
Disconnection Metadata for Distributed Applications in Mobile Environments

Nabil Kouici, Denis Conan, and Guy Bernard
GET / INT, CNRS Samovar

9 rue Charles Fourier, 91011 Évry, France�
Nabil.Kouici, Denis.Conan, Guy.Bernard � @int-evry.fr

Phone: 33 1 60 76 44 15, 45 34, 45 67 Fax: 33 1 60 76 47 80

Abstract

The need to continue to work in a mobile environment
raises the problem of data availability in the presence of
disconnections. Our approach aiming at solving this prob-
lem is to make a local replication of data and code on the
mobile terminal. The system and the applications should
also be reactive to mobile environment changes. The work
presented in this paper is the continuation of Domint [6, 7],
a platform to cope with disconnections in mobile environ-
ments for CORBA-based applications.

In this paper, we go further in the study of the role of dis-
connected entities by proposing meta-data to build patterns
in order to (1) choose which entities of the distributed ap-
plication must become disconnected, and (2) state whether
disconnected entities are necessary for the execution while
being disconnected. We also outline the integration of these
meta-data into the CORBA component-based architecture.

Keywords: mobile computing, middleware, disconnec-
tion, meta-data, components.

1 Introduction

Last years have been marked by a rapid evolution in
computer networks and machines used in distributed en-
vironments. We went from local area networks to large
mobile networks, inter-connecting a wide variety of ma-
chines, including more and more mobile terminals like mo-
bile phones and personal digital assistants. An important
characteristic of mobile environments is that they suffer
from frequent disconnections. A disconnection is a nor-
mal event in such environments and should not be con-
sidered as a failure. This has a profound impact on how

applications are distributed. We distinguish between two
kinds of disconnections: voluntary disconnections when
the user decides to work on their own for saving battery
or communication costs, or when radio transmissions are
prohibited (as aboard a plane), and involuntary disconnec-
tions due to physical wireless communication breakdowns,
such as in an uncovered area or when the user has moved
out of the reach of a base station. We also consider the
case where the communication is still possible but not at an
optimal level, resulting from intermittent communication,
low-bandwidth, high-latency, or expensive networks.

The need to continue to work in a mobile environment
raises the problem of data availability in the presence of
disconnections. The approach aiming at solving this prob-
lem is to make a local replication of data and code on the
mobile terminal. The system and the applications should
also be reactive to mobile environment changes. The work
presented in this paper is the continuation of Domint [6, 7],
a platform to cope with disconnections in mobile environ-
ments for CORBA-based applications. A proxy entity rep-
resenting the remote server entity and called a disconnected
entity, is deployed automatically on the client terminal.
Connectivity management relies on an hysteresis mecha-
nism to avoid too frequent state transfers and switchings
between the disconnected and the remote server entities.
For this purpose, we introduce a first-class partially con-
nected mode (requests are sent to disconnected entities that
forward them to remote server entities), in addition to the
connected (requests are sent directly to remote server enti-
ties) and disconnected (requests are sent solely to discon-
nected entities that perform logging) modes.

In this paper, we go further in the study of the role of
disconnected entities by proposing patterns in order to (1)
choose which entities of the distributed application must
become disconnected, (2) state whether disconnected en-



tities are necessary for the execution while being discon-
nected, and (3) set priorities when the resource poverty or
the connectivity don’t allow all the necessary disconnected
entities to be cached or updated on the mobile terminal.
The remainder of the paper is structured as follows. Sec-
tions 2 and 3 present the motivations and the meta-data
introduced to cope with these issues. Section 4 outlines
the use of our meta-data in component-oriented middle-
ware and gives a brief description of the implementation.
Finally, Section 5 concludes.

2 Motivations and related work

A considerable effort of research is necessary in order
to adapt distributed systems to the characteristics of mo-
bile computing. Adaptation can be performed by the ap-
plication (laissez-faire strategy), by the system (transpar-
ent strategy), or by both the application and the system
(collaboration strategy)[26]. As surveyed in [13], there
is much work dealing with mobile information access in
client/server applications that demonstrates that the laissez-
faire and the transparent approaches are not adequate.

Coda [16, 27, 26] is a file management system that de-
fines the notion of implicit and explicit data. Implicit data
are composed of the client history, thus reflecting recent
accesses. Explicit data take the form of a data base, the
hoard data base, built by the clients of the application, thus
permitting non-optimal or bad choices when they don’t
fully understand the application. Consequently, applica-
tions may not be usable during disconnections. Odyssey
[18, 19] adds data parameters: the fidelity and a tolerance
window, well adapted to weak connectivity but not to dis-
connections. Rover [14] introduces two concepts: relocat-
able dynamic objects (RDO) and queued remote procedure
call. Rover treats all the application objects in the same
way; it doesn’t take the application semantics into account
and programmers must design and code their applications
in terms of RDO. Therefore, as far as cache management
for disconnection handling is concerned, the majority of
the solutions don’t associate the tagging of entities deploy-
able on the mobile terminal with the prioritisation of the
deployment.

The usage of meta-data has already been investigated
in the field of reflective middleware in order to achieve
adaptability and flexibility [3, 23]. XMIDDLE [4] de-
fines meta-data gathered in an application profile describ-
ing how the middleware must behave when executing in
a particular context. This profile contains information
on the external resources (network bandwidth, battery re-

sources. . . ) and on the services offered by the middle-
ware. Hence, it doesn’t concern the application semantics.
In software component technologies [28], extra functional
properties are described in descriptors. For example, the
CORBA component model (CCM) specification [20] pro-
poses four types of descriptors: Software package descrip-
tors, CORBA component descriptors, component assembly
descriptors, and component property file descriptors. None
of them treats the connectivity and the creation of the prox-
ies on the mobile terminal: disconnection meta-data speci-
fication and description should be integrated into them.

The contribution of this paper is twofold. We pro-
pose three meta-data answering the following questions:
Can this entity be used while being disconnected (discon-
nectability)? Is this entity necessary for the execution of
the application in the disconnected mode (necessity)? Fi-
nally, is this entity having priority w.r.t. the synchronisation
with the corresponding entity on the wired host (criticity)?
This paper presents the first two properties that are static
(considered already set when starting the application), the
last one being dynamic (evolving during the execution) is
left as an open issue. The second part of the contribution
is the design of the corresponding patterns in the CORBA
component model.

3 Meta-model for disconnection manage-
ment

Some data, called meta-data, may be defined to be data
which inform about the semantics of some other data and
which allow their relevant use. In this section, we use meta-
data to specify if an object can have a proxy on the mobile
terminal (cf. Section 3.1) and if this proxy is necessary for
the execution while being disconnected (cf. Section 3.2).

We use the word ”object” in its general meaning to de-
fine the granularity of the entities manipulated by the sys-
tem (e.g., a file in file-oriented systems, a record in data-
oriented systems, an object in object-oriented systems, a
component in the component-oriented systems). In addi-
tion, for the sake of clarity, we exemplify meta-data defini-
tions with a wireless email browser application. This appli-
cation is composed of three object types: MailBoxMan-
ager objects are responsible for creating, deleting, and lo-
calising MailBox objects; the latter objects provide meth-
ods for sending, receiving, and deleting messages; finally,
AddressBook objects allow mailbox users to manipulate
email addresses and mailing lists.



Necessity
Object Disconnectable Developer’s choice User’s choice Final

MailBox yes NO – NO
MailBoxManager no n/a n/a n/a

AddressBook yes UO NO NO

Table 1. Partitioning of objects of the wireless email browser example application: “UO”, “NO”, and “n/a” stands for “unneces-
sary object”, “necessary object”, and “not applicable”, respectively.

Figure 1. Meta-model of application objects’ partition-
ing.

3.1 Disconnectability meta-data

The disconnectability meta-data contain information in-
dicating whether a server object on the wired host can have
a proxy on the mobile terminal. So, application objects are
partitioned into two groups. Figure 1 depicts this partition-
ing plus others introduced by the necessity meta-data pre-
sented in Section 3.2. This choice is made by application
developers1 since they must build the application with these
constraints. For example, for security reasons, application
developers may decide to deploy some objects on dedicated
secure hosts and to prevent clients from manipulating these
objects on other hosts. Thus, proxies are not allowed for
these objects and these objects are stated to be not discon-
nectable. In addition, application developers must design
proxy version of disconnectable objects: as shown in [6, 7],

1In a component-oriented development process, as suggested by CCM,
applications developers may be decomposed into component designers,
composition designers, component implementers, component packagers,
and component deployers.

proxy objects called disconnected objects are not the same
as disconnectable server objects. Finally, disconnectable
server objects must also be designed to enable future rec-
onciliations with corresponding disconnected objects. In
this paper, reconciliation issues are not discussed.

The second column of Table 1 exemplifies the assign-
ment of the property “disconnectable” to objects of the
wireless email browser application. MailBoxManager ob-
jects are prototypical objects that are not disconnectable
for security reasons. Even if application developers allow
these objects to have proxies on mobile terminals, let us
consider the situation in which a user called the administra-
tor creates MailBox objects for other users while the for-
mer is disconnected. The latter users can’t use their mail-
boxes as long as the administrator hasn’t reconciled by re-
connecting. Therefore, the application is useless. MailBox-
Manager objects must then be classified so that being not
accessible in disconnected mode, so not “disconnectable”.
In addition, concerning MailBox and AddressBook
objects, they can have proxies in mobile terminals. While
being disconnected, users can continue reading and writ-
ing their emails. They can access only the emails loaded
before disconnections, newly arrived emails being kept on
wired hosts MailBox objects and their new emails being
effectively sent only when re-connecting. AddressBook
objects are personal, not shared between users, and most of
the time, passive objects. Hence, if users make changes on
their AddressBook proxy, these operations don’t impact
other users’ data, unless they decide to send their data, for
example, to colleagues or friends. Soundly speaking, the
latter operations imply that they are connected, not discon-
nected.

3.2 Necessity meta-data

The disconnectability meta-data presented in the pre-
vious section doesn’t deal with the problem of multiple
disconnected objects that must co-exist in the mobile ter-
minal with reduced memory space. The necessity meta-



data allows to classify the application objects in necessary
(NO) and unnecessary objects (UO). A NO is a discon-
nectable object whose corresponding disconnected object
on the mobile terminal must be present for the disconnected
mode. Of course, the state of the disconnected object on
the mobile terminal may not be up to date. On the contrary,
the client part of the application may continue to work on
the mobile terminal even if disconnected and without any
disconnected objects (corresponding to UOs) being instan-
tiated. Of course, the execution while being disconnected
may not be equivalent to an execution while being con-
nected or partially connected. This is acceptable provided
that the connectivity information is visualised by an iconic
image in the GUI. This is precisely the role of Domint to
provide this connectivity information. Finally, we assume
that applications are designed so that the cache of the mo-
bile terminal can contain all the developers NOs.

As depicted in Figure 1, the partitioning of discon-
nectable objects in NO and UO is twofold: application de-
velopers but also users. Applications developers provide
a first classification into “developer NOs” and “developer
UOs” that can be, for “developer UOs”, changed by appli-
cation users. Before launching the application, application
users can force a developer UO to become necessary for
their execution: this object is then called a “user NO”. Of
course, application users can’t force a developer NO to be-
come a user UO. Therefore, the set “application NOs” is
the union of the sets of developer and user NOs.

The third column of Table 1 exemplifies the assignment
of the property “necessity” to objects of the wireless email
browser application. Clearly, MailBox objects are NOs.
However, AddressBook objects are classified as being
UOs by application developers because users can access
their mailboxes and send messages to receivers whose ad-
dresses are known. In addition, when users start the wire-
less email browser application on their mobile terminals,
they are informed that they can modify the necessity of
AddressBook objects. To be more comfortable with
their application, users can force the necessity of these ob-
ject to “necessary”.

4 Design and implementation in CCM

After an overview of the CORBA CCM technology in
Section 4.1, Sections 4.2 and 4.3 describe the discon-
nectability and necessity meta-data in CCM technology, re-
spectively. Then, Section 4.4 gives the relations between
those meta-data. Finally, Section 4.5 sketches the imple-
mentation.

4.1 Overview of the CORBA component model

Several industrial component models have emerged as
a promising approach for building highly adaptable dis-
tributed applications. According to Szyperski [28], a com-
ponent is defined as “a unit of composition with contrac-
tually specified interfaces and explicit context dependen-
cies only. A software component can be deployed indepen-
dently and is subject to composition by third parties”. In
the rest of this paper, we illustrate the instantiation of the
meta-data in the CORBA Component Model (CCM) [20],
for which open source implementations already exist: e.g.,
OpenCCM [17] and micoCCM [24].

CCM
component

Equivalent interfaceReceptacle

Event sink

 
Attributes 

Facet

Event source

Figure 2. CCM component features.

In addition to be a promising specification, the choice
of CCM is justified by the following arguments. Firstly,
compared to other models such as EJB [9], COM [25], and
.NET [8], CCM can be seen as an intersection of these
models: compared to EJB, a CORBA component is cre-
ated and managed by a home and executed in a container;
compared to COM, a CORBA component offers and uses
multiple interfaces, and allows introspection and naviga-
tion through interfaces; compared to .NET, a CORBA com-
ponent can be written in several programming languages.
Secondly, CCM is multi-language, multi-OS, multi-ORB,
multi-vendor, contrary to EJB which is purely JAVA, and to
COM and .NET which are purely Microsoft OS. Thirdly,
CCM components can be segmented (see next paragraph).

A CCM component is programmatically characterised
by a number of features (cf. figure 2): ports classified into
synchronous (facets and receptacles) and asynchronous
(event sources and event sinks), and attributes for compo-
nent configuration. CCM components can be segmented
(cf. figure 3). For each segment, CCM generates a separate
skeleton. The segments are activated independently. Each
segment has an independent state. If the container receives



State =P0 

State =P1 

State =P 

Component_name

facet_A

facet_B

Monolithic implementation Segmented implementation

Component_name

facet_A

facet_B

Figure 3. Monolithic and segmented components.

a request toward an interface of a component, the container
activates only the segment which contains this facet. Each
segment is separately identified. In the next sections, the
concepts of disconnectability and necessity are applied at
the two levels of granularity: component and segment.

4.2 Disconnectability meta-data in CCM

A disconnectable component is a component that can
be instantiated as a proxy on the mobile terminal in or-
der to be accessed while being disconnected. The proxy
component called a “disconnected” component, contains
only segments that can also be disconnected —i.e., called
disconnectable segments— and that are effectively discon-
nected —i.e., called disconnected segments. In addition,
a disconnectable component contains at least one discon-
nectable segment and if a component contains at least one
disconnectable segment this component is disconnectable.
Let � be the set of components, ��� be the set of segments of
the component ����� , and �
	��� (resp. ��	���� ) be a predicate
evaluating to true if a given component (resp. segment) is
disconnectable, the previous statements are written as fol-
lows:

�������
��	������������� ��� �!�"�#�
��	���$�%�� (1)

In the case of a monolithic component, all the features
offered by the component (facets, receptacles, events, and
attributes) are implemented in the same class. If it is dis-
connectable then the segment which corresponds to the to-
tality of the component is disconnectable. In the case of
segmented implementation, CCM defines a segment called
the “main segment”, which contains the features not explic-
itly serviced by the other segments declared by the compo-
nent designer. In addition, the main segment has exclu-
siveness to handle the component context for introspection

(search, navigation, connection. . . ). In particular, it offers
a localisation service of the other segments (ExecutorLoca-
tor). So, the disconnectability of a component implies the
disconnectability of its main component. By a slight lan-
guage abuse, the segment of a monolithic component will
be called the main segment. The main segment of a seg-
mented component �&�'� is denoted ()� � �'� � . The
previous statement together with equation 1 is written as
follows:

�*�+�,���
	�����-�.���/� ()� � ��� � �
��	����$�0()� � � (2)

4.3 Necessity meta-data in CCM

By analogy with disconnectability, necessary compo-
nents must have at least one necessary segment and if a
component contains at least one necessary segment this
component is necessary. We define another predicate 132��4�
(resp. 132���� ) evaluating to true if a given component (resp.
segment) is necessary:

�*�+�,�
132�����-�����/� �5� �!� � ��132����$����� (3)

Also by analogy with disconnectability, the localisation
service of the main segment is necessary to a disconnected
component. Then, the necessity of a component implies
the necessity of its main component:

�*�+�,�
132������������� ()� � �+� � ��132����$�-(6� � � (4)

4.4 Relation between disconnectability and ne-
cessity

It is clear that if a component or a segment is necessary,
its presence in the mobile terminal is obligatory in order to
use the application while being disconnected, thus it must
be declared disconnectable. Therefore, we can say that the
disconnectability meta-data is in sense “stronger” than the
necessity meta-data since the user or the programmer must
initially allot the disconnectability to segments and compo-
nents then the necessity. However, the disconnectability of
segments and components does not imply the necessity: the
developer may let the component or the segment unneces-
sary and the user may override this choice (cf Section 3.2
and Table 1). The previous statements are written as fol-
lows:

���!�7��1328����-�.��93� ��	��.�
�-��� (5)

���!�;:<� �!�"�#��1328��$�%���93� �
	��������� (6)



4.5 Implementation

In this section, we present different methods to spec-
ify the disconnectability and the necessity of components
and segments in the OpenCCM platform [22].We have cho-
sen OpenCCM because, to our knowledge, it is the sole
CCM implementation which offers the specification of seg-
mented components. In CCM, segmentation is specified in
an extended OMG IDL language called CIDL (Component
Implementation Declaration Language).

Figure 4 describes the CCM component-based software
development process. The main activities of the CCM soft-
ware process are the design, the implementation, the pack-
aging, and the deployment. On this diagram, we trace out
different solutions to integrate the disconnectability and ne-
cessity meta-data in CCM applications.

Our main objective is to describe the discon-
nectable/necessity segment/component to allow a transpar-
ent creation of the local copies of the segments/components
and also to allow a transparent commutation between the
copy in the server and the copy in the local host. We have
chosen solution (1) because the other solutions ((2), (3)
and (4) in Figure 4) do not completely realise the objec-
tives. Solution ((2) consists in adding new XML elements
in the CORBA component descriptor. This solution re-
quires the creation of a link between this descriptor and the
client-side interception mechanism [21, 6, 7]. Therefore,
in this case the interception service which allows to create
the local copies and to make a switching is not transpar-
ent to the user. Solution ((3): adding of a new descriptor,
is similar to solution (2) and thus suffers the same incon-
veniences. Solution (4) consists in using aspect-oriented
programming [15, 10] to integrate our meta-data in the the
skeletons. The aspect-oriented programming is strongly
dependent with the language of existing code and in our
case the programmer must add for each segment the neces-
sary code to describe the disconnectabable and the neces-
sity meta-data.

The first solution noted (1) in Figure 4 consists in adding
CIDL grammar rules to describe the disconnectability and
the necessity of each component and each segment:

<executor_def> ::=
"manages" <identifier>
[<executor_body>] ";"

<executor_body> ::
"{" <body_def> "}"

<body_def> ::=
<disconnection_management>
<segment_def>

<disconnection_management> ::=

Programming
language

tools

Component
Designer

OMG IDL,
PSDL & 
CIDL

OMG IDL 
PSDL & CIDL

Compiler

Component
Implementer

Component
Executor

Code

Stubs, Skeletons

Client−side
OMG IDL

XML
Component
Descriptor

Home, 
component
properties

Binary
component

refers to describes

Component
Client

Component
Packager

Local
server−side
OMG IDL 

implements

(1)

(2)(3)

(4)

Component
assembler

Component
assembly
package

Assembly
tool

Deployment
tool

Component
deployer

(4)
(2)(3)

...

...

Figure 4. Development process of a CCM application.

"disconnectable" "=" <value> ";"
"necessity" "=" <value> ";"

<segment_def> ::=
"segment" <identifier>
"{" <seg_member>+ "}"

<seg_member> ::=
<seg_per_decl> ";"
<facet_decl> ";"
<disconnection_management>

We have added in the OpenCCM production chain [11] a
rule to generate in each skeleton of segments our meta-data.
The meta-data are used by the component home to add
some information (disconnectability and necessity) in the
segment IOR by tagging IOR profiles2. Meta-data added
in IORs are used by the client-side interceptors for creating
local proxies (disconnected components and segments) and
transparently switching between disconnected local entities
and remote server ones.

5 Conclusion

This paper has presented our work on the use of meta-
data for managing caching in case of disconnections. The
“disconnectable” property indicates if an entity can have a
proxy on the mobile terminal and the “necessary” property

2In CORBA, the IOR interceptor mechanism [21] gives an opportu-
nity to modify profiles of an IOR by adding “components” before it is
published.



specifies if the presence of the proxy on the mobile terminal
is mandatory for the execution of the mobile part of the ap-
plication while being disconnected. These meta-data are
filled by developers since disconnectable entities require
specific design and implementation, and developers are in
the best position to define the minimum set of necessary
entities to be cached in the mobile terminal. In addition,
users can supplement developers’ choices to add more nec-
essary entities when they want to be more comfortable with
their applications. To this aim, meta-data have been added
to a CCM version of Domint [6, 7].

The disconnectability and necessity meta-data don’t
cope with the priority between entities to be cached. For
example, if a disconnection occurs and if all the necessary
entities can’t be created from or synchronised with the cor-
responding wired hosts entities, priorities of the hoarding
or of the synchronisation must be specified in new meta-
data called “criticity”. Some other issues are user profiles
for data recharging [5], replacement policies and incremen-
tal hoarding [1, 12, 2].

References

[1] H. Atzmon, R. Friedman, and R. Vitenberg. Replacement
Policies for a Distributed Object Caching Service. In In-
ternational Symposium on Distributed Objects and Appli-
cations (DOA), pages 661–674, California, Irvine, USA,
September 2002.

[2] A. Baggio. Replication and Caching Strategies in Cadmium.
Technical Report 3409, INRIA France, Avril 1998.

[3] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
Architecture for Next Generation Middleware. In Proceed-
ings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Lon-
don, 1998.

[4] L. Capra, W. Emmerich, and C. Mascolo. Exploiting Reflec-
tion and Metadata to built Mobile Computing Middleware.
In Workshop on Middleware Mobile Computing, IFIP/ACM,
Heidelberg, Germany, 2001.

[5] M. Cherniack, M.and Franklin and S. Zdonik. Expressing
User Profiles for Data Recharging. IEEE Personal Commu-
nications, pages 32–38, Aug. 2001.

[6] D. Conan, S. Chabridon, O. Villin, and G. Bernard. Dis-
connected Operations in Mobile Environments. In Proc. 2nd
IPDPS Workshop on Parallel and Distributed Computing Is-
sues in Wireless Networks and Mobile Computing, Ft. Laud-
erdale, USA, April 2002.

[7] D. Conan, S. Chabridon, O. Villin, G. Bernard,
A. Kotchanov, and T. Saridakis. Handling Network
Roaming and Long Disconnections at Middleware Level. In
Proc. Workshop on Software Infrastructures for Component-
Based applications on Consumer Devices, Lausanne,
Switzerland, September 2002.

[8] M. Corporation. Microsoft developer network.
http://www.msdn.microsoft.com.

[9] L. DeMichiel. Enterprise JavaBeans Specifications, ver-
sion 2.1, proposed final draft. Sun Microsystems,
http://java.sun.com/products/ejb/docs.html, Aug. 2002.

[10] T. Elrad, M. Aksit, G. Kicsales, K. Lieberherr, and H. Os-
sher. Discussing Aspects of AOP. Communications of the
ACM, 44(10):33–38, Oct. 2001.

[11] A. Flissi. Inside OpenCCM. Technical report.
[12] A. Helal, A. Khushraj, and J. Zhang. Incremental Hoarding

and Reintegration in Mobile Environments. In Symposium
on Applications and the Internet, SAINT, Nara City, Nara,
Japan, January 28 - February 01 2002.

[13] J. Jing, A. Helal, and A. Elmagarmid. Client-Server Com-
puting in Mobile Environments. ACM Computing Surveys,
31(2), June 1999.

[14] A. Joseph, J. Tauber, and M. Kaashoek. Mobile computing
with the Rover toolkit. ACM Transactions on Computers,
46(3), 1997.

[15] G. Kiczales. Aspect-oriented programming. ACM Comput-
ing Surveys, 28(4), 1996.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected Opera-
tion in the Coda File System. In Proc 13th ACM Symposium
on Operating Systems Principles, number 5, pages 213–225,
Pacific Grove, USA, 1991.

[17] R. Marvie and P. Merle. CORBA Component Model: Dis-
cussion and Use with OpenCCM. Technical report, Labo-
ratoire d’Informatique Fondamentale de Lille, France, 2001.
Submitted for publication.

[18] L. Mummert. Exploiting Weak Connectivity in a Distributed
File System. PhD thesis, September 1996.

[19] B. D. Noble and M. Satyanarayanan. Experience with Adap-
tive Mobile Applications in Odyssey. Mobile Networks and
Applications, 4(4):245–254, 1999.

[20] Object Management Group. CORBA Components. OMG
Document formal/02-06-65, Version 3.0, June 2002.

[21] Object Management Group. Portable Interceptors. Intercep-
tors Finalization Task Force. Published draft, Object Man-
agement Group, September 2001.

[22] ObjectWeb Open Source Software Community. OpenCCM
home page. http://www.objectweb.org/openccm, 2003.

[23] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. To-
wards a Reflective Component-based Middleware Architec-
ture. In Workshop on Reflection and Metalevel Architectures,
Sophia Antipolis and Cannes, France, June 13 2000.

[24] F. Pilhofer. Writing and Using CORBA Component. Techni-
cal report, ALCATEL, http://www.fpx.de/MicoCCM/, April
2002.

[25] D. Rogerson. Inside COM. Microsoft Press, 1997.
[26] M. Satyanarayanan. Fundamental Challenges in Mobile

Computing. In Proc 15th Symposium on Principles of Dis-
tributed Computing (PODC’96), pages 1–7, 1996.

[27] M. Satyanarayanan. Mobile Information Access. IEEE Per-
sonal Communications, 3(1), 1996.

[28] C. Szyperski, D. Gruntz, and S. Murer. Component Soft-
ware, Beyond Object-Oriented Programming. Addison-
Wesley, 2002.


