)$ (avec $(x_n)_{n \in \mathbb{Z}}$ centré)
- \rightsquigarrow Comment avoir $\mathbb{E}\{|x_n|^2\}$ en pratique à partir de données?
 - Rappel pour signal déterministe: $P_x = \lim_{N \to +\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x_n|^2$
- → Lien entre les deux définitions?
 - Condition pour écrire: $\mathbb{E}\{|x_n|^2\} = \lim_{N \to +\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x_n|^2$?

Ergodicité

• Comment accéder aux espérances $\mathbb{E}\{g(x_{n_1}, \dots, x_{n_M})\}$?

Ergodicité

- Comment accéder aux espérances $\mathbb{E}\{g(x_{n_1}, \ldots, x_{n_M})\}$?
- Signal stationnaire $(x_n)_{n \in \mathbb{Z}}$ est dit ergodique lorsque:

$$\lim_{N \to +\infty} \frac{1}{N+1} \sum_{k=0}^{N} g(x_{n_1+k}, \dots, x_{n_M+k}) = \mathbb{E}\{g(x_{n_1}, \dots, x_{n_M})\}$$

pour tout $M \ge 1, n_1, \ldots, n_M \in \mathbb{Z}$, et toute fonction g telle que $\mathbb{E}\{g(x_{n_1}, \ldots, x_{n_M})\}$ ait un sens.

Ergodicité

- Comment accéder aux espérances $\mathbb{E}\{g(x_{n_1}, \ldots, x_{n_M})\}$?
- Signal stationnaire $(x_n)_{n \in \mathbb{Z}}$ est dit ergodique lorsque:

$$\lim_{N \to +\infty} \frac{1}{N+1} \sum_{k=0}^{N} g(x_{n_1+k}, \dots, x_{n_M+k}) = \mathbb{E}\{g(x_{n_1}, \dots, x_{n_M})\}$$

pour tout $M \ge 1, n_1, \ldots, n_M \in \mathbb{Z}$, et toute fonction g telle que $\mathbb{E}\{g(x_{n_1}, \ldots, x_{n_M})\}$ ait un sens.

- ⇒ Pour des signaux stationnaires et ergodiques, les moyennes statistiques peuvent être remplacées par des moyennes temporelles.
- \rightsquigarrow hypothèse d'ergodicité faite dès que nécessaire

 $x_n = \cos(\omega_0 n + \Phi) \text{ avec } \omega_0 \in \mathbb{R} \text{ et } \Phi \text{ uniforme sur } [0, 2\pi].$

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n$$

 $\begin{aligned} x_n &= \cos(\omega_0 n + \Phi) \text{ avec } \omega_0 \in \mathbb{R} \text{ et } \Phi \text{ uniforme sur } [0, 2\pi]. \\ \bullet \text{ Si } \omega_0 \notin \pi \mathbb{Z}: \end{aligned}$

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n = \lim_{N \to \infty} \frac{\cos(\Phi + \frac{\omega_0}{2})}{2N+1} \frac{\sin(\omega_0(N+1))}{\sin(\frac{\omega_0}{2})}$$

 $x_n = \cos(\omega_0 n + \Phi)$ avec $\omega_0 \in \mathbb{R}$ et Φ uniforme sur $[0, 2\pi]$. • Si $\omega_0 \notin \pi \mathbb{Z}$:

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n = \lim_{N \to \infty} \frac{\cos(\Phi + \frac{\omega_0}{2})}{2N+1} \frac{\sin(\omega_0(N+1))}{\sin(\frac{\omega_0}{2})} = 0 = \mathbb{E}\{x_n\}$$

 $x_n = \cos(\omega_0 n + \Phi)$ avec $\omega_0 \in \mathbb{R}$ et Φ uniforme sur $[0, 2\pi]$. • Si $\omega_0 \notin \pi \mathbb{Z}$:

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n = \lim_{N \to \infty} \frac{\cos(\Phi + \frac{\omega_0}{2})}{2N+1} \frac{\sin(\omega_0(N+1))}{\sin(\frac{\omega_0}{2})}$$
$$= 0 = \mathbb{E}\{x_n\}$$
$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n x_{n-k}^* = \frac{\cos(\omega_0 k)}{2} = \mathbb{E}\{x_n x_{n-k}^*\}$$

 \Rightarrow stationnaire et ergodique au sens large pour $\omega_0 \notin \pi \mathbb{Z}$

$$\begin{split} x_n &= \cos(\omega_0 n + \Phi) \text{ avec } \omega_0 \in \mathbb{R} \text{ et } \Phi \text{ uniforme sur } [0, 2\pi].\\ \bullet \text{ Si } \omega_0 \notin \pi \mathbb{Z}: \end{split}$$

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n = \lim_{N \to \infty} \frac{\cos(\Phi + \frac{\omega_0}{2})}{2N+1} \frac{\sin(\omega_0(N+1))}{\sin(\frac{\omega_0}{2})}$$
$$= 0 = \mathbb{E}\{x_n\}$$

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x_n x_{n-k}^* = \frac{\cos(\omega_0 k)}{2} = \mathbb{E}\{x_n x_{n-k}^*\}$$

 \Rightarrow stationnaire et ergodique au sens large pour $\omega_0 \notin \pi \mathbb{Z}$

• Si $\omega_0 \in 2\pi\mathbb{Z}$: stationnaire non ergodique car: $x_n = \cos \Phi$ et $\lim_{\infty} \frac{1}{2N+1} \sum_{-N}^{N} x_n = \cos \Phi \neq \mathbb{E}\{x_n\} = 0$

• Si
$$\omega_0 \in \pi + 2\pi \mathbb{Z}$$
: $x_n = (-1)^n \cos \Phi$

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
 - 7 Systèmes à temps continu: filtrage et modulations
 - B Echantillonnage
 - Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Résumé

(stationnarité, ergodicité)

- Signal aléatoire = suite de va
- Signal stationnaire = loi invariante par translation
- Pour x_n stationnaire au sens large:
 - moyenne $m_x := \mathbb{E}\{x_n\}$
 - autocorrélation $\gamma_x(k) := \mathbb{E}\{(x_n m_x)(x_{n-k} m_x)^*\}$
 - hypothèse $m_x = 0$, et donc

$$\begin{split} \gamma_x(k) &:= \mathbb{E}\{x_n x_{n-k}^*\}\\ \gamma_x(0) &= \mathbb{E}\{|x_n|^2\} = \text{ puissance} \end{split}$$

• Si le signal est ergodique, espérances $\mathbb{E}\{.\}$ estimées par des moyennes temporelles.

Densité spectrale de puissance

• Densité spectrale de puissance $\Gamma_x(\tilde{f})$:

$$\gamma_x(k) \xrightarrow{\mathrm{TF}} \Gamma_x(\tilde{f}) \triangleq \sum_{k \in \mathbb{Z}} \gamma_x(k) e^{-\mathrm{i}2\pi k\tilde{f}}$$

Densité spectrale de puissance

• Densité spectrale de puissance $\Gamma_x(\tilde{f})$:

$$\gamma_x(k) \xrightarrow{\mathrm{TF}} \Gamma_x(\tilde{f}) \triangleq \sum_{k \in \mathbb{Z}} \gamma_x(k) e^{-\mathrm{i} 2\pi k \tilde{f}}$$

• Propriété:

$$P_x = \gamma_x(0) = \int_{-1/2}^{1/2} \Gamma_x(\tilde{f}) \, d\tilde{f}$$

Rg:Cas de non existence de la TF de $\gamma_x(k)$?Th. Herglotz:comme $\gamma_x(k)$ semi-déf. $\geq 0 \Rightarrow$ Il existe toujours une mesure spectrale de puissance \rightsquigarrow raies dans le spectre \leftrightarrow masse Dirac

$$\frac{1}{N} \left| \sum_{k=1}^{N} x_k e^{-i2\pi \tilde{f}k} \right|^2$$

$$\mathbb{E}\left\{\frac{1}{N}\left|\sum_{k=1}^{N} x_k e^{-\mathrm{i}2\pi \tilde{f}k}\right|^2\right\}$$

$$\mathbb{E}\left\{\frac{1}{N}\left|\sum_{k=1}^{N} x_{k} e^{-i2\pi \tilde{f}k}\right|^{2}\right\} = \frac{1}{N}\sum_{k=1}^{N}\sum_{l=1}^{N}\mathbb{E}\left\{x_{k} x_{l}^{*}\right\}e^{-i2\pi \tilde{f}(k-l)}$$

$$\mathbb{E}\left\{\frac{1}{N}\left|\sum_{k=1}^{N} x_k e^{-i2\pi \tilde{f}k}\right|^2\right\} = \frac{1}{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \gamma_x (k-l) e^{-i2\pi \tilde{f}(k-l)}$$

$$\mathbb{E}\left\{\frac{1}{N}\left|\sum_{k=1}^{N} x_{k} e^{-i2\pi \tilde{f}k}\right|^{2}\right\} = \frac{1}{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \gamma_{x}(k-l) e^{-i2\pi \tilde{f}(k-l)}$$
$$= \frac{1}{N} \sum_{p=-(N-1)}^{N-1} \gamma_{x}(p) e^{-i2\pi \tilde{f}p}(N-|p|)$$

$$\mathbb{E}\left\{\frac{1}{N}\left|\sum_{k=1}^{N} x_{k} e^{-i2\pi \tilde{f}k}\right|^{2}\right\} = \frac{1}{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \gamma_{x}(k-l) e^{-i2\pi \tilde{f}(k-l)}$$
$$= \frac{1}{N} \sum_{p=-(N-1)}^{N-1} \gamma_{x}(p) e^{-i2\pi \tilde{f}p} (N-|p|)$$
$$= \sum_{p=-N}^{N} \gamma_{x}(p) e^{-i2\pi \tilde{f}p} \left(1 - \frac{|p|}{N}\right)$$

Densité spectrale de puissance: $\Gamma_x(\tilde{f}) \triangleq \sum_{k \in \mathbb{Z}} \gamma_x(k) e^{-\mathrm{i} 2\pi k \tilde{f}}$

$$\begin{split} \mathbb{E}\{\frac{1}{N}\left|\sum_{k=1}^{N} x_k e^{-\mathrm{i}2\pi \tilde{f}k}\right|^2\} &= \frac{1}{N}\sum_{k=1}^{N}\sum_{l=1}^{N} \gamma_x(k-l)e^{-\mathrm{i}2\pi \tilde{f}(k-l)} \\ &= \frac{1}{N}\sum_{p=-(N-1)}^{N-1} \gamma_x(p)e^{-\mathrm{i}2\pi \tilde{f}p}(N-|p|) \\ &= \sum_{p=-N}^{N} \gamma_x(p)e^{-\mathrm{i}2\pi \tilde{f}p}\left(1-\frac{|p|}{N}\right) \\ &\xrightarrow[N\to\infty]{} \Gamma_x(\tilde{f}) \quad \text{(convergence dominée)} \end{split}$$

******** théorème de Wiener-Khintchine

Filtrage d'un signal aléatoire

- x_n: signal aléatoire stationnaire sens large h_n: réponse impulsionnelle déterministe d'un filtre stable
- \Rightarrow sortie du filtre est signal aléatoire stationnaire au sens large donné par:

$$y_n = \sum_{k \in \mathbb{Z}} h_{n-k} x_k$$

Filtrage d'un signal aléatoire

$$\xrightarrow{x_n} \begin{array}{c} h_n \\ H(\tilde{f}) \end{array} \xrightarrow{y_n}$$

- x_n: signal aléatoire stationnaire sens large h_n: réponse impulsionnelle déterministe d'un filtre stable
- \Rightarrow sortie du filtre est signal aléatoire stationnaire au sens large donné par:

$$y_n = \sum_{k \in \mathbb{Z}} h_{n-k} x_k$$

• Densité spectrale de puissance du signal filtré:

$$\Gamma_y(\tilde{f}) = |H(\tilde{f})|^2 \Gamma_x(\tilde{f})$$

et pour les auto-corrélations: $\gamma_y(\tau) = \gamma_h(\tau) \star \gamma_x(\tau)$
Bruit blanc

 $(\varepsilon_n)_{n\in\mathbb{Z}}$ suite de va centrées, décorrélées, $\mathbb{E}\{|\varepsilon_n|^2\} = \sigma_{\varepsilon}^2$.

• $(\varepsilon_n)_{n\in\mathbb{Z}}$ est un signal aléatoire à temps discret stationnaire

Bruit blanc

 $(\varepsilon_n)_{n\in\mathbb{Z}}$ suite de va centrées, décorrélées, $\mathbb{E}\{|\varepsilon_n|^2\} = \sigma_{\varepsilon}^2$.

(ε_n)_{n∈ℤ} est un signal aléatoire à temps discret stationnaire
Autocorrélation:

$$\gamma_{\varepsilon}(k) = \mathbb{E}\{\varepsilon_n \varepsilon_{n-k}^*\} = \sigma_{\varepsilon}^2 \delta_k = \begin{cases} \sigma_{\varepsilon}^2 & \text{si } k = 0, \\ 0 & \text{sinon.} \end{cases}$$

• Densité spectrale: $\Gamma_\varepsilon(\tilde{f})=\sum_k\gamma_\varepsilon(k)e^{-{\rm i}2\pi k\tilde{f}}=\sigma_\varepsilon^2$

Bruit blanc

 $(\varepsilon_n)_{n\in\mathbb{Z}}$ suite de va centrées, décorrélées, $\mathbb{E}\{|\varepsilon_n|^2\} = \sigma_{\varepsilon}^2$.

(ε_n)_{n∈ℤ} est un signal aléatoire à temps discret stationnaire
 Autocorrélation:

$$\gamma_{\varepsilon}(k) = \mathbb{E}\{\varepsilon_n \varepsilon_{n-k}^*\} = \sigma_{\varepsilon}^2 \delta_k = \begin{cases} \sigma_{\varepsilon}^2 & \text{si } k = 0, \\ 0 & \text{sinon.} \end{cases}$$

- Densité spectrale: $\Gamma_{\varepsilon}(\tilde{f})=\sum_k\gamma_{\varepsilon}(k)e^{-\mathrm{i}2\pi k\tilde{f}}=\sigma_{\varepsilon}^2$
- $\begin{array}{l} \rightarrow \ \Gamma_{\varepsilon}(\tilde{f}) = \text{constante: } \varepsilon_n \text{ est un bruit blanc numérique de puissance} \\ \mathbb{E}\{|\varepsilon_n|^2\} = \sigma_{\varepsilon}^2 = \int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma_{\varepsilon}(\tilde{f}) \, d\tilde{f} \end{array}$
- <u>Rq</u>: si $(\varepsilon_n)_{n \in \mathbb{Z}}$ indépendantes identiquement distribuées (iid), centrées, $\mathbb{E}\{|\varepsilon_n|^2\} = \sigma_{\varepsilon}^2$, c'est un bruit blanc (strict).

• x_n suit un modèle **ARMA**(p,q) lorsque:

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j}$$

pour un bruit blanc ε_n de variance σ_ε^2 et des coefficients $(a_i)_{i=1}^p, (b_j)_{j=0}^q.$

• x_n suit un modèle **ARMA**(p,q) lorsque:

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j}$$

pour un bruit blanc ε_n de variance σ_{ε}^2 et des coefficients $(a_i)_{i=1}^p, (b_j)_{j=0}^q$. \rightarrow modèle ARMA = filtrée d'un bruit blanc par filtre ARMA

$$H[z] = \frac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}} \qquad (\text{ avec } b_0 = 1)$$

• x_n suit un modèle **ARMA**(p,q) lorsque:

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j}$$

pour un bruit blanc ε_n de variance σ_{ε}^2 et des coefficients $(a_i)_{i=1}^p, (b_j)_{j=0}^q$.

 \rightarrow modèle ARMA = filtrée d'un bruit blanc par filtre ARMA

$$H[z] = rac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$$
 (avec $b_0 = 1$)

• Densité spectrale d'un modèle ARMA:

$$\Gamma_x(\tilde{f}) = |H[e^{\mathbf{i}2\pi\tilde{f}}]|^2 \sigma_{\varepsilon}^2 = \left|\frac{\sum_{j=0}^q b_j e^{-\mathbf{i}2\pi\tilde{f}j}}{1+\sum_{i=1}^p a_i e^{-\mathbf{i}2\pi\tilde{f}i}}\right|^2 \sigma_{\varepsilon}^2$$

• x_n suit un modèle **ARMA**(p,q) lorsque:

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j}$$

pour un bruit blanc ε_n de variance σ_{ε}^2 et des coefficients $(a_i)_{i=1}^p, (b_j)_{j=0}^q$.

 \rightarrow modèle ARMA = filtrée d'un bruit blanc par filtre ARMA

$$H[z] = rac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$$
 (avec $b_0 = 1$)

• Densité spectrale d'un modèle ARMA:

$$\Gamma_x(\tilde{f}) = |H[e^{\mathbf{i}2\pi\tilde{f}}]|^2 \sigma_{\varepsilon}^2 = \left|\frac{\sum_{j=0}^q b_j e^{-\mathbf{i}2\pi\tilde{f}j}}{1+\sum_{i=1}^p a_i e^{-\mathbf{i}2\pi\tilde{f}i}}\right|^2 \sigma_{\varepsilon}^2$$

 \rightsquigarrow utilisation:

• x_n suit un modèle **ARMA**(p,q) lorsque:

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j}$$

pour un bruit blanc ε_n de variance σ_{ε}^2 et des coefficients $(a_i)_{i=1}^p, (b_j)_{j=0}^q$.

 \rightarrow modèle ARMA = filtrée d'un bruit blanc par filtre ARMA

$$H[z] = rac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$$
 (avec $b_0 = 1$)

• Densité spectrale d'un modèle ARMA:

$$\Gamma_x(\tilde{f}) = |H[e^{i2\pi\tilde{f}}]|^2 \sigma_{\varepsilon}^2 = \left|\frac{\sum_{j=0}^q b_j e^{-i2\pi\tilde{f}j}}{1 + \sum_{i=1}^p a_i e^{-i2\pi\tilde{f}i}}\right|^2 \sigma_{\varepsilon}^2$$

 \rightsquigarrow utilisation:

estimation spectrale

• x_n suit un modèle **ARMA**(p,q) lorsque:

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j}$$

pour un bruit blanc ε_n de variance σ_{ε}^2 et des coefficients $(a_i)_{i=1}^p, (b_j)_{j=0}^q$.

 \rightarrow modèle ARMA = filtrée d'un bruit blanc par filtre ARMA

$$H[z] = rac{\sum_{j=0}^{q} b_j z^{-j}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$$
 (avec $b_0 = 1$)

• Densité spectrale d'un modèle ARMA:

$$\Gamma_x(\tilde{f}) = |H[e^{i2\pi\tilde{f}}]|^2 \sigma_{\varepsilon}^2 = \left|\frac{\sum_{j=0}^q b_j e^{-i2\pi\tilde{f}j}}{1 + \sum_{i=1}^p a_i e^{-i2\pi\tilde{f}i}}\right|^2 \sigma_{\varepsilon}^2$$

- \rightsquigarrow utilisation:
 - estimation spectrale
 - prédiction (\rightarrow codage prédictif,...)

Modélisation ARMA: cas particuliers

Avec bruit blanc ε_n de puissance σ_{ε}^2 :

• série autorégressive AR(p):

$$x_n + \sum_{i=1}^p a_i x_{n-i} = \varepsilon_n$$
 $H[z] = \frac{1}{1 + \sum_{i=1}^p a_i z^{-i}}$

• série moyenne mobile MA(q):

$$x_n = \varepsilon_n + \sum_{j=1}^q b_j \varepsilon_{n-j} \qquad H[z] = 1 + \sum_{j=1}^q b_j z^{-j}$$

• série harmonique: $\sigma_{\varepsilon}^2 = 0$

$$x_n + \sum_{i=1}^p a_i x_{n-i} = 0$$

Représentation spectrale

 $(x_n)_{n\in\mathbb{Z}}$ stationnaire et ergodique (sens large)

- $\lim_{\infty} \frac{1}{2N+1} \sum_{-N}^{N} |x_n| = \mathbb{E}\{|x_0|\}$ est fini
- \Rightarrow pour (presque) toute trajectoire, $x_n \notin L^1$ et idem $x_n \notin L^2$
- $\rightarrow\,$ pas de ${\rm TF}$ des trajectoires au sens L^1 ou L^2

Représentation spectrale

 $(x_n)_{n\in\mathbb{Z}}$ stationnaire et ergodique (sens large)

- $\lim_{\infty} \frac{1}{2N+1} \sum_{-N}^{N} |x_n| = \mathbb{E}\{|x_0|\}$ est fini
- \Rightarrow pour (presque) toute trajectoire, $x_n \notin L^1$ et idem $x_n \notin L^2$
- $\rightarrow\,$ pas de ${\rm TF}$ des trajectoires au sens L^1 ou L^2
 - \exists une décomposition spectrale (Cramer-Khintchine):

$$x_n = \int e^{\mathrm{i} 2\pi n \tilde{f}} \, dX(\tilde{f}) \quad \text{ où:} \quad$$

- intégrale de Wiener (petite intégrale stochastique)
- ► $(X(\tilde{f}))_{\tilde{f}\in]-\frac{1}{2},\frac{1}{2}]}$: processus unique, accroissements non corrélés.

Représentation spectrale

 $(x_n)_{n\in\mathbb{Z}}$ stationnaire et ergodique (sens large)

- $\lim_{\infty} \frac{1}{2N+1} \sum_{-N}^{N} |x_n| = \mathbb{E}\{|x_0|\}$ est fini
- \Rightarrow pour (presque) toute trajectoire, $x_n \notin L^1$ et idem $x_n \notin L^2$
- $\rightarrow\,$ pas de ${\rm TF}$ des trajectoires au sens L^1 ou L^2
 - \exists une décomposition spectrale (Cramer-Khintchine):

$$x_n = \int e^{\mathrm{i} 2\pi n \tilde{f}} \, dX(\tilde{f}) \quad \text{ où:} \quad$$

- intégrale de Wiener (petite intégrale stochastique)
- $(X(f))_{\tilde{f} \in [-\frac{1}{2}, \frac{1}{2}]}$: processus unique, accroissements non corrélés.
- \rightarrow Eviter TF de signal aléatoire dans ce cours (mais TF fonction d'autocorrélation \rightarrow densité spectrale).

Signal aléatoire (à temps continu):= famille indexée de variables aléatoires $(x(t,.))_{t\in\mathbb{R}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

Signal aléatoire (à temps continu):= famille indexée de variables aléatoires $(x(t,.))_{t\in\mathbb{R}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

• t fixé: $\omega \mapsto x(t,\omega)$ est une variable aléatoire

Signal aléatoire (à temps continu):= famille indexée de variables aléatoires $(x(t,.))_{t \in \mathbb{R}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

- t fixé: $\omega \mapsto x(t,\omega)$ est une variable aléatoire
- ω fixé: $t \mapsto x(t, \omega)$ est une fonction: trajectoire

Signal aléatoire (à temps continu):= famille indexée de variables aléatoires $(x(t,.))_{t\in\mathbb{R}}$

(sur un espace probabilisé donné $(\Omega, \mathcal{A}, \mathbb{P})$)

- t fixé: $\omega \mapsto x(t,\omega)$ est une variable aléatoire
- ω fixé: $t \mapsto x(t, \omega)$ est une fonction: trajectoire
- Rq: \blacktriangleright on notera simplement x(t) le signal aléatoire
 - Autres noms: processus stochastique/aléatoire
 - difficultés théoriques par rapport au temps discret (continuité, dérivabilité, bruit blanc,...)

Signaux aléatoires temps continu: exemples

$$x(t) = \cos(\omega_0 t + \Phi)$$

avec:

۲

 ω_0 constante

 Φ variable aléatoire, uniformément répartie sur l'intervalle $[0,2\pi]$

Signaux aléatoires temps continu: exemples

$$x(t) = \cos(\omega_0 t + \Phi)$$

avec:

۲

 ω_0 constante

 Φ variable aléatoire, uniformément répartie sur l'intervalle $[0, 2\pi]$ • Avec un bruit additif:

$$y(t) = x(t) + b(t) = \cos(\omega_0 t + \Phi) + b(t)$$

b(t) : terme aléatoire de bruit, de moyenne nulle

Processus de Poisson

N(t) est un processus de Poisson homogène lorsque:

(i) N(0) = 0

(ii) accroissements indépendants: $N(t_2) - N(t_1)$, $N(t_3) - N(t_2)$, ..., $N(t_n) - N(t_{n-1})$ sont va indépendantes pour $t_1 \le t_2 \le \ldots \le t_n$.

(iii) $N(t) - N(s) \sim \text{loi de Poisson de paramètre } \lambda(t-s) \text{ pour } s \leq t \text{ càd:}$ $\forall k \in \mathbb{Z} \qquad \mathbb{P}(N(t) - N(s) = k) = e^{-\lambda(t-s)} \frac{(\lambda(t-s))^k}{k!}.$

Mouvement brownien / processus de Wiener

B(t) est un processus de Wiener lorsque:

(i) B(0) = 0

- (ii) accroissements indépendants: $B(t_2) B(t_1)$, $B(t_3) B(t_2)$, ..., $B(t_n) B(t_{n-1})$ sont va indépendantes pour $t_1 \le t_2 \le \ldots \le t_n$.
- (iii) $B(t) B(s) \sim \mathcal{N}(0, t s)$ (gaussienne) pour $s \leq t$ càd:

 $\mathbb{P}(B(t) - B(s) \le a) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{a} e^{-\frac{u^2}{2(t-s)}} du$

Bruit blanc à temps continu

• bruit blanc à temps continu:

- densité spectrale de puissance constante $\Gamma_{\varepsilon}(f) = \frac{N_0}{2}$
- autocorrélation: $\gamma_{\varepsilon}(\tau) = \frac{N_0}{2}\delta(\tau)$

Bruit blanc à temps continu

• bruit blanc à temps continu:

- densité spectrale de puissance constante $\Gamma_{\varepsilon}(f) = \frac{N_0}{2}$
- autocorrélation: $\gamma_{\varepsilon}(\tau) = \frac{N_0}{2}\delta(\tau)$

• Problème:
$$P_{\varepsilon} = \mathbb{E}\{|\varepsilon(0)|^2\} = \int_{-\infty}^{\infty} \frac{N_0}{2} df = +\infty$$

→→ bruit blanc temps continu ↔ densité spectrale constante sur une «large bande fréquence» [-B, B], où $B \ge$ bande passante

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)

Systèmes à temps continu: filtrage et modulations

- B Echantillonnage
- Iransformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

Système

- Modéliser ce qui se passe lors:
 - transmission du signal (canal de propagation,...)
 - traitement du signal (restauration au récepteur,...)
 - toute autre modification
- Système: dispositif qui à un signal d'entrée associe un signal de sortie

$$\underbrace{x(t)}_{L[.]} \qquad \underbrace{y(t) = L[x(\tau), \tau \in \mathbb{R}](t)}_{\bullet}$$

Propriétés possibles des système

• instantanéité: la sortie ne dépend que du présent

$$\underbrace{x(t)}_{L[.]} y(t) = L[x(\tau), \tau \in \mathbb{R}](t) = L[x(t)](t)$$

• causalité: la sortie ne dépend que du passé

$$\underbrace{x(t)}_{L[.]} \underbrace{y(t) = L[x(\tau), \tau \in \mathbb{R}](t) = L[x(\tau), \tau \leq t](t)}_{t[.]}$$

• invariance:

$$\widetilde{x}(t) = x(t-t_0) \qquad \qquad \widetilde{y}(t) = L[x(\tau), \tau \in \mathbb{R}](t-t_0) = y(t-t_0)$$

Exemples de systèmes

	linéaire	instantané	causal	invariant
$y(t) = x(t)^2$	non	oui	oui	oui
$y(t) = \sin(x(t))$	non	oui	oui	oui
y(t) = m(t)x(t)	oui	oui	oui	non
$y(t) = \int_{-\infty}^{+\infty} h(t,\theta) x(\theta) d\theta$	oui	non	non	non
$y(t) = \frac{1}{2\alpha} \int_{t-\alpha}^{t+\alpha} x(\theta) d\theta$	oui	non	non	oui
$y(t) = \frac{1}{2\alpha} \int_{t-2\alpha}^{t} x(\theta) d\theta$	oui	non	oui	oui

Filtre

Filtre

• Filtre = système linéaire, invariant dans le temps (et continu)

• Exemple: filtre RC

$$\begin{cases} x(t) \land R & \downarrow y(t) \\ C & \downarrow f \\ x(t) = Ri(t) + y(t) & \Rightarrow RC \frac{dy(t)}{dt} + y(t) = x(t) \\ x(t) = Ri(t) + y(t) & \Rightarrow RC \frac{dy(t)}{dt} + y(t) = x(t) \\ \text{Solution (nulle en 0): } y(t) = \frac{1}{RC} \int_0^t x(\theta) e^{-\frac{t-\theta}{RC}} d\theta \end{cases}$$

- Invariance: composants ne vieillissent pas
- Linéarité: principe de superposition
- Continuité: admise (justification physique)
- Rq: éq. différentielle (temps continu) ↔ récurrence (temps discret)

• Avec
$$x(t) = z^t$$
 en entrée ($z \in \mathbb{C}$):

$$y(t_0) = L[x(\tau), \tau \in \mathbb{R}](t_0) = L[z^{\tau}, \tau \in \mathbb{R}](t_0) = L[z^{\tau - t_0 + t_0}, \tau \in \mathbb{R}](t_0)$$

• Avec
$$x(t) = z^t$$
 en entrée $(z \in \mathbb{C})$:

$$\begin{split} y(t_0) &= L[x(\tau), \tau \in \mathbb{R}](t_0) = L[z^{\tau}, \tau \in \mathbb{R}](t_0) \\ &= L[z^{\tau-t_0+t_0}, \tau \in \mathbb{R}](t_0) \\ &= z^{t_0} L[z^{\tau-t_0}, \tau \in \mathbb{R}](t_0) = z^{t_0} L[x(\tau-t_0), \tau \in \mathbb{R}](t_0) \end{split}$$

• Avec
$$x(t) = z^t$$
 en entrée $(z \in \mathbb{C})$:
 $y(t_0) = L[x(\tau), \tau \in \mathbb{R}](t_0) = L[z^{\tau}, \tau \in \mathbb{R}](t_0)$
linéarité $\downarrow = L[z^{\tau-t_0+t_0}, \tau \in \mathbb{R}](t_0)$
 $= z^{t_0}L[z^{\tau-t_0}, \tau \in \mathbb{R}](t_0) = z^{t_0}L[x(\tau - t_0), \tau \in \mathbb{R}](t_0)$
invariance $\downarrow = z^{t_0}L[x(\tau), \tau \in \mathbb{R}](t_0 - t_0) = y(0)z^{t_0}$

• Avec
$$x(t) = z^t$$
 en entrée $(z \in \mathbb{C})$:

$$\begin{split} y(t_0) &= L[x(\tau), \tau \in \mathbb{R}](t_0) = L[z^{\tau}, \tau \in \mathbb{R}](t_0) \\ &= L[z^{\tau-t_0+t_0}, \tau \in \mathbb{R}](t_0) \\ &= z^{t_0} L[z^{\tau-t_0}, \tau \in \mathbb{R}](t_0) = z^{t_0} L[x(\tau-t_0), \tau \in \mathbb{R}](t_0) \\ &= z^{t_0} L[x(\tau), \tau \in \mathbb{R}](t_0 - t_0) = y(0) z^{t_0} \end{split}$$

• Les signaux
$$t \mapsto z^t$$
 sont des signaux propres des filtres
• $x(t) = z^t$ $L[.]$ $y(t) = y(0)z^t$

• Avec
$$x(t) = z^t$$
 en entrée ($z \in \mathbb{C}$):

$$\begin{split} y(t_0) &= L[x(\tau), \tau \in \mathbb{R}](t_0) = L[z^{\tau}, \tau \in \mathbb{R}](t_0) \\ &= L[z^{\tau-t_0+t_0}, \tau \in \mathbb{R}](t_0) \\ &= z^{t_0} L[z^{\tau-t_0}, \tau \in \mathbb{R}](t_0) = z^{t_0} L[x(\tau-t_0), \tau \in \mathbb{R}](t_0) \\ &= z^{t_0} L[x(\tau), \tau \in \mathbb{R}](t_0 - t_0) = y(0) z^{t_0} \end{split}$$

• Les signaux
$$t \mapsto z^t$$
 sont des signaux propres des filtres
• dépend de z
 $x(t) = z^t$
 $e^{i2\pi f_0 t}$
 $L[.]$
 $y(t) = y(0)z^t$
 $H(f_0)e^{i2\pi f_0 t}$

۲

۲

Relation entrée-sortie d'un filtre

$$e^{i2\pi f_0 t}$$
 $L[.]$ $H(f_0)e^{i2\pi f_0 t}$
 $(linéarité)$ $\sum_k X_k e^{i2\pi f_k t}$ $L[.]$ $\sum_k H(f_k)X_k e^{i2\pi f_k t}$
 $x(t) = \int_{\mathbb{R}} X(f)e^{i2\pi f t} df$ $y(t) = \int_{\mathbb{R}} H(f)X(f)e^{i2\pi f t} df$

L'entrée et la sortie d'un filtre sont liées par:

$$Y(f) = H(f)X(f)$$

- H(f) = réponse fréquentielle
- |H(f)| =gain en fréquence
- $\operatorname{Arg} H(f) = \operatorname{phase} \operatorname{du} \operatorname{filtre}$

 \Rightarrow

Relation entrée-sortie d'un filtre

$$e^{i2\pi f_0 t}$$
 $L[.]$ $H(f_0)e^{i2\pi f_0 t}$
 $(linéarité)$ $\sum_k X_k e^{i2\pi f_k t}$ $L[.]$ $\sum_k H(f_k) X_k e^{i2\pi f_k t}$
 $x(t) = \int_{\mathbb{R}} X(f)e^{i2\pi f t} df$ $y(t) = \int_{\mathbb{R}} H(f)X(f)e^{i2\pi f t} df$
L'entrée et la sortie d'un filtre sont liées par:
 $Y(f) = H(f)X(f) \iff y(t) = h(t) \star x(t)$
 \Rightarrow $H(f) = réponse fréquentielle \xrightarrow{\mathrm{TF}^{-1}} h(t)$
 $|H(f)| = gain en fréquence$
 $\operatorname{Arg} H(f) = phase du filtre$
 $h(t) = réponse impulsionnelle du filtre$

 \rightsquigarrow convolution!

$$\begin{array}{c|c} x(t) \\ \hline X(f) \end{array} \begin{array}{c} h(t) \\ H(f) \end{array} \begin{array}{c} y(t) = h(t) \star x(t) \\ \hline Y(f) = H(f)X(f) \end{array}$$

VII-8

۰

•
$$x(t)$$

• $X(f)$ $h(t)$ $y(t) = h(t) \star x(t)$
 $H(f)$ $Y(f) = H(f)X(f)$

$$y(t) = h(t) \star x(t) = \int_{\mathbb{R}} h(\theta) x(t-\theta) \ d\theta = \int_{\mathbb{R}} h(t-\theta) x(\theta) \ d\theta$$

• Ex:
$$h(t) = \begin{cases} \frac{1}{T} & \text{si } |t| \leq \frac{T}{2} \\ 0 & \text{sinon} \end{cases} \rightarrow y(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\theta) \ d\theta$$

•
$$x(t)$$
 $h(t)$ $y(t) = h(t) \star x(t)$
• $X(f)$ $H(f)$ $Y(f) = H(f)X(f)$

$$y(t) = h(t) \star x(t) = \int_{\mathbb{R}} h(\theta) x(t-\theta) \ d\theta = \int_{\mathbb{R}} h(t-\theta) x(\theta) \ d\theta$$

• Ex:
$$h(t) = \begin{cases} \frac{1}{T} & \text{si } |t| \leq \frac{T}{2} \\ 0 & \text{sinon} \end{cases} \rightarrow y(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\theta) \ d\theta$$

• Pour une image: 2D et discret (pixels)

$$y(u,v) = \iint h(\theta,\xi)x(u-\theta,v-\xi) \ d\theta d\xi$$

•
$$x(t)$$
 $h(t)$ $y(t) = h(t) \star x(t)$
• $X(f)$ $H(f)$ $Y(f) = H(f)X(f)$

$$y(t) = h(t) \star x(t) = \int_{\mathbb{R}} h(\theta) x(t-\theta) \ d\theta = \int_{\mathbb{R}} h(t-\theta) x(\theta) \ d\theta$$

• Ex:
$$h(t) = \begin{cases} \frac{1}{T} & \text{si } |t| \leq \frac{T}{2} \\ 0 & \text{sinon} \end{cases} \rightarrow y(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\theta) \ d\theta$$

• Pour une image: 2D et discret (pixels)

$$y_{m,n} = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h_{k,l} x_{m-k,n-l}$$

•
$$x(t)$$
 $h(t)$ $y(t) = h(t) \star x(t)$
• $X(f)$ $H(f)$ $Y(f) = H(f)X(f)$

$$y(t) = h(t) \star x(t) = \int_{\mathbb{R}} h(\theta) x(t-\theta) \ d\theta = \int_{\mathbb{R}} h(t-\theta) x(\theta) \ d\theta$$

• Ex:
$$h(t) = \begin{cases} \frac{1}{T} & \text{si } |t| \leq \frac{T}{2} \\ 0 & \text{sinon} \end{cases} \rightarrow y(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\theta) \ d\theta$$

• Pour une image: 2D et discret (pixels)

$$y_{m,n} = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h_{k,l} x_{m-k,n-l}$$

Si un seul pixel blanc dans $x_{m,n}$:

$$x_{0,0} = 1$$
 et $x_{m,n} = 0$ si $m \neq 0$ ou $n \neq 0$
Alors: $y_{m,n} = h_{m,n}$

• Signaux périodiques: $\notin L^1(\mathbb{R})$ et $\notin L^2(\mathbb{R})!$

- Signaux périodiques: $\notin L^1(\mathbb{R})$ et $\notin L^2(\mathbb{R})!$
- <u>Ex1</u>: charge d'un condensateur

$$\underbrace{i(t)}_{t} \bigvee_{t} Q(t) = \int_{-\infty}^{t} i(\theta) \, d\theta$$

- Signaux périodiques: $\notin \mathrm{L}^1(\mathbb{R})$ et $\notin \mathrm{L}^2(\mathbb{R})!$
- <u>Ex1</u>: charge d'un condensateur

$$i(t) \neq Q(t) = \int_{-\infty}^{t} i(\theta) \, d\theta$$

i(t)

O(t)

 $\rightsquigarrow~i(t)=0~{\rm pour}~t\neq 0$ et $\int_{-\infty}^{\infty}i(t)\,dt=Q_0$ (charge finale)

- Signaux périodiques: $\notin \mathrm{L}^1(\mathbb{R})$ et $\notin \mathrm{L}^2(\mathbb{R})!$
- <u>Ex1</u>: charge d'un condensateur

$$i(t) \downarrow Q(t) = \int_{-\infty}^{t} i(\theta) \, d\theta$$

$$\rightsquigarrow i(t) = 0$$
 pour $t \neq 0$ et $\int_{-\infty}^{\infty} i(t) dt = Q_0$ (charge finale)

• <u>Ex2</u>: densité de charge/masse

$$Q = \iiint_{\mathcal{V}} \rho(\mathbf{r}) \, d\mathbf{r}$$

i(t)

O(t)

- \rightsquigarrow Charge en r_0 : $Q_0 = \iiint \delta_{r_0}(\mathbf{r}) d\mathbf{r}$ avec δ_{r_0} nulle sauf en r_0 .
 - Ex3: rebond d'une balle sur un mur,...

Suite de fonctions qui converge vers un Dirac

• On dira que $\lim_{n \to +\infty} \phi_n(t) = \delta(t)$: impulsion de Dirac

• <u>Ex</u>: mesure de la valeur instantanée x(t)Appareil non idéal: (temps de réponse $\neq 0,...$)

$$y(t) = \frac{1}{T} \int_{t-T}^{t} x(\theta) \, d\theta$$

Ex: mesure de la valeur instantanée x(t)
 Appareil non idéal: (temps de réponse ≠ 0,...)

$$y(t) = \frac{1}{T} \int_{t-T}^{t} x(\theta) d\theta$$

= $\frac{1}{T} \int_{\mathbb{R}} x(\theta) h(t-\theta) d\theta$
• Modèle filtre: $h(t) = \begin{cases} \frac{1}{T} & \text{si } t \in [0,T] \\ 0 & \text{sinon.} \end{cases}$

$$\underbrace{x(t)}_{h(t)} \quad y(t) = h(t) \star x(t)$$

Ex: mesure de la valeur instantanée x(t)
 Appareil non idéal: (temps de réponse ≠ 0,...)

$$\delta(t) = \underbrace{x(t)}_{h(t)} \qquad \qquad h(t) = h(t) \star x(t) = h(t) \star \delta(t) = h(t)$$

• <u>Ex</u>: mesure de la valeur instantanée x(t)Appareil non idéal: (temps de réponse $\neq 0, ...$)

$$\delta(t) = \underbrace{x(t)}_{h(t)} \quad h(t) \quad y(t) = h(t) \star x(t) = h(t) \star \delta(t) = h(t)$$

• réponse impulsionnelle = réponse à $\delta(t)$ en entrée

۵

Impulsion de Dirac $\delta(t)$

- $a \in \mathbb{R}$ fixé quelconque.
 - Pour tout signal x(t): ∫_ℝ δ(θ)x(θ) dθ = x(0) (définition) et plus généralement:
 δ(t − a)

Impulsion de Dirac $\delta(t)$

- $a \in \mathbb{R}$ fixé quelconque.
 - Pour tout signal x(t): $\int_{\mathbb{R}} \delta(\theta) x(\theta) d\theta = x(0)$ (définition) et plus généralement:

• Propriétés:

•
$$x(t)\delta(t-a) = x(a)\delta(t-a)$$

- $x(t) \star \delta(t) = x(t)$ et $x(t) \star \delta(t t_0) = x(t t_0)$
- dérivation en cas de «saut»: du(t)/dt = δ(t)
 où u(t) = échelon unité.

Spectre de raies

- Signaux périodiques: $\notin \mathrm{L}^1(\mathbb{R})$ et $\notin \mathrm{L}^2(\mathbb{R})!$
- Dirac et transformée de Fourier:

$$e^{i2\pi f_0 t} \xrightarrow{\text{TF}} \delta(f - f_0)$$

$$\delta(t - t_0) \xrightarrow{\text{TF}} e^{-i2\pi f t_0} \qquad \delta(t) \xrightarrow{\text{TF}} 1$$

Spectre de raies

- Signaux périodiques: $\notin L^1(\mathbb{R})$ et $\notin L^2(\mathbb{R})!$
- Dirac et transformée de Fourier:

$$e^{i2\pi f_0 t} \xrightarrow{\text{TF}} \delta(f - f_0)$$
$$\delta(t - t_0) \xrightarrow{\text{TF}} e^{-i2\pi f t_0} \qquad \delta(t) \xrightarrow{\text{TF}} 1$$

• Spectre de raies:

$$x(t) = \sum_{k \in \mathbb{Z}} X_k e^{i2\pi \frac{k}{T}t} \xrightarrow{\mathrm{TF}} X(f) = \sum_{k \in \mathbb{Z}} X_k \delta(f - \frac{k}{T})$$

$$X_{-1} \downarrow^{|X(f)|} X_0$$

$$X_{-2} \downarrow^{|X(f)|} X_1$$

$$X_{-1} \downarrow^{|X(f)|} X_0$$

$$X_{-1} \downarrow^{|X(f)|} X_0$$

Filtrage et densité spectrale (rappels)

$$\begin{array}{c|c} x(t) \\ \hline X(f) \\ \hline \end{array} \begin{array}{c} h(t) \\ H(f) \\ \hline \end{array} \begin{array}{c} y(t) \\ \hline Y(f) \\ \hline \end{array}$$

• Signaux d'énergie finie, Y(f)=H(f)X(f) et donc: $|Y(f)|^2=|H(f)|^2|X(f)|^2$

Filtrage et densité spectrale (rappels)

$$\begin{array}{c|c} x(t) \\ \hline X(f) \\ \hline \end{array} \begin{array}{c} h(t) \\ H(f) \\ \hline \end{array} \begin{array}{c} y(t) \\ Y(f) \\ \hline \end{array}$$

- Signaux d'énergie finie, Y(f)=H(f)X(f) et donc: $|Y(f)|^2=|H(f)|^2|X(f)|^2$
- Pour la densité spectrale d'énergie ou puissance en général:

$$\Gamma_y(f) = |H(f)|^2 \Gamma_x(f)$$

et pour les auto-corrélations: $\gamma_y(\tau) = \gamma_h(\tau) \star \gamma_x(\tau)$

Filtrage et densité spectrale (rappels)

- Signaux d'énergie finie, Y(f)=H(f)X(f) et donc: $|Y(f)|^2=|H(f)|^2|X(f)|^2$
- Pour la densité spectrale d'énergie ou puissance en général:

$$\Gamma_y(f) = |H(f)|^2 \Gamma_x(f)$$

et pour les auto-corrélations: $\gamma_y(\tau) = \gamma_h(\tau) \star \gamma_x(\tau)$

→ Généralisation: $\Gamma_{y_1y_2}(f) = H_1(f)H_2(f)^*\Gamma_{x_1x_2}(f)$ (formule des interférences)

Causalité

Soit un filtre de réponse impulsionnelle h(t).

• Filtre causal $\Leftrightarrow h(t) = 0 \quad \forall t < 0.$

 $\leftrightarrow \text{ sortie } y(t) = \int_0^\infty h(\theta) x(t-\theta) \, d\theta \text{ ne dépend alors que des valeurs de } x(\tau), \tau \leq t.$

- $\rightarrow\,$ Un filtre causal n'anticipe pas l'avenir.
- Causalité vérifiée pour les systèmes physiques, mais pas toujours imposée ni nécessaire selon le contexte (ex: traitement d'une bande son pré-enregistrée)

Stabilité

Soit un filtre de réponse impulsionnelle h(t).

• Filtre stable: lorsque à toute entrée bornée correspond une sortie bornée.

• Filtre stable
$$\Leftrightarrow \int_{\mathbb{R}} |h(t)| dt < +\infty$$

- Il existe d'autres notions de stabilité (ex: entrée transitoire \leftrightarrow sortie tend vers 0 à l' $\infty)$

Retard de phase / groupe

- Etude d'un milieu de propagation: équations de la physique à *une* fréquence → réponse à une excitation sinusoïdale permanente
- \rightsquigarrow milieu dispersif \leftrightarrow réponse différente selon f

 $H(f) = A(f)e^{i2\pi\phi(f)}$

Retard de phase / groupe

- Etude d'un milieu de propagation: équations de la physique à *une* fréquence → réponse à une excitation sinusoïdale permanente
- \rightsquigarrow milieu dispersif \leftrightarrow réponse différente selon f

$$H(f) = A(f)e^{i2\pi\phi(f)}$$

- Filtre: autour de f_0 , $\phi(f) \approx \phi_0 + \frac{d\phi}{df}|_{f_0}(f f_0)$
 - ▶ temps de propagation de phase: $\tau_P(f_0) \triangleq -\frac{\phi_0}{f_0}$
 - ▶ temps de propagation de groupe: $\tau_g(f_0) \triangleq -\frac{d\phi}{dt}|_{f_0}$
- $\rightarrow\,$ importance des filtres à phase linéaire

Modulation

- Modulation = adaptation d'un signal initial pour la transmission
 - modulante m(t) = signal informatif, basse fréquence et bande limitée [-B, B]
 - Ex: parole, télévision,...
 - porteuse p(t) = signal haute fréquence qui permet le transport de la modulante

• démodulation = opération inverse (à la réception)

Modulations analogiques

Porteuse: $p(t) = A\cos(2\pi f_0 t + \varphi) = A\cos(\Phi(t))$

 \rightsquigarrow Inclure dans p(t) l'information de la modulante m(t)?

- Modulations linéaires: $m(t) \rightarrow A(t)$
 - modulation d'amplitude avec porteuse A(t) = 1 + km(t)
 - modulation d'amplitude sans porteuse A(t) = km(t)
- \bullet Modulations angulaires (non linéaires) $m(t) \rightarrow \Phi(t)$
 - Modulation de fréquence (FM): $m(t) \rightarrow \frac{1}{2\pi} \frac{d\Phi(t)}{dt} = f_0 + \frac{1}{2\pi} \frac{d\varphi(t)}{dt}$
 - Modulation de phase: $m(t) \rightarrow \varphi(t)$
- Sen numérique, des modulations semblables permettent de transmettre des symboles!

Modulation amplitude avec porteuse

Modulation amplitude avec porteuse

• Spectre:

$$X(f) = \left(\delta(f) + kM(f)\right) \star \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$

Modulation amplitude avec porteuse

Démodulation non cohérente

• Détecteur d'enveloppe:

Modulation amplitude sans porteuse

Modulation amplitude sans porteuse

• Allure temporelle (modulante sinusoïdale):

$$X(f) = kM(f) \star \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$
Modulation amplitude sans porteuse

Modulation BLU

- bande signal modulé en amplitude = $2 \times$ celle de m(t)
- ightarrow inutile de garder la partie symétrique de M(f)
 - Bande latérale unique (BLU):

Utilisation: télévision analogique

Modulation en quadrature

- Transporter 2 signaux réels p(t) et q(t) sur une même fréquence porteuse:
- $\Leftrightarrow \text{ transporter le signal complexe } z(t) = p(t) + \mathfrak{i}q(t)$
 - p(t) = composante en phase
 - q(t) = composante en quadrature
 - Expression temporelle signal modulé:

$$x(t) = p(t)\cos(2\pi f_0 t) - q(t)\sin(2\pi f_0 t)$$

• Représentation schématique du spectre:

• Utilisation: signal NTSC, modulation numérique

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Ø Systèmes à temps continu: filtrage et modulations

8 Echantillonnage

- Transformée de Fourier discrète et FFT
- 🔟 Signaux à bande étroite

De l'analogique au temps discret

 $x(t), t \in \mathbb{R}$: signal à temps continu.

• échantillonner x(t) = recueillir une suite discrète de valeurs et former le signal à temps discret

$$x_n \triangleq x(nT_e), n \in \mathbb{Z}$$

•
$$T_e = période d'échantillonnage$$

• $f_e = 1/T_e =$ fréquence d'échantillonnage

De l'analogique au temps discret

 $x(t), t \in \mathbb{R}$: signal à temps continu.

• échantillonner x(t) = recueillir une suite discrète de valeurs et former le signal à temps discret

$$x_n \triangleq x(nT_e), n \in \mathbb{Z}$$

- $T_e = période d'échantillonnage$
- $f_e = 1/T_e =$ fréquence d'échantillonnage
- Se contenter des échantillons x_n au lieu de x(t)? Est-ce possible sans perdre d'information?

Le peigne de Dirac

• Peigne de Dirac: $\operatorname{III}_{a}(t) = \sum_{k \in \mathbb{Z}} \delta(t - ka)$ $\underbrace{ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ & & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \end{array}\right)}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \end{array}\right)}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \begin{array}{c} & & \\ \end{array}}_{k \in \mathbb{Z}} \left. \end{array}\right)}_{k \in \mathbb{Z}} \left$

• Transformée de Fourier d'un peigne de Dirac: c'est un peigne de Dirac!

$$\operatorname{III}_{a}(t) \xrightarrow{\mathrm{TF}} \frac{1}{a} \operatorname{III}_{\frac{1}{a}}(f)$$

Signal échantillonné temps continu

• signal échantillonné à temps continu:

$$x_e(t) \triangleq x(t) \coprod_{T_e}(t) = \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t - kT_e)$$

- $\rightarrow x_e(t):$ permet d'étudier l'effet de l'échantillonnage par un formalisme à temps continu.
- \rightarrow Lien entre x(t) et $x_e(t)$, notamment dans le domaine fréquentiel?

$$x_e(t) = x(t) \amalg_{T_e}(t) \xrightarrow{\mathrm{TF}} X_e(f) = X(f) \star \left(\frac{1}{T_e} \amalg_{\frac{1}{T_e}}(f)\right)$$

$$x_e(t) = x(t) \amalg_{T_e}(t) \xrightarrow{\mathrm{TF}} X_e(f) = X(f) \star \left(\frac{1}{T_e} \amalg_{\frac{1}{T_e}}(f)\right)$$

et donc

$$X_e(f) = X(f) \star \left(\frac{1}{T_e} \amalg_{\frac{1}{T_e}}(f)\right) = X(f) \star \left(\frac{1}{T_e} \sum_{k \in \mathbb{Z}} \delta(f - \frac{k}{T_e})\right)$$

$$x_e(t) = x(t) \amalg_{T_e}(t) \xrightarrow{\mathrm{TF}} X_e(f) = X(f) \star \left(\frac{1}{T_e} \amalg_{\frac{1}{T_e}}(f)\right)$$

et donc

$$\begin{split} X_e(f) &= X(f) \star \left(\frac{1}{T_e} \mathrm{III}_{\frac{1}{T_e}}(f) \right) = X(f) \star \left(\frac{1}{T_e} \sum_{k \in \mathbb{Z}} \delta(f - \frac{k}{T_e}) \right) \\ &= \frac{1}{T_e} \sum_{k \in \mathbb{Z}} X(f) \star \delta(f - \frac{k}{T_e}) \end{split}$$

$$x_e(t) = x(t) \amalg_{T_e}(t) \xrightarrow{\mathrm{TF}} X_e(f) = X(f) \star \left(\frac{1}{T_e} \amalg_{\frac{1}{T_e}}(f)\right)$$

et donc

$$\begin{split} X_e(f) &= X(f) \star \left(\frac{1}{T_e} \mathrm{III}_{\frac{1}{T_e}}(f)\right) = X(f) \star \left(\frac{1}{T_e} \sum_{k \in \mathbb{Z}} \delta(f - \frac{k}{T_e})\right) \\ &= \frac{1}{T_e} \sum_{k \in \mathbb{Z}} X(f) \star \delta(f - \frac{k}{T_e}) \\ &= \frac{1}{T_e} \sum_{k \in \mathbb{Z}} X(f - \frac{k}{T_e}) \end{split}$$

TF du signal échantillonné

$$x_e(t) = x(t) \amalg_{T_e}(t) \xrightarrow{\mathrm{TF}} X(f) \star \left(\frac{1}{T_e} \amalg_{\frac{1}{T_e}}(f)\right)$$
$$X_e(f) = \frac{1}{T_e} \sum_{k \in \mathbb{Z}} X(f - \frac{k}{T_e})$$

 $\rightarrow \, X_e(f)$ est une version périodisée de X(f): «repliement» du spectre

	signal		spectre
\rightsquigarrow	échantillonné	\leftrightarrow	périodique
	périodique	\leftrightarrow	discret

۲

Echantillonnage: interprétation graphique du spectre

Echantillonnage: interprétation graphique du spectre

Echantillonnage: interprétation graphique du spectre

• $f_e \ge 2B \Rightarrow$ reconstruction possible par filtrage passe-bas

Théorème de Shannon-Nyquist

• x(t) de bande limitée [-B, B] est *entièrement défini* par les échantillons $x(nT_e), n \in \mathbb{Z}$ prélevés à une fréquence $f_e = 1/T_e \ge 2B$.

 $\rightarrow\,$ formule <code>exacte</code> d'interpolation:

$$x(t) = \sum_{k \in \mathbb{Z}} x(kT_e) \operatorname{sinc}(\pi f_e(t - kT_e))$$

 \longleftrightarrow bande limitée \leftrightarrow variations pas trop rapides du signal entre deux échantillons

Echantillonnage d'un signal analogique bande limitée

conditions Shannon-Nyquist

sous-échantillonnage

VIII-9

Echantillonnage d'un sinus (1/3)

Signal analogique et échantillonnage dans les conditions de Shannon:

Echantillonnage d'un sinus (2/3)

Signal analogique et échantillonnage dans les conditions de Shannon:

Echantillonnage d'un sinus (3/3)

Effet d'un sous-échantillonnage:

Interpolation

Signal interpolé à partir d'échantillons $x_n, n \in \mathbb{Z}$:

$$\hat{x}(t) = \sum_{n \in \mathbb{Z}} x_n \mathbf{I}(t - nT_e) = \left(\sum_{n \in \mathbb{Z}} x_n \delta(t - nTe)\right) \star \mathbf{I}(t)$$

La base des sinus cardinaux

Signal interpolé à partir d'échantillons $x_n, n \in \mathbb{Z}$:

Une autre vue de la formule d'interpolation

- $\left\{ \operatorname{sinc}(2\pi B(t \frac{k}{2B})) \right\}_{k \in \mathbb{Z}}$: base orthonormée des signaux à bande limitée [-B, B].
- Projection de x(t) sur les signaux bande limitée [-B, B]:

$$\begin{split} \tilde{x}(t) &= \sum_{k \in \mathbb{Z}} \alpha_k \mathrm{sinc} \left(2\pi B(t - \frac{k}{2B}) \right) \quad \text{avec:} \\ &\alpha_k = \int_{\mathbb{R}} x(t) \mathrm{sinc} \left(2\pi B(t - \frac{k}{2B}) \right) \ dt \end{split}$$

• Si x(t) à bande limitée, alors (cf. TD):

$$\alpha_k = x\left(\frac{k}{2B}\right) \ : \ \text{\'echantillon!}$$

• Problématique (récente): projeter sur une base mieux adaptée (faible nombre de $\alpha_k \neq 0, ...$) ?

• En pratique, erreur dans échantillonnage des valeurs $x(nT_e)$: échantillonneur bloqueur ou suiveur est plus réaliste.

- En pratique, erreur dans échantillonnage des valeurs $x(nT_e)$: échantillonneur bloqueur ou suiveur est plus réaliste.
- Interpolation par insertion de zéros et filtrage passe-bas numérique (ex. TD9)

- En pratique, erreur dans échantillonnage des valeurs $x(nT_e)$: échantillonneur bloqueur ou suiveur est plus réaliste.
- Interpolation par insertion de zéros et filtrage passe-bas numérique (ex. TD9)
- Echantillonnage en présence de bruit:

- En pratique, erreur dans échantillonnage des valeurs $x(nT_e)$: échantillonneur bloqueur ou suiveur est plus réaliste.
- Interpolation par insertion de zéros et filtrage passe-bas numérique (ex. TD9)
- Echantillonnage en présence de bruit:

- En pratique, erreur dans échantillonnage des valeurs $x(nT_e)$: échantillonneur bloqueur ou suiveur est plus réaliste.
- Interpolation par insertion de zéros et filtrage passe-bas numérique (ex. TD9)
- Echantillonnage en présence de bruit:

- ⇒ **filtre anti-repliement** (anti-aliasing):
 - passe-bas, élimine le bruit en dehors de la bande de base
 - indispensable avant échantillonnage

Quantification

Erreur de quantification

• Dynamique de x(t) grande par rapport à δ : e(t) aléatoire uniforme sur $[-\frac{\delta}{2}, \frac{\delta}{2}]$

valeur moyenne:0 variance: $\sigma_q^2 = \frac{\delta^2}{12}$

- Quantification sur N bits $2A = 2^N \delta$ $x(t) = A \sin(2\pi f_0 t)$, valeur efficace $A/\sqrt{2}$.
- \rightarrow Rapport signal sur bruit de quantification:

$$\operatorname{SNR} = \frac{A/\sqrt{2}}{\delta/\sqrt{12}} = 2^N \sqrt{\frac{3}{2}}$$
 càd $\operatorname{SNR}_{\mathrm{dB}} \approx 1.76 + 6N$

• Possibilité de compression de dynamique, quantification non uniforme,

Spectre d'un signal échantillonné et série de Fourier

• x(t) échantillonné à la période T_e

$$\begin{aligned} x_e(t) &\triangleq x(t) \sum_{n \in \mathbb{Z}} \delta(t - nT_e) &= \sum_{n \in \mathbb{Z}} x(nT_e) \delta(t - nT_e) \\ \downarrow \mathrm{TF} & \downarrow \mathrm{TF} & \downarrow \mathrm{TF} \\ X_e(f) &= \frac{1}{T_e} \sum_{n \in \mathbb{Z}} X(f - \frac{n}{T_e}) &= \sum_{n \in \mathbb{Z}} x(nT_e) e^{-\mathrm{i}2\pi n fT_e} \end{aligned}$$

• Fréquence normalisée: $\tilde{f} \triangleq fT_e$ $\rightarrow X_e(f)$ obtenu par la série de Fourier $\sum_{n \in \mathbb{Z}} x(nT_e)e^{-i2\pi n\tilde{f}}$

 \rightsquigarrow Pour x(t) à bande dans $[\frac{-1}{2T_e}, \frac{1}{2T_e}]$, on obtient aussi le spectre X(f).

Transformée de Fourier à temps discret

• Transformée de Fourier à temps discret (TFTD):

$$X(\tilde{f}) \triangleq \sum_{n \in \mathbb{Z}} x_n e^{-i2\pi n\tilde{f}}$$

- $X(\tilde{f})$ de période $1 \rightsquigarrow \tilde{f} \in [0,1]$ ou $\tilde{f} \in [-\frac{1}{2}, \frac{1}{2}]$: fréquence normalisée
- si x_n échantillonné à f_e , fréquence réelle $f = \tilde{f}f_e = rac{f}{T_e}$

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Ø Systèmes à temps continu: filtrage et modulations
 - 8) Echantillonnage
- Transformée de Fourier discrète et FFT
 - 🔟 Signaux à bande étroite

Evaluation de la TF

• Transformée de Fourier

temps continu (TFTC): $X^{(\text{TC})}(f) = \int_{\mathbb{R}} x(t)e^{-i2\pi ft} dt$ temps discret (TFTD): $X^{(\text{TD})}(\tilde{f}) = \sum_{n \in \mathbb{Z}} x_n e^{-i2\pi \tilde{f}n}$

• \rightsquigarrow Calcul numérique de $X^{(\mathrm{TC})}(f)$ ou $X^{(\mathrm{TD})}(\tilde{f})$? Difficultés:

• échantillonnage: si $x_n = x(nT_e)$, et conditions de Shannon:

$$X^{(\mathrm{TC})}(f) = T_e X^{(\mathrm{TD})}(\tilde{f} = fT_e)$$

- enregistrement: durée finie
- calcul numérique de la TFTD à l'aide d'une transformée de Fourier discrète (TFD); algorithme rapide

Fenêtrage

• Tout enregistrement/mesure est de durée finie:

$$x_{\text{enreg.}}(t) = x(t) \mathbb{1}_{\left[-\frac{T}{2}, \frac{T}{2}\right]}(t).$$

- \rightarrow Après transf. Fourier: $X_{\text{enreg.}}(f) = X(f) \star \left(T \operatorname{sinc} \pi f T\right)$
 - Signal observé au travers d'une fenêtre d'observation w(t):

$$x_{\text{fen.}}(t) = x(t)w(t) \xrightarrow{\text{TF}} X_{\text{fen.}}(f) = X(f) \star W(f)$$

- Différentes fenêtres de pondération possibles:
 - rectangulaire: $w(t) = \mathbb{1}_{\left[-\frac{T}{2}, \frac{T}{2}\right]}(t)$
 - triangulaire (ou Bartlett):
 - Hamming, Hann (ou Hanning?), Kaiser, ...
Troncature: cas sinusoidal (temps continu)

• Cas d'un signal sinusoïdal constitué de deux raies à $\pm f_0$:

$$\cos(2\pi f_0 t) \xrightarrow{\mathrm{TF}} \frac{1}{2} \Big(\delta(f - f_0) + \delta(f + f_0) \Big)$$

• Après troncature:

$$\begin{aligned} x_{\text{enreg.}}(t) &= \cos(2\pi f_0 t) \mathbb{1}_{\left[-\frac{T}{2}, \frac{T}{2}\right]}(t) \\ X_{\text{enreg.}}(f) &= \frac{1}{2} \Big(T \operatorname{sinc}(\pi (f - f_0) T) + T \operatorname{sinc}(\pi (f + f_0) T) \Big) \end{aligned}$$

- Simulation et illustration:
 - compromis durée d'observation/résolution spectrale
 - possibilité d'apodiser les lobes secondaires par le choix de la fenêtre (au détriment de la résolution spectrale)

Autour de la TF d'une porte...

Effet de la durée d'observation (sinusoïde 100Hz)

Résolution en fréquence (1/3)

Résolution en fréquence (2/3)

IX-8

Résolution en fréquence (3/3)

Avec une durée d'observation plus grande:

Choix d'une fenêtre, apodisation (1/3)

Choix d'une fenêtre, apodisation (2/3)

Choix d'une fenêtre, apodisation (3/3)-

Transformée de Fourier temps discret et fenêtrage

$$x_n \stackrel{\text{TFTD}}{\longrightarrow} X(\tilde{f}) = \sum_{n \in \mathbb{Z}} x_n e^{-i2\pi n \tilde{f}}$$

• Si fenêtre d'observation w_n :

$$x_n w_n \xrightarrow{\text{TFTD}} \int_0^1 X(\tilde{u}) W(\tilde{f} - \tilde{u}) \, d\tilde{u}$$
 (convolution circulaire)

• Cas d'une troncature/fenêtre rectangulaire N points:

$$X(\tilde{f}) = \sum_{n=0}^{N-1} x_n e^{-i2\pi n\tilde{f}}$$

TFTD exponentielle tronquée

• Pour
$$x_n = e^{i2\pi \tilde{f}_0 n}$$
:

$$\begin{aligned} X(\tilde{f}) &= \sum_{n=0}^{N-1} e^{i2\pi \tilde{f}_0 n} e^{-i2\pi \tilde{f}_n} = \frac{1 - e^{i2\pi (\tilde{f}_0 - \tilde{f})N}}{1 - e^{i2\pi (\tilde{f}_0 - \tilde{f})}} \\ &= e^{i\pi (\tilde{f}_0 - \tilde{f})(N-1)} \frac{\sin(\pi (\tilde{f}_0 - \tilde{f})N)}{\sin(\pi (\tilde{f}_0 - \tilde{f}))} \end{aligned}$$

- $\rightarrow\,$ correspond au sinus cardinal observé en temps continu
- \rightarrow élargissement spectral (fonction de N: durée observation)

Transformée de Fourier discrète

• Après fenêtrage, calculer pour $\tilde{f} \in [0,1]$:

$$X(\tilde{f}) = \sum_{n=0}^{N-1} x_n e^{-i2\pi n\tilde{f}}$$

• Calcul pour les fréquences discrètes $\tilde{f} = 0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}$:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi n \frac{k}{N}}, \qquad k \in \{0, \dots, N-1\}$$

L'application $(x_0, \dots, x_{N-1}) \mapsto (X_0, \dots, X_{N-1})$ est la transformée de Fourier discrète (TFD).

Matrice de TFD

$$\begin{aligned} \text{TFD:} \quad X_k &= \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{nk}{N}} \qquad k \in \{0, \dots, N-1\} \\ \text{Avec } w &\triangleq e^{-i\frac{2\pi}{N}} \text{ et } \mathbf{W} \triangleq \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^2 & \cdots & w^{N-1} \\ 1 & w^2 & w^4 & \cdots & w^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & \cdots & w^{(N-1)^2} \end{pmatrix} \end{aligned}$$

la TFD correspond à la transformation linéaire:

$$\begin{pmatrix} X_0 \\ X_1 \\ \vdots \\ X_{N-1} \end{pmatrix} = \mathbf{W} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{pmatrix}$$

Propriétés de la TFD

- La matrice $\mathbf{W} \in \mathbb{C}^{N \times N}$ vérifie $\mathbf{W}\mathbf{W}^{\mathrm{H}} = N\mathbf{I}\mathbf{d}$.
- La TFD est inversible: $\forall n \in \{0, \dots, N-1\}$ $x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{i2\pi nk}{N}}$
- $ightarrow \, {
 m calcul} \, \, {
 m de} \, {
 m TFD}^{-1}$ identique à celui de TFD
 - relation de Parseval: $\sum_{k=0}^{N-1} X_k Y_k^* = N \sum_{n=0}^{N-1} x_n y_n^*$

Transformée de Fourier rapide

Calcul de TFD:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{nk}{N}}$$

 Produit matriciel naïf: complexité $\mathcal{O}(N^2)$

Transformée de Fourier rapide (ou FFT): si N est une puissance de 2, algorithme rapide de calcul de la TFD: complexité $O(N \log N)$

Existence d'autres algorithmes rapides selon factorisation de N
Principe de départ (algorithme Cooley-Tukey):

$$X_{k} = \sum_{n=0}^{2P-1} x_{n} e^{-i2\pi \frac{nk}{2P}} = \sum_{n=0}^{P-1} x_{2n} e^{-i2\pi \frac{(2n)k}{2P}} + \sum_{n=0}^{P-1} x_{2n+1} e^{-i2\pi \frac{(2n+1)k}{2P}}$$
$$= \sum_{\substack{n=0\\ P-1\\ P-1\\ TFD \text{ taille } P = N/2}}^{P-1} x_{2n} e^{-i2\pi \frac{nk}{P}} + e^{-i\frac{k}{2P}} \sum_{\substack{n=0\\ P-1\\ P-1\\ P-1}}^{P-1} x_{2n+1} e^{-i2\pi \frac{nk}{P}}$$

Résumé des transformées de Fourier

• Temps continu (TFTC):
$$X(f) = \int_{\mathbb{R}} x(t) e^{-i2\pi ft} dt$$

• Temps discret (TFTD):
$$X(\tilde{f}) = \sum_{n \in \mathbb{Z}} x_n e^{-i2\pi \tilde{f}n}$$

• Discrète (TFD):
$$X_k = \sum_{n=0}^{N-1} x_k e^{-i2\pi \frac{k}{N}n}, \quad k = 0, \dots, N-1$$

• si
$$x_n = 0$$
 pour $n \neq 0, \dots, N-1$, lien TFD/TFTD:
 $X_k = X(\tilde{f} = k/N)$

• algorithmes rapides de TFD: FFT (en particulier si $N = 2^p$)

TFTC, TFTD et TFD/FFT

Bourrage de zéros (1/2)

• N échantillons disponibles dans vecteur $\mathbf{x} = \begin{pmatrix} x_0 \\ \vdots \\ x_{N-1} \end{pmatrix}$

$$(x_k = 0 \text{ pour } k \notin \{0, \dots, N-1\}).$$

- TFTD et TFD : $X(\tilde{f}) = \sum_{n=0}^{N-1} x_n e^{-i2\pi \tilde{f}n} \qquad \mathbf{X} = \begin{pmatrix} X_0 \\ \vdots \\ X_{N-1} \end{pmatrix} = \begin{pmatrix} X(0) \\ \vdots \\ X(\frac{N-1}{N}) \end{pmatrix}$
- $X(\tilde{f})$ pour \tilde{f} autre que k/N?

Bourrage de zéros (2/2)

•
$$\mathbf{y} = \begin{pmatrix} x_0 \\ \vdots \\ x_{N-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 de taille $M > N$ (bourrage de zéros)
• TFD de \mathbf{y} : $\mathbf{Y} = \begin{pmatrix} Y_0 \\ \vdots \\ Y_{M-1} \end{pmatrix} = \begin{pmatrix} Y(0) \\ \vdots \\ Y(M-1/M) \end{pmatrix}$ avec:

$$Y(\tilde{f}) = \sum_{n=0}^{N-1} y_n e^{-i2\pi \tilde{f}n} = \sum_{n=0}^{N-1} x_n e^{-i2\pi \tilde{f}n} = X(\tilde{f})$$

 $\rightarrow X(\tilde{f}) \text{ obtenu sur } M \text{ points } 0, \frac{1}{M}, \dots, \frac{M-1}{M} \text{ au lieu des } N \text{ points } \\ \text{donnés par la TFD de } \mathbf{x} = \begin{pmatrix} x_0 \\ \vdots \\ x_{N-1} \end{pmatrix}.$

Bourrage de zéros (zero-padding)

Introduction

- 2 Transformées temps discret
- 3 Filtres numériques (temps discret)
- 4 Représentations énergétiques
- 5 Signaux aléatoires (1/2)
- 6 Signaux aléatoires (2/2)
- Ø Systèmes à temps continu: filtrage et modulations
- 8 Echantillonnage
- 9 Transformée de Fourier discrète et FFT
- 10 Signaux à bande étroite

Signal à bande étroite

• Signal à bande étroite = signal dont la fréquence centrale est grande par rapport à la bande occupée $[f_0 - B, f_0 + B]$:

$$f_0 >> 2B$$

X(f)

- signal radio FM:
 - $f_0 \approx 100 \text{MHz}$ et $2B \approx 20$ à 40 kHz.
- signal vidéo UHF (télévision analogique):

 $f_0 \approx ext{qques 100MHz}$ et $2B \approx 6 ext{MHz}$

v présenter les outils nécessaires pour la représentation et l'étude de tels signaux.

Signal analytique

- si $\forall t, x(t) \in \mathbb{R}$, alors $X(-f) = X^*(f)$
 - \rightarrow se restreindre aux fréquences positives

Signal analytique

• $z_x(t)$, signal analytique associé au signal réel x(t) est défini par sa transformée de Fourier:

$$Z_x(f) = \begin{cases} 2X(f) & \text{si } f \ge 0, \\ 0 & \text{si } f < 0 \end{cases}$$

• Représentation schématique des spectres:

 $ightarrow \, z_x(t)$ ne peut pas être à valeurs réelles!

Signal analytique: cas sinusoïdal

•
$$x(t) = \cos(2\pi f_0 t) \xrightarrow{\mathrm{TF}} X(f) = \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$

• Représentation schématique des spectres:

 $\Rightarrow Z_x(f) = \delta(f-f_0)$ et donc: $z_x(t) = e^{\mathrm{i} 2\pi f_0 t}$

• Le signal analytique associé à $\cos(2\pi f_0 t)$ est l'exponentielle complexe $e^{i2\pi f_0 t}$.

Filtre analytique

• Le filtre qui a un signal associe son signal analytique est appelé filtre analytique.

$$\begin{array}{c|c} x(t) & h_a(t) \\ \hline X(f) & H_a(f) \end{array} \begin{array}{c} z_x(t) \\ \hline Z_x(f) \end{array}$$

• réponse en fréquence du filtre analytique:

$$H_a(f) = 2\mathbb{1}_{\mathbb{R}^+}(f) = \begin{cases} 2 & \text{si } f \ge 0, \\ 0 & \text{si } f < 0 \end{cases}$$

• réponse impulsionnelle du filtre analytique:

$$h_a(t) = \delta(t) + i\frac{1}{\pi t}$$

 $\left(\frac{1}{\pi t}: \text{ distribution à prendre en valeur principale}\right)$

Transformée de Hilbert (1/2)

 $z_x(t) = h_a(t) \star x(t) = \left(\delta(t) + i\frac{1}{\pi t}\right) \star x(t)$

۲

Transformée de Hilbert (1/2)

 $z_x(t) = h_a(t) \star x(t) = \left(\delta(t) + i\frac{1}{\pi t}\right) \star x(t)$ $= x(t) + i\underbrace{\left(\frac{1}{\pi t} \star x(t)\right)}_{\hat{x}(t)}$

۲

Transformée de Hilbert (1/2)

$$z_x(t) = h_a(t) \star x(t) = \left(\delta(t) + i\frac{1}{\pi t}\right) \star x(t)$$
$$= x(t) + i\underbrace{\left(\frac{1}{\pi t} \star x(t)\right)}_{\widehat{x}(t)}$$

- La transformée de Hilbert d'un signal x(t) est définie par: $\widehat{x}(t) = \frac{1}{\pi t} \star x(t)$
- Lien signal analytique z_x et transformée de Hilbert \hat{x} :

$$z_x(t) = x(t) + \mathfrak{i}\widehat{x}(t)$$

۲

Transformée de Hilbert (2/2)

- La transformée de Hilbert d'un signal x(t) est définie par: $\widehat{x}(t) = \frac{1}{\pi t} \star x(t)$
- Lien signal analytique z_x et transformée de Hilbert \widehat{x} :

$$z_x(t) = x(t) + \mathfrak{i}\widehat{x}(t)$$

 $\Rightarrow \ \mathrm{si} \ \forall t, \ x(t) \in \mathbb{R} \ \mathrm{alors} \ \forall t, \ \widehat{x}(t) \in \mathbb{R} \ \mathrm{et} \ x(t) = \Re[z_x(t)]$ • Effet sur le spectre: $Z_x(f) = X(f) + \mathrm{i}\widehat{X}(f) = \begin{cases} 2X(f) & \mathrm{si} \ f \geq 0, \\ 0 & \mathrm{sinon.} \end{cases}$

$$\Rightarrow \qquad \widehat{X}(f) = \begin{cases} -iX(f) & \text{si } f \ge 0, \\ iX(f) & \text{si } f < 0. \end{cases}$$

Filtre en quadrature

• Le filtre qui a un signal associe sa transformée de Hilbert est appelé filtre en quadrature.

$$\begin{array}{c|c} x(t) \\ \hline X(f) \end{array} \begin{array}{c} h_q(t) \\ \hline H_q(f) \end{array} \begin{array}{c} \widehat{x}(t) \\ \widehat{X}(f) \end{array}$$

• réponse en fréquence du filtre en quadrature:

$$H_q(f) = -i \operatorname{signe}(f)$$

• réponse impulsionnelle du filtre en quadrature:

$$h_q(t) = \frac{1}{\pi t}$$

 $\left(\frac{1}{\pi t}: \text{ valeur principale}\right)$

Transformée de Hilbert: cas sinusoïdal

•
$$x(t) = \cos(2\pi f_0 t) \xrightarrow{\text{TF}} X(f) = \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$

• D'où:

$$\begin{split} \widehat{X}(f) &= \begin{cases} -\mathbf{i}X(f) & \text{si } f \ge 0, \\ \mathbf{i}X(f) & \text{si } f < 0. \end{cases} \\ \widehat{X}(f) &= \frac{\delta(f - f_0) - \delta(f + f_0)}{2\mathbf{i}} & \text{et donc:} \\ \widehat{x}(t) &= \frac{e^{\mathbf{i}2\pi f_0 t} - e^{-\mathbf{i}2\pi f_0 t}}{2\mathbf{i}} = \sin(2\pi f_0 t) = \cos(2\pi f_0 t - \pi/2) \end{split}$$

$$\Rightarrow$$
 La transf. de Hilbert de $\cos(2\pi f_0 t)$ est $\sin(2\pi f_0 t)$.

 \rightsquigarrow filtre en quadrature \leftrightarrow déphaseur pur

$$\underline{\mathsf{Rq:}} \ e^{\mathrm{i}2\pi f_0 t} = \cos(2\pi f_0 t) + \mathfrak{i}\sin(2\pi f_0 t) \leftrightarrow z_x(t) = x(t) + \mathfrak{i}\widehat{x}(t).$$

Propriétés de la transformée de Hilbert

• si
$$\forall t, x(t) \in \mathbb{R}$$
 alors $\forall t, \hat{x}(t) \in \mathbb{R}$

• si $\forall t, x(t) \in \mathbb{R}$, x(t) et $\widehat{x}(t)$ sont orthogonaux

$$\int x(t)\widehat{x}(t)^* dt = 0$$

En effet: $\int x(t)\widehat{x}(t)^* dt = \int X(f)\widehat{X}(f)^* df = \int |X(f)|^2 \text{isigne}(f) df$

• Si M(f) et P(f), transformées de Fourier de m(t) et p(t) ont des supports disjoints:

$$\widehat{m(t)p(t)} = m(t)\widehat{p}(t)$$

(Th. de Bedrosian)

Enveloppe complexe

• Soit x(t) signal réel, à bande étroite $[-B + f_0, B + f_0]$ et $z_x(t)$ son signal analytique. L'enveloppe complexe de x(t) est:

$$\xi_x(t) = e^{-i2\pi f_0 t} z_x(t)$$

• Domaine des fréquence:

Enveloppe complexe

• Soit x(t) signal réel, à bande étroite $[-B + f_0, B + f_0]$ et $z_x(t)$ son signal analytique. L'enveloppe complexe de x(t) est:

$$\xi_x(t) = e^{-i2\pi f_0 t} z_x(t)$$

• Domaine des fréquence:

Enveloppe complexe

Soit x(t) signal réel, à bande étroite $[-B + f_0, B + f_0]$ et $z_x(t)$ son ٥ signal analytique. L'enveloppe complexe de x(t) est:

$$\xi_x(t) = e^{-i2\pi f_0 t} z_x(t)$$

|X(f)|

Domaine des fréquence: •

 $|\Xi_x(f)|$ J02B2BTransformées de Fourier $\Xi_x(f)$ de l'enveloppe complexe et $Z_x(f)$ du ۲ signal analytique:

$$\Xi_x(f) = Z_x(f+f_0)$$
• Exemple: inductance L: $u(t) = L \frac{dj(t)}{dt}$

- Exemple: inductance L: $u(t) = L \frac{dj(t)}{dt}$
- Signaux réels:

$$j(t) = J\cos(2\pi f_0 t)$$
 $u(t) = -LJ2\pi f_0\sin(2\pi f_0 t)$
 $= LJ2\pi f_0\cos(2\pi f_0 t + \frac{\pi}{2})$

- Exemple: inductance L: $u(t) = L \frac{dj(t)}{dt}$
- Signaux réels:

 $j(t) = J\cos(2\pi f_0 t)$ $u(t) = -LJ2\pi f_0\sin(2\pi f_0 t)$ $= LJ2\pi f_0\cos(2\pi f_0 t + \frac{\pi}{2})$

• Signaux complexes:

$$z_x(t)$$
 $\underline{j}(t) = Je^{i2\pi f_0 t}$ $\underline{u}(t) = LJ2\pi f_0 e^{i(2\pi f_0 t + \frac{\pi}{2})}$
signal analytique $\underline{u}(t) = LJ2\pi f_0 e^{i(2\pi f_0 t + \frac{\pi}{2})}$
 $= LJ(i2\pi f_0)e^{i2\pi f_0 t} = \underline{U}e^{i2\pi f_0 t}$

- Exemple: inductance L: $u(t) = L \frac{dj(t)}{dt}$
- Signaux réels:

 $j(t) = J\cos(2\pi f_0 t) \qquad u(t) = -LJ2\pi f_0\sin(2\pi f_0 t)$ $= LJ2\pi f_0\cos(2\pi f_0 t + \frac{\pi}{2})$

• Signaux complexes:

$$z_x(t)$$
 $\underline{j}(t) = Je^{i2\pi f_0 t}$ $\underline{u}(t) = LJ2\pi f_0 e^{i(2\pi f_0 t + \frac{\pi}{2})}$
signal analytique $\underline{u}(t) = LJ(i2\pi f_0)e^{i2\pi f_0 t} = \underline{U}e^{i2\pi f_0 t}$

• Amplitudes complexes obtenues en multipliant par $e^{-i2\pi f_0 t}$, càd /translation du spectre de $-f_0$: $\xi_x(t)$ enveloppe complexe $\underline{U} = LJ(i2\pi f_0)$

Filtre passe-bas équivalent

Soit x(t) à bande étroite centrée autour de f_0 .

• Filtrage haute fréquence:
$$\begin{array}{c} x(t) \\ X(f) \end{array}$$
 $\begin{array}{c} h(t) \\ H(f) \end{array}$ $\begin{array}{c} y(t) \\ Y(f) = H(f)X(f) \end{array}$

Filtre passe-bas équivalent

Soit x(t) à bande étroite centrée autour de f_0 .

• Filtrage haute fréquence:
$$\begin{array}{c} x(t) \\ X(f) \end{array}$$
 $\begin{array}{c} h(t) \\ H(f) \end{array}$ $\begin{array}{c} y(t) \\ Y(f) = H(f)X(f) \end{array}$

• Pour les signaux analytiques:

$$Z_y(f) = H(f)Z_x(f) \quad \Rightarrow \quad Z_y(f+f_0) = H(f+f_0)Z_x(f+f_0)$$

Filtre passe-bas équivalent

Soit x(t) à bande étroite centrée autour de f_0 .

• Filtrage haute fréquence:
$$\begin{array}{c} x(t) \\ X(f) \end{array}$$
 $\begin{array}{c} h(t) \\ H(f) \end{array} \begin{array}{c} y(t) \\ Y(f) = H(f)X(f) \end{array}$

Pour les signaux analytiques:

$$Z_y(f) = H(f)Z_x(f) \quad \Rightarrow \quad Z_y(f+f_0) = H(f+f_0)Z_x(f+f_0)$$

• Filtrage haute fréquence de $x(t) \Leftrightarrow$ filtrage basse fréquence sur les enveloppes complexes par le filtre passe-bas équivalent $\widetilde{H}(f) = \begin{cases} H(f+f_0) & \text{si } f \ge -f_0 \\ 0 & \text{sinon.} \end{cases}$.

$$\underbrace{\xi_x(t)}_{\Xi_x(f)} \begin{array}{c} h(t) \\ \widetilde{H}(f) \end{array} \underbrace{\xi_y(t)}_{\Xi_y(f)} = \widetilde{H}(f) \Xi_x(f)$$

Signaux bande étroite: résumé des représentations

Signaux bande étroite: résumé des représentations

Signal bande étroite: représentations (1/2)

Par définition:

$$\xi_x(t) = z_x(t)e^{-\mathbf{i}2\pi f_0 t} = \left[x(t) + \mathbf{i}\widehat{x}(t)\right]e^{-\mathbf{i}2\pi f_0 t}$$

donc:

$$x(t) = \Re \left[\xi_x(t) e^{i2\pi f_0 t} \right]$$

• En écrivant $\xi_x(t) = |\xi_x(t)| e^{i\varphi(t)}$, on définit pour x(t):

- enveloppe instantanée: $|\xi_x(t)|$
- ▶ phase instantanée: $\phi(t) = 2\pi f_0 t + \varphi(t)$
- Fréquence instantanée: $\frac{1}{2\pi} \frac{d\phi(t)}{dt} = f_0 + \frac{1}{2\pi} \frac{d\varphi(t)}{dt}$
- $\rightarrow\,$ avec variations de la fréquence/phase instantanée, modulation angulaire (FM, modulation de phase, $\dots)$

Signal bande étroite: représentations (2/2)

$$x(t) = \Re \left[\xi_x(t) e^{i2\pi f_0 t} \right]$$

•
$$\xi_x(t) = p_x(t) + iq_x(t)$$

• $p_x(t) = \text{composante en phase}$
• $q_x(t) = \text{composante en quadrature}$
 $x(t) = \Re \left[(p_x(t) + iq_x(t))e^{i2\pi f_0 t} \right]$

$$x(t) = p_x(t)\cos(2\pi f_0 t) - q_x(t)\sin(2\pi f_0 t)$$

- $\rightarrow\,$ on retrouve l'expression de la double modulation en quadrature
- $\rightarrow \,$ transmission d'un signal à valeurs dans $\mathbb{C}.$

۲

Comme $z_m(t) = m(t) + i\widehat{m}(t)$,

$$x(t) = m(t)\cos(2\pi f_0 t) - \hat{m}(t)\sin(2\pi f_0 t)$$

 $\rightsquigarrow x(t) \leftrightarrow \text{modulation d'amplitude de } z_m(t) \in \mathbb{C}$