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Abstract. This is a framework for resource allocation in a heterogeneous system
composed of various access networks, for instance Third Generation wireless
networks (3G) and WLAN, in the presence of multimedia traffic, namely voice
and data. Our aim is to present a game theoretical modeling of routing and load-
balancing strategies along with admission control and pricing in cooperative and
non-cooperative settings.

1 Introduction

In a heterogeneous environment composed of more than one access network, say third
generation (3G) [1] [2] and IEEE802.11-based WLAN [3] networks, the question is
that of how to allocate resources in a way that is optimal both to the user and operator
(see Figure 1).
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Fig. 1. Reference model.

The answer is multi-fold. On the user side, the issue is that of routing. Optimality
in this case refers to the best QoS, according to the type of traffic, at the best price. On
the operator side, the issue is that of admission control and pricing so as to maximize
revenue which is proportional to resource utilization itself subject to granted QoS and
the prices assigned to each type of resources as well as their cost.



Game theory [4] [5] studies interactions and winning strategies for parties involved
in situations where their interest conflict with each other. It has applications to real
games, economics, commerce, politics and recently telecommunications. The research
area of networking games and their application in telecommunications has known rapid
developments through the last years [6]. Since optimization theory is unable to take into
account interactions between different actors, be they users, protocols, nature or other,
game theory has shown to be a useful tool allowing to study behavior and eventual
equilibrium of complicated and interacting systems.

Inspired from economical environments, game theoretical modeling proved to be a
powerful tool to study resources allocation in homogeneous as well as heterogeneous
systems presenting contending users or classes for those resources. More specifically, it
has been used in power control [7] and access to a common shared link, but also to study
flow control problems and to find structural properties of equilibrias in systems involv-
ing routing into links with different capacities ([8], [9]). For a survey on applications
but also on methodologies and challenges of networking games in telecommunication,
the reader is refered to Reference [6].

Our aim in this work is to model interaction between different, non-homogeneous
types of traffic, namely voice and data, with eventually different radio conditions, com-
peting for the use of resources in heterogeneous networks offering different QoS. The
dynamic sharing nature of wireless protocols in recent networks, particularly Medium
Access Control (MAC) protocols, makes the game theoretical tool suitable to study in-
teraction and resulting strategies of involved players, be they the end users asking for
resources and subsequently a QoS level, and the network strategies for admitting those
calls and pricing them after admission.

At this point, we have to distinguish between cooperative and non-cooperative set-
tings, both on the user and operator side. On the user side, users may cooperate so as
to achieve the best global utility function. This is not very probable. Often, users are
non-cooperative wherein only maximizing the individual utility function is at sake.

On the operator side, cooperation is typically given when the heterogeneous access
networks belong to one operator and the objective is again to maximize some global
utility function. If different players own the different networks, the problem becomes a
game where each one tries to maximize its own utility function.

Now, taking the problem as a whole, with both users and operator(s), the resource
allocation problem may be solved through some classical Nash equilibrium [5], defined
as being the players actions from which no player has an incentive to unilaterally devi-
ate, or may be brought to some optimal operation point through for example incentives
by the operator to guide users to choices that simultaneously maximize their utility
function as well as his.

The remainder of this work is organized as follows. In section II, we give a basic
introduction for the tool of game theory. In Section III, we investigate the routing and
show the distinction between cooperative versus the non-cooperative cases. The same
distinction pertains for admission control and pricing too and is presented in Section
IV. Section V presents a cross-layer modeling of the two systems under consideration.
Eventually, Section VI concludes the paper.



2 Game theory primer

A strategic game has three components:

– A set of players Pl

– A set of possible actions Apl for each player pl ∈ Pl

– A set of utilities U, where for each player pl ∈ Pl, the utility for each player is a
function of the action profile a = (ag , a−g), ag being the action of player pl and
a−g the vector of all other players strategies. An action profile belongs to the set
of actions profiles denotes by A =

∏

pl∈Pl

Apl. In other words a utility function is a

mapping from the set of all actions profiles A to the set of real numbers R.

Two settings may arise in a system involving several players. Players may cooper-
ate and the problem reduces to an optimization problem where a single player drives
the system to a social equilibrium. A standard criterion used in game theor to express
efficiency of such equilibrium is Pareto efficiency. A strategy profile a is called Pareto
efficient if there is no other strategy a

′ for which:

– 1) all users do at least as well
– 2) at least one user does strictly better.

Another important setting is that of non-cooperative players where each decision
maker selfishly chooses its strategy. In this case, the equilibrium reached, when it exists,
is called a Nash equilibrium and is defined as the point from which no player finds it
beneficial to unilaterally deviate.

Pareto efficiency is a desirable operating point for a given system in general, how-
ever non-cooperative equilibria are in general Pareto inefficient.An important question
that arises is how to drive a system where decision makers have a non-cooperative be-
havior to the system’s optimal point. This question has been addressed in [10].

3 User side : routing/load-balancing

We consider a QoS-based routing, where each type of traffic, broadly classified into
streaming versus elastic and each further decomposed into classes according to various
radio conditions, chooses the proportion of flows to be sent to each subnetwork.

At this point, two situations arise. One can imagine some cooperative behavior of
different classes, where the routing controller wants to achieve in a social manner, the
best global utility, QoS divided by a given price in this case, for different classes in a
fair manner. Another case arises when non-cooperative classes behave as selfish play-
ers, each player trying to choose individually its routing strategy so as to optimize its
individual utility, i.e., its own perceived QoS normalized to the price.

Recall that in the cooperative case, Pareto-optimal points are defined as points cor-
responding to equilibria from which any deviation will lead to a degradation in the
performance of at least one player in the cooperative game. It should be noted that in
a multi-class environment, there is an infinite number of solutions, so-called Pareto-
optimal strategies. The notion of fairness is then introduced to select a unique operating
point. In the theory of cooperative games this is known as the Nash arbitration scheme.



In the non cooperative case, however, every class acts selfishly to optimize its own
performance measure regardless of others’ performance. Such games are characterized
by the Nash equilibrium point, when it exists, defined as the (routing) strategy profile
from which no player finds it beneficial to unilaterally deviate. This can arise in situ-
ations where a decentralized routing decision is adopted and where end users choose
their subnetwork in a selfish manner so as to optimize their individual performance
measure.

From an operator point of view, it is more beneficial to operate on Pareto-optimal
points since Nash equilibrium points are in some cases inefficient compared to Pareto-
optimal solutions.

In what follows, we first present utility functions, the measure that assesses the user
degree of satisfaction from a given setting.

3.1 User utilities

We consider a set of voice and data users, with index j ∈ J = {v, d} denoting their
respective types and an index k ∈ K = {1, ...,K} denoting each type’s radio condi-
tions. Let these users share resources in a set of n ∈ N = {1, ..., N} possible parallel
subnetworks.

We consider probabilistic routing of calls according to their type of traffic and radio
conditions. A type-(j, k) selects the n-th subnetwork with a probability rj,k

n . Let λj,k =
∑N

n=1 λ
j,k
n be the total flow demand of class-(j, k) users, where λj,k

n = rj,k
n λj,k is the

mean rate of class-(j, k) flow that is routed through subnetwork n.
The utility function J j,k of class-(j, k) is the utility achieved by that class and de-

pends on its own strategy given by the rate vectorΛj,k = (λj,k
n )n∈N, but it also depends

on other classes routing decisions, denoted by Λ−(j,k). Or:

Jj,k = Jj,k(Λj,k, Λ−(j,k))

For a QoS-based routing, the natural candidate for utility functions is some per-
formance measure seen by the call, blocking probability for voice Bv,k

n , and the mean
transfer time for data Md,k

n , normalized to the unitary price pn of resources of each
subnetwork n (pn corresponds to the price per unit time for the case of voice and to a
price per unit volume for the case of data). In this work, we define the utility function
of an individual (j, k)-class by :

Jj,k(Λj,k, Λ−(j,k)) = −

N
∑

n=1

λj,k
n (1 −Bj,k

n )Xj,k
n × pn

whereXj,k
n is equal to the blocking probabilityBv,k

n for voice traffic and mean transfer
time Md,k

n for data.

Remark 1. Other utility functions are possible. For instance, the one where a subclass
tries to maximize some utility related only to the throughput or mean transfer time,
while maintaining its blocking probability below a given acceptable limit. In this case,
we are in the presence of a constrained optimization/game problem where the weights
on the blocking probabilities are the Lagrange multipliers.



Remark 2. Stability conditions are required in the case where no admission control is
implemented in the networks. In this case the admissible region should be specified.

The remainder depends on whether strategies are cooperative or not.

3.2 Non-cooperative routing

In a non-cooperative setting, different classes are considered as selfish players where
each class implements a routing strategy so as to maximize its own net utility function
as a response to others’ strategies without any concern about others utilities. For a (j, k)-
class user, the set of all possible strategies is given by:

F
j,k = {(Λj,k) ∈ R

N : λj,k
n ≥ 0 for n ∈ N;

N
∑

n=1

λj,k
n = λj,k}

In this case, optimality cannot be well defined. The Nash equilibrium is considered
as a specific form of optimality [5]. When it exists, the Nash equilibrium is a routing
strategy profile from which no class finds it beneficial to unilaterally deviate, i.e., no
class finds it beneficial for its perceived QoS to unilaterally change the amount of load
it is sending to each subnetwork. More precisely, a (Λj,k) vector is a Nash equilibrium
if for all (j, k), j ∈ J, k ∈ K:

Λj,k ∈ argmax
fj,k∈Fj,k

Jj,k(f j,k, Λ−(j,k))

meaning thatΛj,k is the best strategy of class-(j, k) player while other players strategies
are fixed.

If the above-mentioned utility functions are convex in the routing strategy Λj,k,
the Kuhn-Tucker optimality conditions are applicable and imply that the response of
users of class-(j, k) given by Λj,k is the optimal response to other classes strategies
given by Λ−(j,k) if and only if there exist Lagrange multipliers lj,k and (sj,k

n )n∈N =

(sj,k
1 , ..., s

j,k
N )) such that [9][8]

∂Jj,k

∂λ
j,k
n

(Λj,k, Λ−(j,k)) − lj,k − sj,k
n = 0 n = 1, ..., N

N
∑

n=1
λj,k

n = λj,k

sj,k
n λj,k

n = 0
lj,k ≥ 0, sj,k

n ≥ 0, λj,k
n ≥ 0 n = 1, ..., N

(1)

3.3 Cooperative routing

We now turn to the cooperative case where for instance a central operator assigns calls
to each subnetwork in a probabilistic manner ensuring fairness in terms of the QoS
perceived by different classes. In this case, user classes are considered as cooperative



players trying to share resources so as to optimize an overall utility function. The JK-
dimensioned cooperative game reduces then to an optimization problem where the cen-
tral decision maker (the router) maximizes a global utility function built of individual
ones.

The routing strategy is a routing vector (λj,k
n )n∈N,j∈J,k∈K. The set of all possible

routing vectors is given by:

F = {Λ = (λj,k
n )n∈N,j∈J,k∈K : λj,k

n ≥ 0 for n ∈ N, j ∈ J , k ∈ K;
N

∑

n=1

λj,k
n = λj,k}

We are interested in Pareto optimality. In this setting, the solution provides that
no player can increase its utility without adversely affecting the others [11]. Pareto
optimility leads to a set of P − 1 equations for P players, therefore an infinite number
of operating points called Pareto boundary. To choose one operating point, the notion
of fairness is introduced. The cooperative game can be formulated as follows:

max
Λ∈F

| J(Λ) |

J.J−1 = γ
(2)

where γ (| γ |= 1) is a JK’s dimensioned vector defining the direction in which
the Pareto point is required. The Pareto boundary can be found by evaluating Pareto
points in all possible directions γ, in other words γ refers to the fairness degree that a
centralized decision maker might give to different classes.

4 Network side : Admission Control and pricing

While end users, if given the right to decide on their routing strategy, are only interested
in the QoS they perceive regardless of the good use of resources, the network operator(s)
do care about the way resources are utilized. In other words, supposing that a call of
type (j, k) ∈ J ⊗ K has a revenue pj , the operator should choose its prices as well as
its Call Admission Control (CAC) strategy so as to maximize its total revenuesR given
by:

R(Λ,CAC, p) =
∑

j∈J,k∈K

(p− I)λj,k(1 −Bj,k)

where I represents the cost of the investment made by the operator for the given tech-
nology.

Please note that in the above expression the revenues of the network are a result
of both the offered load, the price and the implemented admission strategy. For every
routing strategy, be it cooperative or not, and in order to maximize its revenue, the
operator must offer an attractive price and implement some intelligent admission control
to make the best profit of his resources given that load is dictated by end users.

Remark 3. If no fairness considerations towards different classes of users are taken
into account from the operator side, maximizing revenues only may lead to very unfair
situations where for instance users experiencing bad radio conditions are constantly
blocked.



We now consider cooperative versus non-cooperative configurations. For the sake
of simplicity, we adopt a threshold-based admission control leading to closed-form ex-
pressions. Nevertheless, our framework is general and can be used for other families of
admission control strategies such as trunk reservation.

4.1 Cooperative case

To make the best use out of the network resources, the strategy of the operator is to
choose a threshold parameter T j,k

n for each class (j, k). The set of all possible strategies
for admission control is given by :

T = ⊗
n∈N

⊗
j∈J

⊗
k∈K

T
j,k
n

where
T

j,k
n = {0, ...., N j,k

n }

and N j,k
n is the maximum number of admitted users of class-(j, k) assuming that this

class is the only one served in network n. The dimension of this set is given by | T |=
∏

j∈J

∏

k∈K

N j,k.

In the case of a wireless network where capacity is shared in a nonlinear manner,
determining the set T of all possible strategies for admission control is more complex.
The set of threshold strategies is a subset of the above-mentionedT containing elements
corresponding to feasible states, i.e., the set of all possible strategies where all admitted
users obtain sufficient resources (at the MAC layer) so as to satisfy their QoS.

Similarly, the same analysis holds for the pricing strategy. In the cooperative case, a
centralized decision maker chooses a vector of prices (p)n∈N in a finite set of possible
prices P.

In the case of a single operator implementing admission control, the objective func-
tion is as follows

max
T∈T,p∈P

R(Λ, T, p) (3)

4.2 Non-cooperative case

In this case, each network has its own utility function and each network optimizes its
CAC parameters and chooses its prices independently of other networks. Formally, each
network n ∈ N solves selfishly the following maximization problem, considering other
network admission strategies fixed to T−n and prices to p−n:

max
Tn∈Tn,pn∈Pn

Rn(Λ, Tn, T−n, pn, p−n) (4)

where (T)n is the set of all possible network n strategies given by:

Tn = ⊗
j∈J

⊗
k∈K

T j,k
n

and each subnetwork chooses its own price pn from a finite set of possible prices
Pn.



4.3 Optimal strategies

The set of all possible strategies is a finite set limited to the threshold values guaran-
teeing some QoS to the admitted users as well as prices. An extensive search algorithm
is used to find the optimal threshold parameters [12]. Some algorithms accelerating
the search for the optimal threshold parameters can be run by ordering traffic classes
according to their revenues.

Admission as well as pricing strategies need not be run on the same time scales. The
operator may well fix the price first and then optimize according to admission control.

5 Performance metrics

The above-mentioned utility functions, both for network and user, have been formulated
in terms of performance metrics: mean transfer time and blocking probabilities. These
performance metrics are derived as follows.

Consider a subnetwork n where the arrival of (j, k)-class users is Poissonian with
mean rate λj,k

n for fresh users and hj,k
n for handoff users. The service is exponential

with mean rate µj,k
n . The mean service time of voice users is constant; it depends on the

share of resources for data transfers. In what follows, index n will be suppressed for
clarity.

In 3G networks, voice calls shall be assigned to constant rate dedicated links whereas
data ones shall share the leftover power on shared links implementing High Speed
Downlink Packet Access (HSDPA). At the MAC layer, HSDPA implements, among
other mechanisms, opportunistic scheduling, typically through the use of the Propor-
tional Fair Scheduling (PFS) algorithm.

The service rate of a class-(k) data call in such a system is given by:

µj,k(x) =
ψk(C −

∑K
k=1 x

v,kφv,k)
k
G(xd)

| xd |

where ψk is an attenuation factor related to radio conditions of class-k users, C is the
overall system capacity, φv,k is the share of resources for voice users out of the total
resources and G(.) is the scheduling gain [13].

In IEEE802.11 WLAN, the MAC layer is based on CSMA/CA, and all flows, voice
and data, are subject to competition. Voice frames are however severely affected by
aggressive data sources as the latter are typically saturated ones, i.e., always with a
frame to send. The share of voice and data users in this case is a nonlinear function of
the number of users of each type in the system and is explicitly given in References [14]
and [15].

The overall system can be described by a Markov process. It is however irreversible
which makes product form expressions for the steady-state distribution impossible. As
proposed in [16], we consider a quasi-stationary regime, where data calls would reach
steady states between voice calls arrivals and departures. Accordingly, the marginal
distribution of voice calls in the system is given by an M/M/c/c queueing system with
steady state distribution of the number of ongoing voice calls given by [17]:



π(xv) =
1

G

K
∏

k=1

qk(xv,k) (5)

where

qk(xv,k)=










( λv,k+hv,k

µv,k )
xv,k

xv,k!
if xv,k ≤ T v,k

( λv,k+hv,k

µv,k )
T v,k

( hv,k

µv,k )
xv,k

−Tv,k

xv,k!
if T v,k < xv,k ≤ Hv,k

and

G =
∑

xv∈Xv

K
∏

k=1

qk(xv,k)

is the normalization constant. X
v is the state space of voice users for which QoS is

guaranteed on the packet level, T v,k is the threshold value above which no new voice
arrival is admitted andHv,k is the threshold value above which no voice call in handover
is admitted.

As of data, it can be modeled as an M/G/1-Processor Sharing (PS) queue with
steady-state probabilities given by:

π(xd | xv) =
1

H

K
∏

k=1

fk(xd,k) (6)

where

fk(xd,k | xv) =











( λd,k+hd,k

µd,k(x)
)xd,k

xd,k! if xd,k ≤ T d,k

( λd,k+hd,k

µd,k(x)
)
T d,k

( hd,k

µd,k(x)
)
xd,k

−T d,k

xd,k!
if T d,k < xd,k ≤ Hd,k

whereH is the normalization constant obtained by setting the sum of all joint probabil-
ities to one, T d,k and Hd,k are defined similarly to T v,k and Hv,k .

These joint steady-state probabilities π(xv , xd) are given by:

π(xv , xd) = π(xd | xv) · π(xv) (7)

Now, the performance measures are given as follows.
The blocking probabilities of a class-k fresh arrival voice or data user is given by:

Bj,k =
∑

x−(j,k)

Hj,k

∑

xj,k=T j,k

π(x−(j,k), xj,k)

and for calls in handover



B
j,k
h =

∑

x−(j,k)

π(x−(j,k), Hj,k)

The mean file transfer time W k of a class-k data call is given by the a phase-2 type
distribution taking into account the service received in both subsystems in case of a
handover. The sojourn time S in each subsystem is given by the minimum between the
dwell time V in the subsystem and W ( 1

S
= 1

V
+ 1

W
) [18]:

Sk =
x̄d,k

λd,k(1 −Bd,k) + hd,k(1 −B
d,k
h )

where x̄d,k is the mean number of data flows of class−k in the subnetwork.

6 Conclusion

We presented in this work a framework for modeling the relationships between users,
operators as well as the relationship between them in a heterogeneous environments
where several wireless networks share the access of some Internet cloud. We covered
the cases of cooperative optimization and non-cooperative games between the different
players as these cases arise in real.

Our new step shall be devoted to the numeric analysis of such strategies in an at-
tempt to quantify network-oriented issues, such as what the best options for voice and
data users are, whether it is better for network operators to cooperate or not and do users
interest correspond to the network’s one.
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