Matlab toolbox for separation of convolutive mixtures

  Contrast functions
 
Toolbox main page
   
How to use the toolbox
  Download
  Getting started
  Parameters/advanced usage
   
Separation algorithm
  The deflation method
  Contrast functions
  References
   
   
Contrast functions

Contrast functions

Note: for more informations on contrast functions (and particularly on quadratic contrast functions), see the references.

We give here is a brief description of the different contrast functions proposed in the toolbox. We denote by $ y(n)$ the output of the separating filter. When calling [Source,Contribution,W] = Deflation(x,Param,FreqCycl);, the following contrast functions have been implemented depending on the value of Param.Method:

  • Case of stationnary sources:
    • If Param.Method='kurtosisRealValued', the contrast:

      $\displaystyle y(n) \mapsto \vert\mathrm{Cum}\left\{y(n),y(n),y(n),y(n)\right\}\vert^2$    

      is maximized under the constraint $ \mathbb{E}\{y(n)^2\}=1$. This contrast function is valid for real-valued stationnary sources.
    • If Param.Method='kurtosis', the contrast:

      $\displaystyle y(n) \mapsto \vert\mathrm{Cum}\left\{y(n),y(n)^*,y(n),y(n)^*\right\}\vert^2$    

      is maximized under the constraint $ \mathbb{E}\{\vert y(n)\vert^2\}=1$. This contrast function is valid for both real-valued and complex-valued stationnary sources.
    • If Param.Method='quadratic', the contrast:

      $\displaystyle y(n) \mapsto \vert\mathrm{Cum}\left\{y(n),y(n)^*,z(n),z(n)^*\right\}\vert$    

      is maximized under the constraint $ \mathbb{E}\{\vert y(n)\vert^2\}=1$, where: $ z(n)$ is a fixed ``reference'' signal. This contrast function is valid for both real-valued and complex-valued stationnary sources. See the references on quadratic contrasts for more information.
  • Case of cyclo-stationnary sources: If Param.Method='cyclostat', then the contrast:

    $\displaystyle y(n) \mapsto \langle \vert\mathrm{Cum}\left\{y(n),y(n)^*,y(n),y(n)^*\right\}\vert \rangle$    

    is maximized under the constraint $ \langle\mathbb{E}\{\vert y(n)\vert^2\}\rangle=1$ (where ( $ \langle.\rangle$ is the time average operator). This contrast function is valid for both real-valued and complex-valued sources which are cyclo-stationnary.

 
Contact : webmaster