CHAPTER 42

SUBSPACE TRACKING FOR SIGNAL
PROCESSING

42.1 INTRODUCTION

Research in subspace and component-based techniques were originated in Statistics in the
middle of the last century through the problem of linear feature extraction solved by the
Karhunen-L@&ve Transform (KLT). Then, it application to signal processing was initiated
three decades ago, and has met considerable progress. Thorough studies have shown that
the estimation and detection tasks in many signal processing and communications appli-
cations such as data compression, data filtering, parameter estimation, pattern recognition,
and neural analysis can be significantly improved by using the subspace and component-
based methodology. Over the past few years new potential applications have emerged, and
subspace and component methods have been adopted in several diverse new fields such as
smart antennas, sensor arrays, multiuser detection, time delay estimation, image segmenta-
tion, speech enhancement, learning systems, magnetic resonance spectroscopy, and radar
systems, to mention only a few examples. The interest in subspace and component-based
methods stems from the fact that they consist in splitting the observations into a set of
desired and a set of disturbing components. They not only provide new insight into many
such problems, but they also offer a good tradeoff between achieved performance and
computational complexity. In most cases they can be considered to be low-cost alternatives
to computationally intensive maximum-likelihood approaches.

In general, subspace and component-based methods are obtained by using batch meth-
ods, such as the eigenvalue decomposition (EVD) of the sample covariance matrix or the
singular value decomposition (SVD) of the data matrix. However, these two approaches are
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not suitable for adaptive applications for tracking nonstationary signal parameters, where
the required repetitive estimation of the subspace or the eigenvectors can be a real com-
putational burden because their iterative implementation né¢d$) operations at each
update, where: is the dimension of the vector-valued data sequence. Before proceeding
with a brief literature review of the main contributions of adaptive estimation of subspace
or eigenvectors, let us first classify these algorithms with respect to their computational
complexity. If r denotes the rank of the principal or dominant) or minor subspace we
would like to estimate, since usually< n, it is classic to refer to the following clas-
sification. Algorithms requiring)(n?r) or O(n?) operations by update are classified as
high complexity; algorithms wittO(nr?) operations as medium complexity and finally,
algorithms withO(nr) operations as low complexity. This last category constitutes the
most important one from a real time implementation point of view, and schemes belonging
to this class are also known in the literature as fast subspace tracking algorithms. It should
be mentioned that methods belonging to the high complexity class usually present faster
convergence rates compared to the other two classes. From the paper by Owsley [55], that
firstintroduced an adaptive procedure for the estimation of the signal subspacwith)
operations, the literature referring to the problem of subspace or eigenvectors tracking from
a signal processing point of view is extremely rich. The survey paper [20] constitutes an
excellent review of results up to 1990, treating the first two classes, since the last class was
not available at the time. The most popular algorithm of the medium class was proposed by
Karasalo in [39]. In [20], it is stated that this dominant subspace algorithm offers the best
performance to cost ratio and thus serves as a point of reference for subsequent algorithms
by many authors. The merger of signal processing and neural networks in the early 1990s
[38] brought much attention to a method originated by Oja [49] and applied by many
others. The Oja method requires orffnr) operations at each update. It is clearly the
continuous interest in the subject and significant recent developments that gave rise to this
third class. It is out of the scope of this chapter to give a comprehensive survey of all the
contributions, but rather to focus on some of them. The interested reader may refer to [28,
pp. 30-43] for an exhaustive literature review and to [8] for tables containing exact compu-
tational complexities and ranking with respect to convergence of recent subspace tracking
algorithms. In the present work, we mainly emphasize on the low complexity class for both
dominant and minor subspace, and dominant and minor eigenvector tracking, while we
briefly address the most important schemes of the other two classes. For these algorithms,
we will focus on their derivation from different iterative procedures coming from linear
algebra and on their theoretical convergence and performance in stationary environments.
Many important issues such as the finite precisions effects on their behavior (e.g., possible
numerical instabilities due to roundoff error accumulation), the different adaptive step size
strategies and the tracking capabilities of these algorithms in nonstationary environments
will be left aside. The interested reader may refer to the simulation Sections of the different
papers that deal with these issues.

The derivation and analysis of algorithms for subspace tracking require a minimum
background from linear algebra and matrix analysis. This is the reason why in Section 2,
standard linear algebra materials necessary to this chapter are recalled. This is followed
in Section 3 by the general studied observation model to fix the main notations and by the
statement of the adaptive and tracking of principal or minor subspaces (or eigenvectors)
problems. Then, Oja’s neuron is introduced in Section 4 as a preliminary example to
show that the subspace or component adaptive algorithms are derived empirically from
different adaptations of standard iterative computational techniques issued from numerical
methods. In Sections 5 and 6 different adaptive algorithms for principal (or minor) subspace
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and component analysis are introduced respectively. As for Oja’s neuron, the majority
of these algorithms can be viewed as some heuristic variations of the power method.
These heuristic approaches need to be validated by convergence and performance analysis.
Several tools such as the stability of the ordinary differential equation (ODE) associated
with a stochastic approximation algorithm and the Gaussian approximation to address these
points in stationary environment are given in Section 7. Some illustrative applications of
principal and minor subspace tracking in signal processing are given in Section 8. Section
9 contains some concluding remarks. Finally, some exercices are proposed in Section 10,
essentially to prove some properties and relations introduced in the other sections.

42.2 LINEAR ALGEBRA REVIEW

In this section several useful notions coming from linear algebra as the EVD, the QR decom-
position and the variational characterization of eigenvalues/eigenvectors of real symmetric
matrices, and matrix analysis as a class of standard subspace iterative computational tech-
niques are recalled. Finally a characterization of the principal subspace of a covariance
matrix derived from the minimization of a mean square error will complete this section.

42.2.1 Eigenvalue value decomposition

Let C be ann x n real symmetric [resp. complex Hermitian] matrix, which is also
non-negative definitbecauseC will represent throughout this chapter a covariance ma-
trix. Then, there exists (see e.g., [36, Sec.2.5]) an orthonormal [resp. unitary] matrix
U = [uy,...,u,] and a real diagonal matriA = Diag()\y, ..., A,) such thatC can be
decomposelas follows

n n

C=UAU" =) Nuu/, [resp,UAU" =3 Nuu/]. (42.2.1)
=1 =1

The diagonal elements & are calleceigenvaluesand arranged in decreasing order, satisfy

A1 > ... > A, > 0, while the orthogonal column@sy; );—1,. .., of U are the corresponding

unit 2-normeigenvectorsf C.

For the sake of simplicity, only real-valued data will be considered from the next
subsection and throughout this chapter. The extension to complex-valued data is often
straightforward by changing the transposition operator to the conjugate transposition one.
But we note two difficulties. First, for simpleigenvalues, the associated eigenvectors are
unique up to a multiplicative sign in the real case, but only to a unit modulus constant in
the complex case, and consequently a constraint ought to be added to fix them to avoid any
discrepancies between the statistics observed in numerical simulations and the theoretical
formulas. The interested reader by the consequences of this nonuniqueness on the derivation
of the asymptotic variance of estimated eigenvectors from sample covariance matrices can
refer to [33], (see also Exercices 42.1). Second, in the complex case, the second-order
properties of multidimensional zero-mean random variaklase not characterized by the
complex Hermitian covariance matrix(xx) only, but also by the complex symmetric
complementary covariance [57] matiiXxx’).

INote that for non-negative real symmetric or complex Hermitian matrices, this EVD is identical to the SVD
where the associated left and right singular vectors are identical.

2This is in contrast to multiple eigenvalues for which only the subspaces generated by the eigenvectors associated
with these multiple eigenvalues are unique.



The computational complexity of the most efficient existing iterative algorithms that
perform EVD of real symmetric matrices is cubic by iteration with respect to the matrix
dimension (more details can be sought in [34, chap. 8]).

42.2.2 QR factorization

The QR factorization of an x r real-valued matridW, with n > r is defined as (see e.g.,
[36, Sec. 2.6])
W =QR = Q;Ry, (42.2.2)

whereQ is ann x n orthonormal matrixR ann x r upper triangular matrixQ; denotes

the firstr columns ofQ andR, ther x r matrix constituted with the first rows of R.

If W is of full column rank, the columns d®; form an orthonormal basis for the range

of W. Furthermore, in this case the "skinny" factorizatiQnR, of W is unique ifR is
constrained to have positive diagonal entries. The computation of the QR decomposition
can be performed in several ways. Existing methods are based on Householder, block
Householder, Givens or fast Givens transformations. Alternatively, the Gram-Schmidt
orthonormalization process or a more numerically stable variant called modified Gram-
Schmidt can be used. The interested reader can seek details for the aforementioned QR
implementations in [34, pp. 224-233]), where the complexity is of the ordér(af-2)
operations.

42.2.3 Variational characterization of eigenvalues/eigenvectors of real
symmetric matrices

The eigenvalues of a genenalx n matrix C are only characterized as the roots of the
associated characteristic equation. But for real symmetric matrices, they can be character-
ized as the solutions of a series of optimization problems. In particular, the largast

the smallesh,, eigenvalues o€ are solutions of the following constrained maximum and
minimum problem (see e.g., [36, Sec.4.2]).

wlCw and M\, = min wlCw. (42.2.3)

1= m 1
[wl2=1, weR" [wll2=1, weR"

Furthermore, the maximum and minimum are attained by the unit 2-norm eigenvegctors
andu,, associated with\; and \,, respectively, which are unique up to a sign for simple
eigenvalues\; and),,. For non-zero vectorer € R", the expressioﬁ‘;&% is known as
the Rayleigh’s quotienaind the constrained maximization and minimization (42.2.3) can
be replaced by the following unconstrained maximization and minimization
Tc Tc
M= max =Y and A\, = min - % (42.2.4)
w#0, wER™ wlw w#0, wER™ wlw
For simple eigenvalues;, Ao, ..., A OF Ay, A1, ooy Ap—rt1, (42.2.3) extends by the

following iterative constrained maximizations and minimizations (see e.g., [36, Sec.4.2])

= max wliCw, k=2,...r (42.2.5)
[wll2=1, wluj,uz,..,up_1, wWeR”
= min wliCw, k=n—1,..,n—r+1(42.2.6)

HWH2:17 WJ—uruunflwwuk«#l; wER™

and the constrained maximum and minimum are attained by the unit 2-norm eigenvectors
uy, associated with;, which are unique up to a sign.



LINEAR ALGEBRA REVIEW 5

Note that when\, > A,.;1 or A\,_, > A\,_,y1, the following global constrained
maximizations or minimizations (denotsdbspace criterion

max Tr(WTCW) = max Zw,{ka

WTW=I, WTW=I,
k=1
or in Tr(WITCW) = i Tc 42.2.7
whnin T ) Wgnvlvn:h;wk Wi, ( )

whereW = [wy,...,w,] is an arbitraryn x r matrix, have for solutions (see e.g., [69]
and Exercice 42.6\V = [uy, ..., u,]QorW = [u,_,11, ..., u,|Q respectively, wher€)
is an arbitraryr x r orthogonal matrix. Thus, subspace criterion (42.2.7) determines the
subspace spanned By, ...,u,.} or {u,_,41, ..., u, }, but does not specify the basis of
this subspace at all.

Finally, when now,A\; > Ao > ... > A > Mg OF Ay > Appa1 > o0 >
An_1 > A\, 2 if (wk)k=1,..,» denotes- arbitrary positive and different real numbers such
thatw; > we > ... > w, > 0, the following modification of subspace criterion (42.2.7)
denotedwveighted subspace criterion

max Tr(QW7 CW) = max Zwkwngk

WTW=L, WTW=IL,
k=1
-
or in Tr(QWTCW) = i T'c 42.2.8
wisin r( ) quvbn:ly.gwkwk Wi, ( )

with Q@ = Diag(ws, ..,w,), has [53] the unique solutiofitu,, ..., +u, } or {+u,—,11, ..
+u,}, respectively.

*)

42.2.4 Standard subspace iterative computational techniques

The first subspace problem consists in computing the eigenvector associated with the largest
eigenvalue. Th@ower methogresented in the sequel is the simplest iterative techniques
for this task. Under the condition that is the unique dominant eigenvalue associated
with u; of the real symmetric matrixC, and starting from arbitrary unit 2-norse, not
orthogonal tou;, the following iterations produce a sequerfeg, w,) that converges to

the largest eigenvalug, and its corresponding eigenvector unit 2-natm;.

wy arbitrary such thatw,’u; # 0

fori=0,1,... w,;, = Cw;
wit1 = Wi /Wil
aiv1 = Wi Cwiyq. (42.2.9)

The proof can be found in [34, p. 406], where the definition and the speed of this
convergence are specified in the following. Defthes [0, 7/2] by cos(8;) def |wlu|
satisfyingcos(6p) # 0, then

i 2
|sin(6;)] < tan(6y) % and o — A\i| < [A1 — M| tan?(6g) % (42.2.10)

30rsimplyA; > A2 > ... > ...\, Whenr = n, if we are interested by all the eigenvectors.



Consequently the convergence rate of the power method is exponential and proportional

1 21
to the ratio i—j for the eigenvector and t if for the associated eigenvalue. If

wy is selected randomly, the probability that this vector is orthogonal;tis equal to
zero. Furthermore, ifw, is deliberately chosen orthogonal tg, the effect of finite
precision in arithmetic computations will introduce errors that will finally provoke loss of
this orthogonality and therefore convergence-to, .

Suppose now thaf is non-negative. A straightforward generalization of the power
method allows for the computation of theeigenvectors associated with thdargest
eigenvalues ofC when its firstr + 1 eigenvalues are distinct, or of the subspace cor-
responding to the largest eigenvalues & when\,. > \.,; only. This method can
be found in the literature under the nameoothogonal iteration e.g., in [34],subspace

iteration, e.g., in [56] orsimultaneous iteration methpe.g., in [63]. First, consider

the case where the+ 1 largest eigenvalues o are distinct. WithU, f [ug, ..., u,]

and A, = Diag(A4, ..., ), the following iterations produce a sequer{ee;, W) that
converges tdA,., [fuy, ..., +u,]).

W, arbitraryn x r matrix such thaW( U, not singular

fori=0,1,... W;,;, = CW;
Wi, = Wi Ry "skinny" QR factorization
Aiy1 = Diag (W ,CW,4). (42.2.11)

The proof can be found in [34, p. 411]. The definition and the speed of this convergence
are similar to those of the power method, it is exponential and proportior(aﬂ\f;trtﬁy

X
just the power method. Moreover for arbitrarythe sequence formed by the first column
of W, is precisely the sequence of vectors produced by the power method with the first
column of W as starting vector.
Consider now the case wheke > A,1. Then the following iteration method

21
for the eigenvectors and AT“) for the eigenvalues. Note thatif= 1, then this is

W, arbitraryn x r matrix such thalWOTUT not singular
fori=0,1,... W;1; = Orthonorr{CW,}, (42.2.12)

where the orthonormalization (Orthonorm) procedure is not necessarily given by the QR
factorization, generates a sequeiWe that “converges” to the dominant subspace gener-

ated by{uy, ..., u,.} only. This means precisely that the sequeWeeW ! (which here is a

projection matrix becaus&’ W; = I,.) converges to the projection matiik. ef U, U”.

In the particular case where the QR factorization is used in the orthonormalization step, the

speed of this convergence is exponential and proportionéiggi)z, i.e., more precisely
[34, p. 411]

W W] —II||; < tan(f) (AA“)

T

wheref < [0,7/2] is specified bycos(f) = mingyegpan(wi),veSpan(U,.) % > 0.
This type of convergence is very specific. Therthonormal columns oW; do not
necessary converge to a particular orthonormal basis of the dominant subspace generated

by uy, ..., u,, but may eventually rotate in this dominant subspace iasreases. Note
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that the orthonormalization step (42.2.12) can be realized by other means that the QR
decomposition. For example, extending the 1 case

Wit = CW1/||CW1H2 = Cw; (W?CQWi)il/zv

to arbitraryr, yields
—1/2

W1 =CW,; (W/C°W,;) ", (42.2.13)
where the square root inverse of the maW¥' C2W  is defined by the EVD of the matrix
with its eigenvalues replaced by their square root inverses. The speed of convergence of

the associated algorithm is exponential and proportionéﬁg@)l as well [37].

Finally, note that the power and the orthogonal iteration methods can be extended to
obtain the minor subspace or eigenvectors by replacing the m@thy I,, — 4 C where
0 < p < 1/X; such that the eigenvalués— pA,, > ...,> 1 — uA; > 00of I, — pC are
strictly positive.

42.2.5 Characterization of the principal subspace of a covariance matrix
from the minimization of a mean square error

Inthe particular case where the mat€ixs the covariance of the zero-mean random variable
x, consider the scalar functiohl' W) whereW denotes an arbitrany x r matrix

JW) ¥ E(|x - WWTx]|2). (42.2.14)

The following two properties are proved (e.g., see [70] and Exercices 42.7 and 42.8):

First, the stationary point of J(W) (i.e., the pointsW that cancel/(W)) are
given byW = U,.Q where ther columns ofU,. denotes here arbitranydistinct unit-2
norm eigenvectors among, ..., u,, of C and whereQ is an arbitraryr x r orthogonal
matrix. Furthermore at each stationary poinfW) equals the sum of eigenvalues whose
eigenvectors are not included i, .

Second, in the particular case whete > ., all stationary points of/(W) are
saddle points except the poil®® whose associated matrl¥,. contains the- dominant
eigenvectorsty, ..., u, of C. In this case/(W) attains the global minimuan:rH A
It is important to note that at this global minimu¥y does not necessarily contain the
r dominant eigenvectora,, ..., u,. of C, but rather an arbitrary orthogonal basis of the
associated dominant subspace. This is not surprising because

J(W) =Tr(C) — 2Tr(WTCW) + Te(WWTCWWT)

with Tr(WTCW) = Tr(CWWT) and thusJ(W) is expressed as a function 8
throughWW?7 which is invariant with respect to rotatioW Q of W. Finally, note that
whenr = 1 andA; > )y, the solution of the minimization of (w) (42.2.14) is given by
the unit 2-norm dominant eigenvecttiu; .

42.3 OBSERVATION MODEL AND PROBLEM STATEMENT

42.3.1 Observation model

The general iterative subspace determination problem described in the previous section,
will be now specialized to a class of matrid®@computed from observation data. In typical



applications of subspace-based signal processing, a sequéntza vectorsc(k) € R"
is observed, satisfying the following very common observation signal model

x(k) = s(k) + n(k), (42.3.1)

wheres(k) is a vector containing the information signal lying onsadimensional linear
subspace oR"™ with » < n, whilen(k) is a zero-mean additive random white noise (AWN)
random vector, uncorrelated fros(k). Note thats(k) is often given bys(k) = A(k)r(k)
where the full rank: x r matrix A (k) is deterministically parameterized an¢k) is a
r-dimensional zero-mean full random vector (i.e., vitir(k)r” (k)) non singular). The
signal parts(k) may also randomly select amomgdeterministic vectors. This random
selection does not necessarily result in a zero-mean signal w&tor

In these assumptions, the covariance mattixk) of s(k) is r-rank deficient and

C.(k) € E (x(k)x" (k)) = C4(k) + 02 (k)L (42.3.2)

wherec? (k) denotes the AWN power. Taking into account tiiat(k) is of rankr and
applying the EVD (42.2.1) o, (k) yields

_ A k) + 02K O U7 (k)
where then x r andn x (n — r) matricesU,(k) and U,,(k) are orthonormal bases
for the denotedsignal or dominantand noise or minor subspacef C,.(k) and A;(k)
is ar x r diagonal matrix constituted by the non-zero eigenvalues df,(k). We
note that the column vectors & ;(k) are generally unique up to a sign, in contrast to
the column vectors olJ,, (k) for which U,, (k) is defined up to a right multiplication

by a(n — r) x (n — r) orthonormal matrixQ. However, the associated orthogonal

projection matricedT, (k) % U, (k)UT (k) andIL, (k) < U, (k)UZ (k) respectively

denotedsignal or dominant projection matriceand noise or minor projection matrices
that will be introduced in the next sections are both unique.

42.3.2 Statement of the problem

A very important problem in signal processing consists in continuously updating the esti-
mateU,(k), U, (k), IL(k) or IT,, (k) and sometimes witlA (k) ando2 (k), assuming

that we have available consecutive observation vestors i = ...,k — 1, k, ... when the
signal or noise subspace is slowly time-varying comparegl(fg. The dimension- of

the signal subspace may be known a priori or estimated from the observation vectors. A
straightforward way to come up with a method that solves these problems is to provide
efficient adaptive estimat&sS(k) of C,.(k) and simply apply an EVD at each time step
Candidates for this estimaté(k) are generally given by sliding windowed sample data
covariance matrices when the sequenc€ofk) undergoes relatively slow changes. With
anexponential windowthe estimated covariance matrix is defined as

k
C(k) =Y B x(i)x" (i), (42.3.4)
=0

4Note thatk generally represents successive instants, but it can also represent successive spatial coordinates (e.g.,
in [11] wherek denotes the position of the secondary range cells in Radar.
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where(0 < § < 1 is theforgetting factor Its use is intended to ensure that the data in the
distant past are downweighted in order to afford the tracking capability when we operate in
a nonstationary environmen€(k) can be recursively updated according to the following
scheme:

C(k) = BC(k — 1) + x(k)x" (k). (42.3.5)

Note that

C(k) = (1 - F)C(k — 1) + B'x(k)xT (k) = C(k — 1) + 3 (x(k)xT (k) — C(k — 1))

(42.3.6)
is also used. These estimat8gk) tend to smooth the variations of the signal parameters
and so are only suitable for slowly changing signal parameters. For sudden signal parameter
changes, the use otaincated windownay offer faster tracking. In this case, the estimated
covariance matrix is derived from a window of length

k

Ch)y= Y B 'x(0)x"(i), (42.3.7)

i=k—I+1

where0 < g < 1. The case? = 1 corresponds to a rectangular window. This matrix can
be recursively updated according to the following scheme:

C(k) = BC(k — 1) + x(k)xT (k) — B'x(k — )xT (k —1). (42.3.8)

Both versions requir€(n?) operations with the first having smaller computational com-
plexity and memory needs. Note that f6r= 0, (42.3.8) gives the coarse estimate
x(k)xT (k) of C,(k) as used in the least mean square (LMS) algorithms for adaptive
filtering (see e.g., [35]).

Applying an EVD onC(k) at each timek is of course the best possible way to estimate
the eigenvectors or subspaces we are looking for. This approach is known as direct EVD
and has high complexity which @&(n?3). This method usually serves as point of reference
when dealing with different less computationally demanding approaches described in the
next sections. These computationally efficient algorithms will compute signal or noise
eigenvectors (or signal or noise projection matrices) at the time instant from the
associated estimate at tilkeand the new arriving sample vectefk).

42.4 PRELIMINARY EXAMPLE: OJA’'S NEURON

Let us introduce these adaptive procedures by a simple example: the following Oja’s neuron
originated by Oja [49] and then applied by many others that estimates the eigenvector
associated with the unique largest eigenvalue of a covariance matrix of the stationary
vectorx(k).

w(k 4+ 1) = w(k) + p{[L, — w(k)w? (k)]x(k)xT (k)w(k)}. (42.4.1)

The first term on the right side is the previous estimatgaf, which is kept as a memory

of the iteration. The whole term in the brackets is the new information. This term is
scaled by the step sizeand then added to the previous estimaig) to obtain the current
estimatew (k4 1). We note that this new information is formed by two terms. The first one
x(k)xT (k)w(k) contains the first step of the power method (42.2.9) and the second one is
simply the previous estimate (k) adjusted by the scalav” (k)x(k)x” (k)w(k) so that
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these two terms are on the same scale. Finally, we note that if the previous estifhate
is already the desired eigenvectan;, the expectation of this new information is zero,
and hencew(k + 1) will be hovering aroundtu;. The step size: controls the balance
between the past and the new information. Introduced in the neural networks literature
[49] within the framework of a new synaptic modification law, it is interesting to note
that this algorithm can be derived from different heuristic variations of numerical methods
introduced in Section 42.2.

First consider the variational characterization recalled in Subsection 42.2.3. Because
Vw(wlC,w) = 2C,w, the constrained maximization (42.2.3) or (42.2.7) can be solved
using the following constrained gradient-search procedure

w'(k+1)
w(k+1)

w(k) + pCo (k) w(k)
w!(k+ 1)/ (k+ D),

in which the step sizg is "sufficiency enough”. Using the approximatioh < 1 yields

w(k+1)/Iw (k+ Dl = L+ pCo(k))w(k)/ (W' (k) (Lo + pCa(k))*w(k ))1/2
(In + pCy (k))W(k)/(1+2uW (k)Ca (k)w (k)"
(I + uCa(k))w(k)(1 — pw? (k) Cy (k)W (k)
w(k) + 1 (In — w(k)w (k) Ca(k)w (k).

%

Q

Q

Then, using the instantaneous estimaté)x” (k) of C,(k), Oja’s neuron (42.4.1) is
derived.

Consider now the power method recalled in Subsection 42.2.4. Noticin@thand
I, + uC, have the same eigenvectors, the stgp, = C,w; of (42.2.9) can be replaced
by w; , = (I, + nC,)w; and using the previous approximations yields Oja’s neuron
(42.4.1) anew.

Finally, consider the characterization of the eigenvector associated with the unique
largest eigenvalue of a covariance matrix derived from the mean squareFéfror—
wwx||?) recalled in Subsection 42.2.5. Because

Vw(E(x — wwlx|?) =2 (—2C, + C,wwl + WWTCw) w,
an unconstrained gradient-search procedure yields
w(k+1) = w(k) — p (—2C, (k) + Co(k)w(k)w” (k) + w(k)w” (k)C,(k)) w(k).

Then, using the instantaneous estimeate)x’ (k) of C, (k) and the approximatiow” (k)
w(k) = 1 justified by the convergence of the deterministic gradient-search procedure to
+u; whenp — 0, Oja’s neuron (42.4.1) is derived again.

Furthermore, if we are interested in adaptively estimating the associated single eigen-
value \;, the minimization of the scalar functioi(\) = (A — u?'C,u;)? by a gradient-
search procedure can be used. With the instantaneous estitate’ (k) of C, (k) and
with the estimatev (k) of u; given by (42.4.1), the following stochastic gradient algorithm
is obtained.

Mk +1) = k) + p (wT (k)x(k)x" (k)w(k) — M(k)) - (42.4.2)

We note that the previous two heuristic derivations could be extended to the adaptive
estimation of the eigenvector associated with the unique smallest eigenvaltig( ¥.
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Using the constrained minimization (42.2.3) or (42.2.7) solved by a constrained gradient-
search procedure or the power method (42.2.9) where thevgtep= C,w; of (42.2.9) is
replaced byw; , = (I, — uC,)w; (where0 < p < 1/);) yields (42.4.1) after the same
derivation, but where the sign of the step sizis reversed.

w(k+1) =w(k) — p (I, — w(k)w” (k)]x(k)x" (k)w(k)) . (42.4.3)

The associated eigenvalug, could be also derived from the minimization gf)) =
(A—ul'C,u,)? and consequently obtained by (42.4.2) as well, wikefg) is issued from
(42.4.3).

These heuristic approaches derived from iterative computational techniques issued from
numerical methods recalled in Section 42.2, need to be validated by convergence and
performance analysis for stationary datg). These issues will be considered in Section
42.7. In particular it will be proved that the coupled stochastic approximation algorithms
(42.4.1),(42.4.2) in which the step sizés decreasing, "converge"” to the péifu;, A1)), in
contrast to the stochastic approximation algorithm (42.4.3) that diverges. Then, due to the
possible accumulation of rounding errors, the algorithms that converge theoretically must
be tested through numerical experiments to check their numerical stability in stationary
environments. Finally extensive Monte Carlo simulations must be carried out with various
step sizes, initialization conditions, signal to noise ratios and parameters configurations in
nonstationary environments.

42,5 SUBSPACE TRACKING

In this section, we consider the adaptive estimation of dominant (signal) and minor (noise)
subspaces. To derive such algorithms from the linear algebra material recalled in Subsec-
tions 42.2.3, 42.2.4 and 42.2.5 similarly as for Oja’s neuron, we first note that the general
orthogonal iterative step (42.2.12yV,,; = Orthonorr{ CW, } allows for the following
variant for adaptive implementation

W, 1 = Orthonorn{ (I,, + uC)W,}

wherep > 0 is a "small" parameter known atep sizebecausd,, + C has the same
eigenvectors a€ with associated eigenvalués+ p:)\;);=1.... . Noting thatl,, — C has

also the same eigenvectors@swith associated eigenvalu¢s — p););=1, .. », arranged
exactly in the opposite order &8;);—1_.._,, for p sufficiently small {1 < 1/X;), the general
orthogonal iterative step (42.2.12) allows for the following second variant of this iterative
procedure to "converge" to thedimensional minor subspace 6fif \,,_, > A\, _,11.

W41 = Orthonorm{(I,, — nC)W,}.

When the matrixC is unknown and, instead we have sequentially the data sequéhie
we can replace&C by an adaptive estimat€ (k) (see Section 42.3.2). This leads to the
adaptive orthogonal iteration algorithm

W(k + 1) = Orthonorn{(I,, £ uxC(k))W(k)}, (42.5.1)

where the "+" sign generates estimates for the signal subspakce$if\,., 1) and the "-"

sign for the noise subspace &f_, > A,_,+1). Depending on the choice of the estimate
C(k) and of the orthonormalization (or approximate orthonormalization), we can obtain
alternative subspace tracking algorithms.
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We note that maximization or minimization in (42.2.7) &{W) def Tr(WTCW)

subject to the constraif” W = I, can be solved by a constrained gradient-descent
technique. Becaus¥wJ = 2C(k)W, we obtain the following Rayleigh quotient-based
algorithm

W(k + 1) = Orthonorr{ W (k) + 1, C(k)W (k)}, (42.5.2)

whose general expression is the same as general expression (42.5.1) derived from the
orthogonal iteration approach. We will denote this family of algorithms as the power-based
methods. It is interesting to note that a simple sign change enables one to switch from
the dominant to minor subspaces. Unfortunately, similarly to Oja’s neuron, many minor
subspace algorithms will be unstable or stable but non robust (i.e., numerically unstable
with a tendency to accumulate round-off errors until their estimates are meaningless), in
contrast to the associated majorant subspace algorithms. Consequently, the literature of
minor subspace tracking techniques is very limited as compared to the wide variety of
methods that exists for the tracking of majorant subspaces.

42.5.1 Subspace power-based methods

Clearly the simplest selection f&Z (k) is the instantaneous estimaték)x” (k), which
gives rise to thédata Projection MethodDPM) first introduced in [69] where the ortho-
normalization is performed using the Gram-Schmidt procedure.

W(k +1) = GS Orth{ W (k) + ppx(k)x” (k)W (k)}. (42.5.3)

In nonstationary situations, estimates (42.3.5) or (42.3.6) of the covar@n@e of x(k)

at timek have been tested in [69]. For this algorithm to "converge”, we need to select a step
sizep such thatu <« 1/A; (see e.g., [28]). To satisfy this requirement (in nonstationary
situations included) and because most of the time we Hay€.(k)) > M (k), the
following two normalized step sizes have been proposed in [69]:

and pg = with o2(k +1) = voZ(k) + (1 — v)||x(k)]|?,

I
o2(F)

x

HE = L
[x(k)[?

wherep may be close to unity and where the choicesaf (0, 1) depends on the rapidity
of the change of the parameters of the observation signal model (42.3.1). Note that a better
numerical stability can be achieved [5],if; is chosen, similar to the normalized LMS
algorithm [35], agu;, = m wherea is a "very small” positive constant. Obviously,
this algorithm (42.5.3) has very high computational complexity due to the Gram-Schmidt
orthonormalization step.

To reduce this computational complexity, many algorithms have been proposed. Going
back to the DPM algorithm (42.5.3), we observe that we can write

W(k +1) = {W(k) + mpx(k)x" (F)W(k)}G(k + 1), (42.5.4)

where the matrixG(k + 1) is responsable for performing exact or approximate ortho-

normalization while preserving the space generated by the columN§'¢f + 1) def

W (k) £ pupx(k)xT (k)W (k). Itis the different choices d& (k + 1) that will pave the way

to alternative less computationally demanding algorithms. Depending on whether to this
orthonormalization is exact or approximate, two families of algorithms have been proposed
in the literature.
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42.5.1.1 The approximate symmetric orthonormalization family The columns
of W’(k+1) can be approximately orthonormalized in a symmetrical way. SW¢e) has
orthonormal columns, for sufficiently smal, the columns oW’ (k + 1) will be linearly
independent, although not orthonormal. TA&H” (k + 1)W’(k + 1) is positive definite,
andW (k -+ 1) will have orthonormal columns & (k+1) = {W'T (k+1)W'(k+1)}~1/2
(unique iIfG(k + 1) is constrained to be symmetric). A stochastic algorithm denStewst
space Network Learnin¢SNL) and laterOja’s algorithm have been derived in [52] to
estimate dominant subspace. Assumingis sufficiency enoughG(k + 1) can be ex-
panded inu; as follows

Gk +1) = {(W(k)+pux(k)xT (k)W (k)" (W) + px(k)x” (k)W (k))} /2
= {L + 2 W (B)x(k)x" (k)W () + O(u)} /2
)

(
= L — W ()x(h)x" ()W (k) + O(42).

Omitting second-order terms, the resulting algorithm réads
W(k+1) = W(k) + L, — W(E)YWT (k)]x(k)xT (k)W (k). (42.5.5)

The convergence of this algorithm has been earlier studied in [77] and then in [68], where
it was shown that the solutioW (¢) of its associated ODE (see Subsection 42.7.1) need
not tend to the eigenvectofsy, ..., v, }, but only to a rotated bas®/ .. of the subspace
spanned by them. More precisely, it has been proved in [16] that under the assumption
that W(0) is of full column rank such that its projection to the signal subspac€ of

is linearly independent, there exists a rotated ba&is of this signal subspace such

that ||[W(t) — W, ||ro = O(e~ A=A+t A performance analysis has been given in
[24, 25]. This issue will be used as an example analysis of convergence and performance
in Subsection 42.7.3.2. Note that replaciig)x” (k) by 81, £ x(k)x” (k) (with 3 > 0)

in (42.5.5), leads to modified Oja’s algorithnj15], which, not affecting its capability of
tracking a signal subspace with the sign "+", can track a noise subspace by changing the
sign (if 8 > A1). Of course, these modified Oja’s algorithms enjoy the same convergence
properties as Oja’s algorithm (42.5.5).

Many other modifications of Oja’s algorithm have appeared in the literature, particularly
to adapt it to noise subspace tracking. To obtain such algorithms, it is interesting to point
out that, in general, itis not possible to obtain noise subspace tracking algorithms by simply
changing the sign of the step size of a signal subspace tracking algorithm. For example,
changing the signin (42.5.5) or (42.7.18) leads to an unstable algorithm (divergence) as will
be explained in Subsection 42.7.3.1 foe= 1. Among these modified Oja’s algorithms,
Chenet al. [16] have proposed the following unified algorithm

W(k+1) = W(k) £ u[x(k)x” (E)W (k)W (k)W (k)
~W(EYWT (k)x(k)x™ (k)W (k)], (42.5.6)

where the signs "+" and"-" are respectively associated with signal and noise tracking algo-
rithms. While the associated ODE maintaW&! (t)W (¢) = L. if W1 (0)W(0) = I, and
enjoys [16] the same stability properties as Oja’s algorithm, the stochastic approximation

5Note that this algorithm can be directly deduced from the optimization of the cost fund(®W) =
Tr[WTx(k)xT (k)W] defined on the set of, x r orthogonal matricew (WTW = I,.) with the help
of continuous-time matrix algorithms [21, Ch. 7.2] (see also (42.9.7) in Exercice 42.15).
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to algorithm (42.5.6) suffers from numerical instabilities (see e.g., numerical simulations
in [27]). Thus, its practical use requires periodic column reorthonormalization. To avoid
these numerical instabilities, this algorithm has been modified [17] by adding the penalty
termW (k)[I,, — W (k)W (k)] to the field of (42.5.6). As far as noise subspace tracking
is concerned, Douglast al. [27] have proposed modifying the algorithm (42.5.6) by mul-
tiplying the first term of its field byW ' (k)W (k) whose associated term in the ODE tends
tol,, viz

W(k+1) = W(k) — u[x(k)x" (k)W (k)W (k)W (k)W (k)W (k)
~W(E)YWT(E)x(k)x” (k)W (k)]. (42.5.7)

It is proved in [27] that the locally asymptotically stable poilWws of the ODE associated
with this algorithm satisfW?'W = I, andSpan(W) = Span(U,,). But the solution

W (t) of the associated ODE does not converge to a particular B5isof the noise
subspace but rather, it is proved ti$atan(W (t)) tends toSpan(U,,) (in the sense that

the projection matrix associated with the subsp#ieen(W (¢)) tends toll,,). Numerical
simulations presented in [27] show that this algorithm is numerically more stable than the
minor subspace version of algorithm (42.5.6).

To eliminate the instability of the noise tracking algorithm derived from Oja’s algorithm
(42.5.5) where the sign of the step size is changed, Abed Mexbah [2] have proposed
forcing the estimatéV (k) to be orthonormal at each time stép(see Exercice 42.10)
that can be used for signal subspace tracking (by reversing the sign of the step size) as
well. But this algorithm converges with the same speed of convergence as Oja’s algorithm
(42.5.5). To accelerate its convergence, two normalized versions (deNotethlized
Oja’s algorithm (NOja) andNormalized Orthogonal Oja’s algorithifNOOJa)) of this
algorithm have been proposed in [4]. They can perform both signal and noise tracking
by switching the sign of the step size for which an approximate closed-form expression
has been derived. A convergence analysis of the NOja algorithm has been presented in
[7] using the ODE approach. Because the ODE associated with the field of this stochastic
approximation algorithm is the same as those associated with the projection approximation-
based algorithm (42.5.18), it enjoys the same convergence properties.

42.5.1.2 The exact orthonormalization family The orthonormalization (42.5.4)

of the columns oW’ (k + 1) can be performed exactly at each iteration by the symmetric
square root inverse V7 (k 4+ 1)W'(k 4 1) due to the fact that the latter is a rank one
modification of the identity matrix:

Wk + D)W (k+1) = L + (2 £ 12 |x(k)|?) y(k)y" (k) € 1, + 227 (42.5.8)

with y (k) % W7 (k)x(k) andz % /2, + p2[[x(k)[]? y(k). Using the identity
_ 1 zzT
L+227) P =1, + ( . 1> : (42.5.9)
( ) (1 & [|z[[2)*/2 ||z
we obtain
Gh+1)={WTlk+1)W'(k+1)}"V2 =1, + ny(k)y” (k) (42.5.10)
. dﬁf 1 . 1 . . .
with 7, = ((H:(Qukzl:pi|x(k)|2)|y(k)|2)1/2 1) TGl Substituting (42.5.10) into

(42.5.4) leads to
W(k +1) = W(k) £ up(k)x” (FYW (k), (42.5.11)
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wherep(k) = =W (k)y(k) + (1 + 7i[ly(k)|?)x(k). Al these steps lead to the

Fast Rayleigh quotient-based Adaptive Noise Subspégerithm (FRANS) introduced

by Attallah et al. in [5]. As stated in [5], this algorithm is stable and robust in the
case of signal subspace tracking (associated with the sign "+") including initialization
with a nonorthonormal matri¥V (0). By contrast, in the case of noise subspace tracking
(associated with the sign "-"), this algorithm is numerically unstable because of round-
off error accumulation. Even when initialized with an orthonormal matrix, it requires
periodic re-orthonormalization oW (k) in order to maintain the orthonormality of the
columns of W (k). To remedy this instability, another implementation of this algorithm
based on the numerically well behaved Householder transform has been proposed [6]. This
Householder FRANS algorithm (HFRANS) comes from (42.5.11) which can be rewritten
after cumbersome manipulations as

W(k+1)=H(k)W(k) with H(k) =1, —2u(k)u’ (k)

with u(k) & 2+ With no additional numerical complexity, this Householder trans-

form allows one to stabilize the noise subspace version of the FRANS algbritfihe
interested reader may refer to [74] that analyzes the orthonormal error propagation (i.e., a
recursion of the distance to orthonormalitW?* (k)W (k) —I.||3,, from a non-orthogonal
matrix W (0)) in the FRANS and HFRANS algorithms.

Another solution to orthonormalize the columnsW (k + 1) has been proposed in
[28, 29]. It consists of two steps. The first one orthogonalizes these columns using a matrix
G(k+1)togiveW”(k+1) =W'(k+1)G(k + 1), and the second one normalizes the
columns of W”(k + 1). To find such a matrixG(k + 1) which is of course not unique,
notice that ifG(k + 1) is an orthogonal matrix having as first column, the veqﬁ%
with the remaining- — 1 columns completing an orthonormal basis, then using (42.5.8),
the productW”” (k + 1)W” (k + 1) becomes the following diagonal matrix

W k+ )W (k+1) = GT(k+1) (L + y(k)yT (k) Gk +1)
L+ 0|y (k)|*eref -

whered, < £2u; + p2|x(k)|? ande; < [0,...,0]7. It is fortunate that there exists

such an orthonogonal matr& (k + 1) with the desired properties known as a Householder
reflector [34, Chap.5], and can be very easily generated since it is of the form
2

Gk+1)=1, — Wa(k)aT(k) with  a(k) = y(k) — |y(k)ller. (42.5.12)

This gives thdrast Data Projection Metho(FDPM)
W (k + 1) = Normalize{ (W (k) & ppx(k)x” (k)W (k)) G(k + 1)}, (42.5.13)

where "Normaliz¢ W"(k+1) }" stands for normalization of the columnsWf” (k. + 1), and
G(k+1) isthe Householder transform given by (42.5.12). Using the independence assump-
tion [35, chap. 9.4] and the approximatipp < 1, a simplistic theoretical analysis has
been presented in [30] for both signal and noise subspace tracking. It shows that the FDPM
algorithm is locally stable and the distance to orthonormalify{ W* (k)W (k) — 1,.||?)

SHowever, if one looks very carefully at the simulation graphs representing the orthonormality error [74, Fig. 7],
it is easy to realize that the HFRANS algorithm exhibits a slight linear instability.
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tends to zero a®(e~°*) wherec > 0 does not depend op. Furthermore, numerical
simulations presented in [28, 29, 30] with = W demonstrate that this algorithm

is numerically stable for both signal and noise subspace tracking, and if for some reason,
orthonormality is lost, or the algorithm is initialized with a matrix that is not orthonormal,
the algorithm exhibits an extremely high convergence speed to an orthonormal matrix.
This FDPM algorithm is to the best to our knowledge, the only power-based minor sub-
space tracking methods of complexinr) that is truly numerically stable since it do not
accumulate rounding errors.

42.5.1.3 Power-based methods issued from exponential or sliding window

Of course, all the above algorithms that do not use the rank one property of the instantaneous
estimatex(k)x” (k) of C,(k) can be extended to the exponential (42.3.5) or sliding
windowed (42.3.8) estimaté&s(k), but with an important increase in complexity. To keep

the O(nr) complexity, the orthogonal iteration method (42.2.12) must be adapted to the
following iterations

Wik+1) = CHE)W(k)
W(k+1) Orthonorm{ W'(k + 1)}
W' (k+1)G(k + 1),

where the matrixG (k + 1) is a square root inverse 8%'" (k + 1)W’(k + 1) responsable
for performing orthonormalization oW’ (k + 1). It is the choice oiG(k + 1) that will
pave the way to different adaptive algorithms.

Based on the approximation

C(k— 1)W(k) = C(k — HW(k — 1), (42.5.14)

which is clearly valid ifW (k) is slowly varying withk, an adaptation of the power method
denotedNatural Power method NP3) has been proposed in [37] for the exponential
windowed estimate (42.3.8)(k) = 3C(k—1)+x(k)x” (k). Using (42.3.5) and (42.5.14),
we obtain

W' (k+1) = BW' (k) +x(k)y™ (),

def

with y (k) = W7 (k)x(k). It then follows that
W k+ D)W/ (k+1) = W (W' (k) + 2(k)yT (k) + y(k)z" (k)
+Hx (k) |[Py (k)y " (k) (42.5.15)
with z(k) def BW'T (k)x(k), which implies (see Exercice 42.9) the following recursions
Gk+1) = %[In —rerel — mesel|G(k), (42.5.16)
W(k+1) = W(k)I, —eel —mesel]

1
+ Bx(k;)yT(/{;)GT(k‘)[In —rerel —megel],  (42.5.17)
wherer;, 5 andeq, e, are defined in Exercice 42.9.
Note that the square rootinverse matik+1) of W' (k+1)W’(k+1) is asymmetric
even if G(0) is symmetric. Expressions (42.5.16) and (42.5.17) provide an algorithm
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which does not involve any matrix-matrix multiplications and in fact requires 6xflyr)
operations.

Based on the approximation th8¥ (k) and W (k + 1) span the same-dimensional
subspace, another power-based algorithm referred to dpireximated Power Iteration
(API) algorithm and its fast implementation (FAPI) have been proposed in [8]. Compared
to the NP3 algorithm, this scheme has the advantage that it can handle the exponential
(42.3.5) or the sliding windowed (42.3.8) estimate€XQf(k) in the same framework (and
with the same complexity @ (nr) operations) by writing (42.3.5) and (42.3.8) in the form

C(k) = BC(k — 1) + X' (k) Ix"" (k)

1
0
x'(k) = [x(k),x(k — )] for the sliding window (see (42.3.8)). Among the power-based
minor subspace tracking methods issued from exponential of sliding window, this FAPI
algorithm has been considered by many practitioners (e.g., [11]) as outperforming the other
algorithms having the same computational complexity.

with J = 1 andx’(k) = x(k) for the exponential window and = _Oﬁl ] and

42.5.2 Projection approximation-based methods

Since (42.2.14) describes an unconstrained cost function to be minimized, it is straight-
forward to apply the gradient-descent technique for dominant subspace tracking. Using
expression (42.9.4) of the gradient given in Exercice 42.7 with the estinfaje” (k) of

C. (k) gives:

W(k+1) = W(k)— e [-2x(k)x" (k) + x(k)x" (k)W (k)W (k)
+ W (k)W (k)x(k)x" (k)] W(k). (42.5.18)

We note that this algorithm can be linked to Oja’s algorithm (42.5.5). First, the term be-
tween brackets is the symmetrization of the tersak)x” (k) + W (k)W (k)x(k)xT (k)
of Oja’s algorithm (42.5.5). Second, we see that WN€A (k)W (k) is approximated by
I. (which is justified from the stability property below), algorithm (42.5.18) gives Oja’s al-
gorithm (42.5.5). We note that because the field of the stochastic approximation algorithm
(42.5.18) is the opposite of the derivative of the positive function (42.2.14), the orthonormal
bases of the dominant subspace are globally asymptotically stable for its associated ODE
(see Subsection 42.7.1) in contrast to Oja’s algorithm (42.5.5), for which they are only
locally asymptotically stable. A complete performance analysis of the stochastic approx-
imation algorithm (42.5.18) has been presented in [24] where closed-form expressions of
the asymptotic covariance of the estimated projection mawig) W7 (k) are given and
commented on for independent Gaussian ddtg and constant step size

If now C, (k) is estimated by the exponentially weighted sample covariance matrix
C(k) = Y1, B*x(i)xT (i) (42.3.4) instead ok(k)x” (k), the scalar function/ (W)

becomes
k

J(W) =" 8" x(i) - WW (i), (42.5.19)
1=0
and all datax(i) available in the time interva{0, ..., k} are involved in estimating the
dominant subspace at time instart1 supposing this estimate known attime instanthe
key issue of the projection approximation subspace tracking algorithm (PAST) proposed
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by Yang in [70] is to approximat®¥ *' (k)x (i) in (42.5.19), the unknown projection &f:)
onto the columns oW (k) by the expressiop(i) = W7 (i)x(i) which can be calculated
forall 0 < ¢ < k at the time instant. This results in the following modified cost function

k
T (W) =" 8"|x(i) — Wy (i), (42.5.20)
=0

which is now quadratic in the elements W . This projection approximation, hence the
name PAST, changes the error performance surfacEW). For stationary or slowly
varying C, (k), the difference betweeW 7 (k)x (i) andW™ (i)x (i) is small, in particular
wheni is close tok. However, this difference may be larger in the distant past invth k,

but the contribution of the past data to the cost function (42.5.20) is decreasing for growing
k, due to the exponential windowing. It is therefore expected Jhg®') will be a good
approximation toJ(W) and the matrixW (k) minimizing J'(W) be a good estimate

for the dominant subspace €f, (k). In case of sudden parameter changes of the model
(42.3.1), the numerical experiments presented in [70] show that the algorithms derived
from this PAST approach still converge. The main advantage of this scheme is that the least

square minimization of (42.5.20) whose solution is giverMéyk + 1) = C,.,,(k)C, ' (k)

whereC, , (k) % S8 gh=ix(i)yT (i) and C, (k) ' ¢ g*y(i)yT (i) has been
extensively studied in adaptive filtering (see e.g., [35, chap. 13] and [67, chap. 12]) where
variousRecursive Least Squaadgorithms (RLS) based on the matrix inversion lemma
have been proposédlVe note that because of the approximation/¢W) by .J'(W), the
columns of W (k) are not exactly orthonormal. But this lack of orthonormality does not
mean that we need to perform a reorthonormalizatio®ofk) after each update. For

this algorithm, the necessity of orthonormalization depends solely on the post processing
method which uses this signal subspace estimate to extract the desired signal information
(see e.g., Section 42.8). Itis shown in the numerical experiments presented in [70] that the
deviation of W (k) from orthonormality is very "small" and for a growing sliding window

(8 = 1), W(k) converges to a matrix with exactly orthonormal columns under signal
stationary. Finally, note that a theoretical study of convergence and a derivation of the
asymptotic distribution of the recursive subspace estimators have been presented in [72]
and [73] respectively. Using the ODE associated with this algorithm (see Section 42.7.1)
which is here a pair of coupled matrix differential equations, it is proved that under signal
stationarity and other weak conditions, the PAST algorithm converges to the desired signal
subspace with probability one.

To speed up the convergence of the PAST algorithm and to guarantee the orthonormality
of W (k) at each iteration, an orthonormal version of the PAST algorithm dubbed OPAST
has been proposed in [1]. This algorithm consists of the PAST algorithm \WNéke+ 1)
is related toW (k) by W (k 4 1) = W(k) + p(k)q(k), plus an orthonormalization step of
‘W (k) based on the same approach as those used in the FRANS algorithm (see Subsection
42.5.1.2) which leads to the upda®(k + 1) = W (k) + p’(k)q(k).

Note that the PAST algorithm cannot be used to estimate the noise subspace by simply
changing the sign of the step size because the associated ODE is unstable. Efforts to
eliminate this instability were attempted in [4] by forcing the orthonormalitfotk) at

"For possible sudden signal parameter changes (see Subsection 42.3.1), the use of a sliding exponential window
(42.3.7) version of the cost function may offer faster convergence. In this 8&8#;) can be calculated
recursively as well [70] by applying the general form of the matrix inversion lenia- BDCT)~ ! =

A1 - A 'B(D !4+ CTA-IB)~ICT A~ which requires inversion of 2 x 2 matrix.
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each time step. Although there was a definite improvement in the stability characteristics,
the resulting algorithm remains numerically unstable.

42.5.3 Additional methodologies

Various generalizations of criteria (42.2.7) and (42.2.14) have been proposed (e.g., in [40]),
which generally yield robust estimates of principal subspaces or eigenvectors that are totally
different from the standard ones. Among them, the followNayel Information Criterion

(NIC) [47] results in a fast algorithm to estimate the principal subspace with a number of
attractive properties

max{J (W)} with J(W) T In(WICW)] — Tr(WTW), (42.5.21)

given thatW lies in the domai{ W such thaW”CW > 0}, where the matrix logarithm

is defined e.g. in [34, chap. 11]. It is proved in [47] (see also Exercices 42.11 and

42.12) that the above criterion has a global maximum that is attained when and only when
W = U,Q whereU,. = [uy,...,u,.] andQ is an arbitraryr x r orthogonal matrix and

all the other stationary points are saddle points. Taking the gradient of (42.5.21) (which is
given explicitly by (42.9.6)), the following gradient ascent algorithm has been proposed in

[47] for updating the estimafv (k):

W (k+1) = W(k) + p [C(k)W (k) (W' (k)C(k)W (k)" = W(k)]. (42.5.22)

Using the recursive estimat®(k) = ¢ 3%~ ix(i)x7 (i) (42.3.4), and the projection
approximation introduced in [70V 7 (k)x(i) = W7 (i)x(i) for all 0 < i < k, the update
(42.5.22) becomes

k k -1
W(k+1) = W(k) + p, [(Z 5k—'x<z‘>yT<z')> (Z ﬁ’f—ly(z‘)yTu)) - W(k)] 7

=0 =0

(42.5.23)

with y (%) def W7 (i)x(i). Consequently, similarly to the PAST algorithms, standard RLS
techniques used in adaptive filtering can be applied. According to the numerical experiments
presented in [37], this algorithm performs very similarly to the PAST algorithm having also
the same complexity. Finally, we note that it has been proved in [47] that the points
W = U.,Q are the only asymptotically stable points of the ODE (see Subsection 42.7.1)
associated with the gradient ascent algorithm (42.5.22) and that the attraction set of these
points is the domaif W such thaW? CW > 0}. But to the best of our knowledge, no
complete theoretical performance analysis of algorithm (42.5.23) has been carried out so
far.

42.6 EIGENVECTORS TRACKING

Although, the adaptive estimation of the dominant or minor subspace through the esti-
mateW (k)W (k) of the associated projector is of most importance for subspace-based
algorithms, there are situations where the associated eigenvalues are simple.( >

Ar > Mg OF A, < oo < Ap—rg1 < An—,) and the desired estimated orthonormal ba-
sis of this space must form an eigenbasis. This is the case for the statistical technique
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of principal component analysis in data compression and coding, optimal feature extrac-
tion in pattern recognition and for optimal fitting in the total least square sense or for
Karhunen-L&ve transformation of signals, to mention only a few examples. In these ap-
plications,{y1(k), ..., yr (k) } OF {yn(k), .c; Yn—r+1 (k) } With y; (k) def wl'(k)x(k) where

W = [wi(k),...,w, (k)] or W = [w,(k), ..., w11 (k)] are the estimated first prin-

cipal or r lastminor componentsf the datax(k). To derive such adaptive estimates, the
stochastic approximation algorithms that have been proposed, are issued from adaptations
of the iterative constrained maximizations (42.2.5) and minimizations (42.2.6) of Rayleigh
guotients; the weighted subspace criterion (42.2.8); the orthogonal iterations (42.2.11) and,
finally the gradient-descent technique applied to the minimization of (42.2.14).

42.6.1 Rayleigh quotient-based methods

To adapt maximization (42.2.5) and minimization (42.2.6) of Rayleigh quotients to adap-
tive implementations, a method has been proposed in [60]. It is derived from a Givens
parametrization of the constraifWW’ W = I,., and from a gradient-like procedure. The
Givens rotations approach introduced by Regalia [60] is based on the properties that any
n X 1 unit 2-norm vector and any orthogonal vector to this vector can be respectively written
as the last column of an x n orthogonal matrix and as a linear combinaison of the first

n — 1 columns of this orthogonal matrix, i.e.,
0
0 a?] ol ¥ 7]
WlQl[l];w2Ql 1 e W = Q1 2
0 0

whereQ); is the following orthogonal matrix of order — i + 1:

I, 0 0 0

_ . def 0 —sin oi,j COS OM 0

Qi=U;;...U;;...U;,_; with U;; = 0 cosbi,  sinb,, 0
0 0 0 I

andf; ; belongs td— %, +Z]. The existence of such a parametrizafitor all orthonormal
sets{wy,...,w,} is proved in [60]. It consists of(2n — r — 1)/2 real parameters.
Furthermore, this parametrization is unique if we add some constraits; o/ deflation
procedure, inspired by the maximization (42.2.5) and minimization (42.2.6) has been
proposed [60]. First maximization or minimization (42.2.3) is performed with the help of
the classical stochastic gradient algorithm, in which the parametef are. ., 61 ,_1,
whereas maximization (42.2.5) or minimization (42.2.6) are realized thanks to stochastic
gradient algorithms with respect to the paramefgis. . ., 6; ,—;, in which the preceding

parameter$; 1 (k),..., 0, ,—i(k)forl =1,...,i —1 are injected from the — 1 previous
algorithms. The deflation procedure is achieved by coupled stochastic gradient algorithms
61 (k+1) 6 (k) f1(61(k), x(k))
. = . =+ pg . (42.6.1)
ar(k+1) 0r(k) fr(el(k)vaar(k)ax(k))

8Note that this parametrization extends immediately to the complex case using the kernel
—sin6; ; cos; ;
e cosl; ; €% sind; ;
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with 0, déf [92‘,1, Cey oim_i]T andfi(Ol, ey 02‘, X) déf Vgi (W;-TXXTWT;) = 2Vgl (W?)X

x"w;, i = 1,...,r. This rather intuitive computational process was confirmed by simu-
lation results [60]. Later a formal analysis of the convergence and performance had been
performed in [23] where it has been proved that the stationary points of the associated
ODE are globally asymptotically stable (see Subsection 42.7.1) and that the stochastic
algorithm (42.6.1) converges almost surely to these points for stationary @atevhen;

is decreasing withimy, . i, = 0 and)_, i, = oo. We note that this algorithm yields
exactly orthonormal dominant or minor estimated eigenvectors by a simple change of
sign in its step size, and requir@gnr) operations at each iteration but without accounting

for the trigonometric functions.

Alternatively, a stochastic gradient-like algorithm denoRicect Adaptive Subspace
Estimation(DASE) has been proposed in [61] with a direct parametrization of the eigen-
vectors by means of their coefficients. Maximization or minimization (42.2.3) is performed
with the help of a modification of the classical stochastic gradient algorithm to assure an
approximate unit norm of the first estimated eigenvestqlk) (in fact a rewriting of
Oja’s neuron (42.4.1)). Then, a modification of the classical stochastic gradient algorithm
using a deflation procedure, inspired by the constr®#t W = I, gives the estimates
(Wi(k))izz,...,r

wilk+1) = wik) £ [x(R)XT (k) — (w] (k)x(k)x" (k) w1 (k))L,] w (k)
wilk+1) = wi(k) £ [x(k)x" (k) — (w] (B)x(k)x" (k)w; (k)

1—1
L, =Y wi(k)w] (k) | | wi(k) fori=2,...,r.(42.6.2)
j=1

This totally empirical procedure has been studied in [62]. It has been proved that the
stationary points of the associated ODE are all eigenvector Kases, ..., +u; }. Using

the eigenvalues of the derivative of the mean field (see Subsection 42.7.1), it is shown that
all these eigenvector bases are unstable excent; } for » = 1 associated with the sign

"+" (where algorithm (42.6.2) is Oja’s neuron (42.4.1)). But a close examination of these
eigenvalues that are all real-valued, shows that for only the eigenbsasis ..., +u,.} and

{£u,, ..., +u,_,11} associated with the sign "+" and "-" respectively, all the eigenvalues

of the derivative of the mean field are strictly negative except for the eigenvalues associated
with variations of the eigenvectofstu,, ..., tu,} and{+u,, ..., +u, .1} in their di-
rections. Consequently, it is claimed in [62] that if the norm of each estimated eigenvector
is set to one at each iteration, the stability of the algorithm is ensured. The simulations
presented in [61] confirm this intuition.

42.6.2 Eigenvector power-based methods

Note that similarly to the subspace criterion (42.2.7), the maximization or minimization

of the weighted subspace criterion (42.28W) def Tr(QWTC(k)W) subject to the

constrainW?'W = I.. can be solved by a constrained gradient-descent technique. Clearly,
the simplest selection fo€ (k) is the instantaneous estimaték)x” (k). Because in

this caseVwJ = 2x(k)x? (k)W, we obtain the following stochastic approximation
algorithm that will be a starting point for a family of algorithms that have been derived to
adaptively estimate majorant or minor eigenvectors

W(k+1) = {W(k) + mex(k)x” (F)W (k)Q}G(k + 1), (42.6.3)
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inwhichW (k) = [wq(k), ..., w,(k)] and the matrif2 is a diagonal matribiag(ws, ..., w;)
with wy > ... > w, > 0. G(k + 1) is a matrix depending on

W (k +1) ¥ W(k) £ px(k)xT (k)W (k)Q,

which orthonormalizes or approximately orthonormalizes the columMé'¢k +1). Thus,
‘W (k) has orthonormal or approximately orthonormal columns fok abepending on the
form of matrix G(k + 1), variants of the basic stochastic algorithm are obtained. Going
back to the general expression (42.5.4) of the subspace power-based algorithm, we note
that (42.6.3) can also be derived from (42.5.4), where different step siz&s ..., urw,
are introduced for each column ¥ (k).

Using the same approach as for deriving (42.5.5), i.e., wikgfe + 1) is the sym-
metric square root inverse 8'” (k + 1)W'(k + 1), we obtain the following stochastic
approximation algorithm

W(k+1) = W(k) £ u[x(k)x" (k)W (k)Q — %W(k)QWT(k)x(k)xT(k)W(k)

- %W(k)WT(k:)x(k)xT(k:)W(k:)Q]. (42.6.4)

Note thatin contrastto the Oja’s algorithm (42.5.5), this algorithm is different from the algo-

rithm issued from the optimization of the cost functidfWw) % Tr[QWTx(k)xT (k) W]

defined on the set of x r orthogonal matrice8V with the help of continuous-time matrix
algorithms (see e.g., [21, Ch. 7.2], [19, Ch. 4] or (42.9.7) in Exercice 42.15)).

W (k+1) = W(k) £ p, [x(k)x" (k)W (k)Q — W (k) QW7 (k)x(k)x" (k)W (k)] .
(42.6.5)

We note that these two algorithms reduce to the Oja’s algorithm (42.5.9)2fet I,
and to Oja’s neuron (42.4.1) for = 1, which of course is unstable for tracking the
minorant eigenvectors with the sign "-". But to the best of our knowledge, no complete
theoretical performance analysis of these two algorithms has been carried out until now.
Techniques used for stabilizing Oja’s algorithm (42.5.5) for minor subspace tracking,
has been transposed to stabilize the weighted Oja’s algorithm for tracking the minorant
eigenvectors. For example, in [9YW (k) is forced to be orthonormal at each time step
k as in [2] (see Exercice 42.10) with tidCA-OOja algorithmand theMCA-OOjaH
algorithmusing Householder transforms. Note, that by proving a recursion of the distance
to orthonormality| W7 (k)W (k) — 1,||3,, from a non-orthogonal matri¥v (0), it has
been shown in [10], that the latter algorithm is numerically stable in contrast to the former.

Instead of deriving a stochastic approximation algorithm from a specific orthonormal-
ization matrixG(k + 1), an analogy with Oja’s algorithm (42.5.5) has been used in [53] to
derive the following algorithm

W (k+1) = W(k) £y, [x(k)x" (k)W (k) — W(k)QWT (k)x(k)x" (k)W (k)Q '] .
(42.6.6)

It has been proved in [54], that for tracking the dominant eigenvectors (i.e., with the sign

"+"), the eigenvector§+uy, ..., £u,} are the only locally asymptotically stable points of

the ODE associated with (42.6.6).

If now the matrixG(k + 1) performs the Gram-Schmidt orthonormalization on the
columns ofW’(k+ 1), an algorithm, denoteSitochastic Gradient Ascef8GA) algorithm,
is obtained if the successive columns of maf¥&k(k + 1) are expanded, assuming,
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sufficiently small. By omitting theD(u7) term in this expansion, we obtain [50] the
following algorithm

i—1
wik+1) = wi(k)+ajug | L, — wi(k Z 1+ — wj ij(k)]
j=1

x(k)xT (k)w;(k) fori=1,...,r. (42.6.7)
where herd) = Diag(a1, as, . . ., a;) With «; arbitrary strictly positive numbers.
The so calledseneralized Hebbian AlgorithfGHA) is derived from Oja’s algorithm
(42.5.5) by replacing the matrW 7' (k)x(k)x™ (k)W (k) of Oja’s algorithm by its diagonal
and superdiagonal only:
Wk +1) = W(k) + i [x(k)x" (k)W (k) — W (k)upper(W™ (k)x(k)x" (k)W (k)]
in which the operator “upper” sets all subdiagonal elements of a matrix to zero. When

written columnwise, this algorithm is similar to the SGA algorithm (42.6.7) where 1,
1 =1, ..,r, with the difference that there is no coefficient 2 in the sum:

wi(k+1)=w;(i) + g [In - ij(k)wf(k:)] x(k)xT (k)yw;(k) fori=1,...,r

(42.6.8)
Ojaet al[53] proposed an algorithm denoté¢ighted Subspace Algorit(iSA), which
is similar to the Oja’s algorithm, except for the scalar parameiers. . , 5,

wi(k+1) = wi(k)+ [In - Z gjwj(k)wf(k)] x(k)xT (k)yw;(k) fori=1,...,7,

(42.6.9)
with 81 > ... > (5. > 0. If 5; = 1 for all 4, this algorithm reduces to Oja’s algorithm.
Following the deflation technique introduced in tAdaptive Principal Component
Extraction(APEX) algorithm [41], note finally that Oja’s neuron can be directly adapted to
estlmate the principal eigenvectors by replacing the instantaneous estixfabe” (k ) of
C. (k) byx(k)xT (k)[I, —Z; ﬁw](k)w (k)] to successively estimate; (k),i = 2, .

wilk+1) = wili) + e [T — wik)w? (k)] x(R)x (k) {In - iwj@)wf(k)]

w;(k) fori=1,...,r

Minor component analysis was also considered in neural networks to solve the problem
of optimal fitting in the total least square sense. &ual. [78] introduced theDptimal
Fitting Analyzer(OFA) algorithm by modifying the SGA algorithm. For the estimate
w,, (k) of the eigenvector associated with the smallest eigenvalue, this algorithm is derived
from the Oja’s Neuron (42.4.1) by replacisgk)x” (k) by I,, — x(k)xT (k), viz
wp(k+1) = wy (k) + pll, — Wn(k)WZ(k)HIn - X(k)XT(k)]Wn(k)a

and fori = n,...,n —r + 1, his algorithm reads
wilk+1) = wi(k)+ ([In —w(k)w (k)][L, — x(k)xT (k)]

-5 > wt,iwfix(k)xT(k)> w;(k).(42.6.10)

i=k+1
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Oja [52] showed that, under the conditions that the eigenvalues are distinct, and that
An—ry1 < landg > % — 1, the only asymptotically stable points of the associated
ODE are the eigenvectonl{stvn, ...y EVn_r41}. Note that the magnitude of the eigen-
values must be controlled in practice by normalizit@) so that the expression between
brackets in (42.6.10) becomes homogeneous.

The derivation of these algorithms seems empirical. In fact, they have been derived
from slight modifications of the ODE (42.7.8) associated with the Oja’s neuron in order to
keep adequate conditions of stability (see e.g., [52]). It was established by Oja [51], Sanger
[66] and Ojaet al[54] for the SGA, GHA and WSA algorithms respectively, that the only
asymptotically stable points of their associated ODE are the eigenvédtors. .., v, }.

We note that the first vectok (= 1) estimated by the SGA and GHA algorithms, and the
vector ¢ = k = 1) estimated by the SNL and WSA algorithms gives @enstrained
Hebbian learning ruleof the basic PCA neuron (42.4.1) introduced by Oja [49].

A performance analysis of different eigenvector power-based algorithms has been pre-
sented in [22]. In particular, the asymptotic distribution of the eigenvector estimates and of
the associated projection matrices given by these stochastic algorithms with constant step
sizey for stationary data has been derived, where closed-form expressions of the covariance
of these distributions has been given and analyzed for independent Gaussian distributed
datax(k). Closed-form expressions of the mean square error of these estimators has been
deduced and analyzed. In particular, they allow us to specify the influence of the different
parameter$as, ..., a.), (61, .., 3-) andg of these algorithms on their performance and
to take into account tradeoffs between the misadjustment and the speed of convergence.
An example of such derivation and analysis is given for the Oja’s Neuron in Subsection
42.7.3.1.

42.6.2.1 Eigenvector power-based methods issued from exponential win-

dows Using the exponential windowed estimates (42.3.509f%), and following the
concept of power method (42.2.9) and the subspace deflation technique introduced in [41],
the following algorithm has been proposed in [37]

wi(k+1) = C;(k)yw;(k) (42.6.11)

wi(k+1) = wi(k+1)/||lwi(k+ 1)z, (42.6.12)
whereC; (k) = BC;(k — 1) + x(k)xT (k)[L, — X\—) w; (k)wT (k)] fori = 1,...,7. Ap-
plying the approximatiow/ (k) ~ C,(k — 1)w;(k) in (42.6.11) to reduce the complexity,
(42.6.11) becomes

wi(k +1) = pwi(k) +x(k)[g:(k) — y7 (k)ci(k)] (42.6.13)

with g; (k) < 7 (k)w(k), i (k) % [wi(k), ..., wi_1 (k)] Tx(k) andc; (k) < [w1(k), ..
»wi_1(k)]Tw;(k). Equations (42.6.13) and (42.6.11) should be run successively for
1 =1,...,r at each iteratiotk.

Note that an up to a common factor estimate of the eigenvalj(ést+ 1) of C,.(k) can
be updated as follows. From (42.6.11), one can write

Ai(k+1) € Wl (8)Ci(k)ywi(k) = w! (k)w!(k +1). (42.6.14)

Using (42.6.13) and applying the approximationgk) ~ w? (k)w!(k) andc;(k) ~ 0,
one can replace (42.6.14) by

Xi(k+1) = BAi(k) + lgi (k)]
that can be used to track the ranknd the signal eigenvectors, as in [71].
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42.6.3 Projection approximation-based methods

A variant of the PAST algorithm, named PASTd and presented in [70], allows one to
estimate the: dominant eigenvectors. This algorithm is based on a deflation technique
that consists in estimating sequentially the eigenvectors. First the most dominant estimated
eigenvectorw, (k) is updated by applying the PAST algorithm with= 1. Then the
projection of the current data(k) onto this estimated eigenvector is removed frah)
itself. Because now the second dominant eigenvector becomes the most dominant one in the
updated data vectoE([(x(k) — viv] x(k))(x(k) — viv]x(k))T] = Cu(k) — Ayviv]),
it can be extracted in the same way as before. Applying this procedure repeatedly, all the
r dominant eigenvectors and the associated eigenvalues are estimated sequentially. These
estimated eigenvalues may be used to estimate therriiitlis not known a priori [71]. It
is interesting to note that for= 1, the PAST and the PASTd algorithms, that are identical,
simplify as

w(k +1) = w(k) + L, — wk)w? (k)]x(k)x” (k)w(k), (42.6.15)
where i, = szgy with of(k + 1) = Boj(k) + 4> (k) and y(k) ' Wl (k)x(k). A
comparison with Oja’s neuron (42.4.1) shows that both algorithms are identical except for
the step size. While Oja’s neuron uses a fixed step ginénich needs careful tuning,
(42.6.15) implies a time varying, self-tuning step sjzg The numerical experiments
presented in [70] show that this deflation procedure causes a stronger loss of orthonormality
betweenw; (k) and a slight increase of the error in the successive estimatgs. By
invoking the ODE approach (see Section 42.7.1), it has been proved in [72] for stationary
signals and other weak conditions, the PASTd algorithm converges to the dedmeihant
eigenvectors with probability one.

In contrast to the PAST algorithm, the PASTd algorithm can be used to estimate the
minor eigenvectors by changing the sign of the step size with an orthonormalization of
the estimated eigenvectors at each step. It has been proved [64] tisatfdr, the only
locally asymptotically stable points of the associated ODE are the desired eigenvectors
{£Vn,...,£Vn_r+1}. Toreduce the complexity of the Gram-Schmidt orthonormalization
step used in [64], [9] proposed a modification of this part.

42.6.4 Additional methodologies

Among the other approaches to adaptively estimate the eigenvectors of a covariance ma-
trix, the Maximum Likelihood Adaptive Subspace Estima{fdiLASE) [18] provides a
number of desirable features. Itis based on the adaptive maximization of the log-likelihood
of the EVD parameters associated with the covariance m@tyifor Gaussian distributed
zero-mean data(k). Up to an additive constant, this log-likelihood is given by

L(W,A) = —In(detC,)—x"(k)C;' x(k)
= - i In(A;) — x (k) WA~ " WTx(k), (42.6.16)

whereC, = WAWT represents the EVD &, with W an orthogonak x n matrix and

A = Diag()\, ..., A\,). This is a quite natural criterion for statistical estimation purposes,
even if the minimum variance property of the likelihood functional is actually an asymptotic
property. To deduce an adaptive algorithm, a gradient ascent procedure has been proposed
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in [18] in which a new data(k) is used at each time iteratidnof the maximization of
(42.6.16). Using the differential df(W, A) defined on the manifold of x »n orthogonal
matrices (see [21, pp. 62-63] or Exercice 42.15 (42.9.7)), we obtain the following gradient
of L(W,A)

VwL W Ay (k)y™" (k) — y(k)y" (k) A™']
VaL = —A"'+ A 2Diag(y(k)y” (k)),

def

wherey (k) = WTx(k). Then, the stochastic gradient updatévéfyields

W (k +1)=W (k) +u W (k) [A (k)y (k)yT (k) —y(k)y" (k)A™" (k)[42.6.17)
Ak +1)=A(k)+puj, [A2(k)Diag(y(k)y” (k) — A~ (k)] (42.6.18)

where the step sizes;, and u), are possibly different. We note that, starting from an
orthonormal matriXW (0), the sequence of estimat®¥ (k) given by (42.6.17) is ortho-
normal up to the second-order term;in only. To ensure in practice the convergence of
this algorithm, is has been shown in [18] that it is necessary to orthonormalize quite often
W (k) to compensate for the orthonormality drift@( .3 ). Using continuous-time system
theory and differential geometry [21], a modification of (42.6.17) has been proposed in
[18]. Itis clear thatVw L is tangent to the curve defined by

W(t) = W(0)exp [t (A 'y (k)y" (k) — y(k)y" (k)A™Y)]

for ¢ = 0, where the matrix exponential is defined e.g., in [34, chap. 11]. Furthermore,
we note that this curve lies in the manifold of orthogonal matric8¥{f0) is orthogonal
becausexp(A) is orthogonal if and only ifA is skew-symmetri¢éAT = —A) and matrix

A ty(k)yT (k) —y(k)yT (k)A~1is clearly skew-symmetric. Moving on the curVeé(t)

from pointt = 0 in the direction of increasing values ¥ty L amounts to letting increase.
Thus, a discretized version of the optimization/diW, A) as a continuous function 8V

is given by the following update scheme

Wk +1) = W(k) exp [ (A~ (k)y (k)y” (k) — y(k)y” (F)A" (k)] ,  (42.6.19)

and the coupled update equations (42.6.18) and (42.6.19) form the MALASE algorithm. As
mentioned above the update factamp 1, (A~ (k)y(k)y™ (k) — y(k)y™ (k)A~*(k))]

is an orthogonal matrix. This ensures that the orthonormality property is preserved by
MALASE algorithm, provided that the algorithm is initialized with an orthogonal matrix
'W(0). However, it has been shown by numerical experiments presented in [18], thatitis not
necessary to hav® (0) orthogonal to ensure the convergence, since MALASE algorithm
steerswW (k) towards the manifold of orthogonal matrices. The MALASE algorithm seems
to involve high computational cost, due to the matrix exponential that applies in (42.6.19).
However, sinceexp [u, (A™!(k)y(k)yT (k) — y(k)yT (k)A~'(k))] is the exponential

of a sum of two rank one matrices, the calculation of this matrix requires Oih?)
operations [18]. Originally, this algorithm that updates the EVD of the covariance matrix
C..(k) can be modified by a simple preprocessing to estimate the principal or nsigmal
eigenvectors only, when the remaining- r eigenvectors are associated with a common
eigenvaluer? (k) (see Subsection 42.3.1). This algorithm, denoted MALASEequires
O(nr) operations by iteration. Finally, note that a theoretical analysis of convergence has
been presented in [18]. It is proved that in stationary environments, the stationary stable
points of the algorithm (42.6.18),(42.6.19) correspond to the EVO of Furthermore, the
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covariance of the asymptotic distribution of the estimated parameters is given for Gaussian
independently distributed daid k) using general results of Gaussian approximation (see
Subsection 42.7.2).

42.6.5 Particular case of second-order stationary data

Finally, note that forx(k) = [z(k),z(k — 1),...,2(k — n + 1)]T comprising of time
delayed versions of scalar valued second-order stationary:¢iatathe covariance matrix
C.(k) = E[x(k)xT (k)] is Toeplitz and consequently centro-symmetric. This property
occurs in important applications: temporal covariance matrices obtained from a uniform
sampling of a second-order stationary signals, and spatial covariance matrices issued from
uncorrelated and band-limited sources observed on a centro-symmetric sensor array (for
example on uniform linear arrays). This centro-symmetric structu€e, adllows us to use
for real-valued data, the propettjl 4] that its EVD can be obtained from two orthonormal
eigenbases of half-size real symmetric matrices. For exampleisfeven,C, can be
partitioned as follows

c [ C, CI ]

v C, JCJ |’

whereJ is ann/2 x n/2 matrix with ones on its anti-diagonal and zeroes elsewhere.
Then, then unit 2-norm eigenvectors; of C, are given byn/2 symmetric and/2 skew

. u;
symmetric vectors; = 7 { e Ju,
2-norm eigenvectora; of C; + ¢;,JCs = 1E[(X'(k) + €;Jx" (k))(x' (k) + €;Ix" (k))T]
with x(k) = [x’T(k),x”T(k)]T. This property has been exploited [23, 26] to reduce
the computational cost of the previously introduced eigenvectors adaptive algorithms.
Furthermore, the conditioning of these two independent EVD is improved with respect to the
EVD of C,, since the difference between two consecutive eigenvalues increases in general.
Compared to the estimators that do not take the centro-symmetric structure into account,
the performance ought to be improved. This has been proved in [26], using closed-form
expressions of the asymptotic bias and covariance of eigenvectors power-based estimators
with constant step size derived in [22] for independent Gaussian distributed dgdta).
Finally, note that the deviation from orthonormality is reduced and the convergence speed
is improved, yielding a better tradeoff between convergence speed and misadjustment.

L wheree; = +1, respectively issued from the unit

427 CONVERGENCE AND PERFORMANCE ANALYSIS ISSUES

Several tools may be used to assess the "convergence" and the performance of the previously
described algorithms. First of all, note that despite the simplicity of the LMS algorithm
(see e.qg., [35)])

w(k+1) = w(k) + px(k)[y(k) — x" (k)w(k)],

its convergence and associated analysis has been the subject of many contributions in the
past three decades (see e.g., [67] and references therein). However, in-depth theoretical
studies is still a matter of utmost interest. Consequently, due to their complexity with

9Note that for Hermitian centro-symmetric covariance matrices, such property does not extend. But any eigen-
vectorv; satisfies the relatiofw;], = e'?i[v],,_, that can be used to reduce the computational cost by a
factor 2.
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respect to the LMS algorithm, results about the convergence and performance analysis of
subspaces or eigenvectors tracking will be much weaker.

To study the convergence of the algorithms introduced in the previous two sections from
atheoretical point of view, the datd k) will be supposed stationary and the step siz&vill
be considered as decreasing. In these conditions, according to the addressed problem, some
questions arise. Does the sequeWé¢k)W 7 (k) converge almost surely to the sigiddl
or the noise projectdI,, and does the sequen®€’ (k)W (k) converge almost surely to
I. for the subspace tracking problem or does the sequigie) converge to the signal or
the noise eigenvectofguy, ..., +u,] or [tu,, 41, ..., £u,] for the eigenvectors tracking
problems? These questions are very challenging, but using the stability of the associated
ODE, a partial response will be given in Subsection 42.7.1.

Now, from a practical point of view, the step size sequemgcés reduced to a "small”
constaniu to track signal or noise subspaces (or signal or noise eigenvectors) with possible
nonstationary data(k). Under these conditions, the previous sequences do not converge
almost surely any longer even for stationary dath). Nevertheless, if for stationary data,
these algorithms converge almost surely with a decreasing step size, their egtjklate
(W(E)YWT(k), WT (k)W (k) or W (k) according to the problem) will oscillate around
their limit 6, (I, or I1,,, I, [+uy,..., +u,] or [+u,_,41, ..., Tu,], according to the
problem) with a constant "small" step size. In these later conditions, the performance of
the algorithms will be assessed by the covariance matrix of the €i@¢k$ — 6..) using
some results of Gaussian approximation recalled in Subsection 42.7.2.

Unfortunately, the study of the stability of the associated ODE and the derivation of
the covariance of the errors are not always possible due to their complex forms. In these
cases, the "convergence" and the performance of the algorithms for stationary data will be
assessed by first order analysis using coarse approximations. In practice, this analysis will
be only possible for independent datg ) and assuming the step sizésufficiently small”
to keep terms that are at most of the orden @f the different used expansions. An example
of such analysis has been used in [29] and [74] to derive an approximate expression of the
mean of the deviation from orthonormaliBfW7 (k)W (k) — I, for the estimatéw (k)
given by the FRANS algorithm (described in Subsection 42.5.1.2) that allows to explain the
difference in behavior of this algorithm when estimating the noise and signal subspaces.

42.7.1 A short review of the ODE method

The so-called ODE [42, 13] is a powerful tool to study the asymptotic behavior of the
stochastic approximation algorithms of the general f8rm

Ok +1) = O(k) + i f(O(k), x(k)) + iZh(0(k). x (k). (42.7.1)

with x(k) = g(&(k)), where&(k) is a Markov chain that does not depend@nf (8, x)

and h(0,x) are "regular enough” functions, and wheye, ). iS a positive sequence

of constants, converging to zero, and satisfying the assumption, = oco. Then,

the convergence properties of the discrete time stochastic algorithm (42.7.1) is intimately
connected to the stability properties of the deterministic ODE associated with (42.7.1),

10The most common form of stochastic approximation algorithms corresponté.to= 0. This residual
perturbation termu? h(6(k),x(k)) will be used to write the trajectories governed by the estimated projector
P(k) = W(k)WT (k).
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which is defined as the first-order ordinary differential equation

o) -
— = F(6(1)), (42.7.2)

where the functiorf(0) is defined by
7(8) = E[£(6,x(k)), (42.73)

where the expectation is taken only with respect to the /éta and@ is assumed deter-
ministic. We first recall in the following some definitions and results of stability theory of
ODE (i.e., the asymptotic behavior of trajectories of the ODE) and then, we will specify its
connection to the convergence of the stochastic algorithm (42.7.1)st&tienary points

of this ODE are the value8, of @ for which the driving termf () vanishes; hence the
term stationary ponts. This givg$6.) = 0, so that the motion of the trajectory ceases. A
stationary poin®, of the ODE is said to be

o stableif for an arbitrary neighborhood ., the trajectoryd(¢) stays in this neigh-
borhood for an initial conditio®(0) in another neighborhood &k, ;

e |ocally asymptotically stablé there exists a neighborhood éf. such that for all
initial conditions@(0) in this neighborhood, the ODE (42.7.2) fora#g) — 0. as

t — o0,

e globally asymptotically stabli for all possible values of initial condition®(0), the
ODE (42.7.2) force®(t) — 6. ast — oo;

e unstableif for all neighborhoods oB.., there exists some initial valu#0) in this
neighborhood for which the ODE (42.7.2) do not folg) to converge td, as

t — 0.

Assuming that the set of stationary points can be derived, two standard methods are
used to test for stability. They are summarized in the following. The first one consists
in finding a Lyapunov functiorl(0) for the differential equation (42.7.2), i.e., a positive
valued function that is decreasing along all trajectories. In this case, it is proved (see e.g.,
[12]) that the set of the stationary poirfis are asymptotically stable. This stability is
local if this decrease occurs from an initial condit®®) located in a neighborhood of the
stationary points and global if the initial condition can be arbitrary@,lfis a (locally or
globally) stable stationary point, then such a Lyapunov function necessarily exists [12]. But
for general nonlinear function(8), no general recipe exists for finding such a function.
Instead, one must try many candidate Lyapunov functions in the hopes of uncovering one
which works.

However, for specific functiong () which constitute negative gradient vectors of a
positive scalar functiotf (6):

F(8) = —VgJ with J >0,

then, all the trajectories of the ODE (42.7.2) converge to the set of the stationary points of
the ODE (see Exercice 42.16). Consequently, the set of the stationary points is globally
asymptotically stable for this ODE.

The second method consists in a local linearization of the ODE (42.7.2) about each
stationary poin#, in which case a stationary point is locally asymptotically stable if and
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only if the locally linearized equation is asymptotically stable. Consequently the final
conclusion amounts to an eigenvalue check of the m&%@le:o*. More precisely (see
Exercice 42.17), i, € R™ is a stationary point of the ODE (42.7.2), and ..., v,,, are

the eigenvalues of they x m matrix %(:)w:e*' then (see Exercice 42.17 or [12] for a
formal proof)

o if all eigenvalues, ..., v, have strictly negative real part, is a locally asymp-
totically stable point;

e if there exists/; amongyy, ..., v, such that®(v;) > 0, 6. is an unstable point;

o if for all eigenvalues, ..., v, R(v;) < 0 and for at least one eigenvalug among
V1, ..., Vm, R(v4,) = 0, we cannot conclude.

Considering now the connection between the stability properties of the associated de-
terministic ODE (42.7.2) and the convergence properties of the discrete time stochastic
algorithm (42.7.1), several results are available. First, the sequ¥igegenerated by
the algorithm (42.7.1) can only converge almost surely [42][13] to a (locally or glob-
ally) asymptotically stable stationary point of the associated ODE (42.7.2). But deducing
some convergence results about the stochastic algorithm (42.7.1) from the stability of the
associated ODE is not trivial because a stochastic algorithm have much more complex
asymptotic behavior than a given solution of its associated deterministic ODE. However
under additional technical assumptions, it is proved [31] that if the ODE has a finite number
of globally (up to a Lebesgue measure zero set of initial conditions) asymptotically stable
stationary pointg6.,);—1 ... ¢ and if each trajectory of the ODE converges towards one of
theses points, then the sequefi¢k) generated by the algorithm (42.7.1) converges almost
surely to one of these points. The conditions of the result are satisfied in particular if the
mean fieldf () can be written ag(0) = —V.J whereV,.J is a positive valued function
admitting a finite number of local minima. In this later case, this result has been extended
for an infinite number of isolated minima in [32].

In adaptive processing, we do not wish a decreasing step size sequence, since we would
then lose the tracking capability of the algorithms. To be able to track the possible non
stationarity of the datx(k), the sequence of step size is reduced to a "small" constant
parametep:. In this case, the stochastic algorithm (42.7.1) does not converge almost surely
even for stationary data and the rigorous results concerning the asymptotic behavior of
(42.7.1) are less powerful. However, when the set of all stable p@i$;—; ... 4 of the
associated ODE (42.7.2) is globally asymptotically stable (up to a zero measure set of
initial conditions), the weak convergence approach developed by Kushner [43] suggests
that for a "sufficiently small}:, (k) will oscillate around one of the limit point,, of the
decreasing step size stochastic algorithm. In particular, one should note that, when there
exist more than one possible limité £ 1), the algorithm may oscillate around one of them
0.,, and then move into a neighborhood of another equilibrium pjnt However, the
probability of such events decreases to zerg as 0, so that their implication is marginal
in most cases.

42.7.2 A short review of a general Gaussian approximation result

For constant step size algorithms and stationary data, we will use the following result proved
in [13, th.2, p.108] under a certain number of hypotheses. Consider the constant step size
stochastic approximation algorithm (42.7.1). Suppose@lia} converges almost surely
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to the unique globally asymptotically stable pofhtin the corresponding decreasing step
size algorithm. Then, iB,(k) denotes the value @ (k) associated with the algorithm

. L .
of step sizeu, we have whent — 0 andk — oo (where— denotes the convergence in
distribution andV (m, C,,), the Gaussian distribution of meamn and covarianc€,,)

L
NG

whereCy is the unique solution of the continuous-time Lyapunov equation:

(0,,(k) — 6,) 5 N (0,Co),, (42.7.4)

DCy + CoD? + G = 0O, (42.7.5)

whereD andG are, respectively, the derivative of the mean fig{@) and the following
sum of covariances of the fielt{ 8, x(k)) of the algorithm (42.7.1):

e df(@) e aﬁ(e)
D= 0—6. ([D]i,j < 20, ) (42.7.6)
G= 3 Covlf(Be x(k)), (0, x(O)} = 3 B{UAO xRNSO, x(ONT),
" o (42.7.7)

Note that all the eigenvalues of the derivatiVeof the mean field have strictly negative real
parts sinced, is an asymptotically stable point of (42.7.2) and that for independent data
x(k), G is simply the covariance of the field. Unless we have sufficient information about
the data, which is often not the case, in practice we consider the simplifying hypothesis of
independent identically Gaussian distributed deta).

It should be mentioned that the rigorous proof of this result (42.7.4) needs a very strong
hypothesis on the algorithm (42.7.1), namely tBék) converges almost surely to the
unigue globally asymptotically stable poit in the corresponding decreasing step size
algorithm. However, the practical use of (42.7.4) in more general situations is usually
justified by using formally a general diffusion approximation result [13, th.1, p.104].

In practice,u is "small" and fixed, but it is assumed that the asymptotic distribution of
1~ Y2(6,,(k) — 6.) whenk tends tox can still be approximated by a zero mean Gaussian
distribution of covarianc€g, and consequently that for "large enough'the distribution
of the residual errof6,(k) — 6.) is a zero mean Gaussian distribution of covariance
1Cg WhereCy is solution of the Lyapunov equation (42.7.5). Note that the approximation
E[(0,(k)—0.)(0,(k)—0.)T] ~ nCg enables us to derive an expression of the asymptotic
biasE[0, (k)] — 6. from a perturbation analysis of the expectation of both sides of (42.7.1)
when the fieldf (6(k), x(k)) is linear inx(k)x” (k). An example of such a derivation is
given in Subsection 42.7.3.1, [26] and Exercice 42.18.

Finally, let us recall that there is no relation between the asymptotic performance of the
stochastic approximation algorithm (42.7.1) anccdsvergence rateAs it is well known,
the convergence rate depends on the transient behavior of the algorithm, for which no
general result seems to be available. For this reason, different authors (e.qg., [22],[26]) have
resorted to simulations to compare the convergence speed of different algorithms whose
associated step sizgsare chosen to provide the same value of the mean square error
E||(6,,(k) — 0.)]2 ~ pTx(Cy).
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42.7.3 Examples of convergence and performance analysis

Using the previously described methods, two examples of convergence and performance
analysis will be given. Oja’s neuron algorithm as the simplest algorithm will allow us

to present a comprehensive study of an eigenvector tracking algorithm. Then the Oja’s
algorithm will be studied as an example of a subspace tracking algorithm.

42.7.3.1 Convergence and performance analysis of the Oja’s neuron Con-
sider Oja’s neuron algorithms (42.4.1) and (42.4.3) introduced in Section 42.4. The sta-
tionary points of their associated ODE

dw(t)

5 = Caw(t) = w(t)[w(t) Cow(t)] [resp.— Cawl(t) + w(t)[w(t)" Caw(1)]

(42.7.8)
are the roots oC,w = w[w’ C,w]| and thus are clearly given btuy)k=1,. n. TO
study the stability of these stationarity points, consider the deriviliyef the mean field
C,w — wlw!'C,w] [resp.,—C,w + w[w? C,w]] at these points. Using a standard first
order perturbation, we obtain

D (+u;) = C,— (w/'C,w)I, — 2WWTCI‘W::‘:U)€
[resp,—C, + (WTCzW)In + 2WWTCx|w:iuk].

Because the eigenvaluesIof, (+uy) are—2Ag, (A — Ag )ik [r€SP.,2A5, —(Ai — Ak )ixk],
these eigenvalues are all real negative o 1 only, for the stochastic approximation
algorithms (42.4.1), in contrast to the stochastic approximation algorithms (42.4.3) for
which Dy (f+uy) has at least one nonnegative eigenvalue. Consequently-eulyis
locally asymptotically stable for the ODE associated with (42.4.1) and all the eigenvectors
(£ug)g=1,. are unstable for the ODE associated with (42.4.3) and thus only (42.4.1)
(Oja’s neuron for dominant eigenvector) can be retained.

Note that the coupled stochastic approximation algorithms (42.4.1)(42.4.2) can be glob-
ally written as (42.7.1) as well. The associated ODE, given by

d (w(t)\ [ C,w—wwlC,w
(310 ) (oo .

has the pair§tug, \i)k=1,..., @S Stationary points. The derivatil of the mean field at

theses points is given by
. Dw(:I:uk) 0
D= ( 2ulC, -1 )

whose eigenvalues are2\y, (A; — Ax)izx and—1. Consequently the paittuy, A1) is
the only locally asymptotically stable point for the associated ODE (42.7.9) as well.

More precisely, it is proved in [49] that i(0)Tu; > 0 [resp.,< 0], the solutionw (¢)
of the ODE (42.7.2) tends exponentiallyue [resp.,—u;] ast — oo. The pair(tuy, A1)
is thus globally asymptotically stable for the associated ODE.

Furthermore, using the stochastic approximation theory and in particular [43, th.2.3.1],
itis proved in [50] that Oja’s neuron (42.4.1) with decreasing stepigizeonverges almost
surely to+u; or —u; ask tends toso.

We have now the conditions to apply the Gaussian approximation results of Subsection
42.7.2. To solve the Lyapunov equation, the derivalivef the mean field at the pair
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(£uy, A1) is given by

D= CT — /\11n — 2/\111111%1 0
2)\11,1%1 -1 ’

In the case of independent Gaussian distributed @i, it has been proved ([22] [26])
that the covarianc€x (42.7.7) of the field is given by

Gw 0
o= (o o)

with Gy, = >.I", MiA;u;ul . Solving the Lyapunov equation (42.7.5), the following
asymptotic covarianc€y is obtained ([22][26])

Cy 0
C":( o’ A%)

with Cy, = S0, ﬁulu? Consequently the estimatés (k), A(k)) of (£uy, A1)
given by (42.4.1) and (42.4.2) respectively, are asymptotically independent and Gaussian
distributed with

n

,u)\ )\
E(|lw(k) — (£u1)|?) NZ2
=2

and E(\(k) — A\1)% ~ p)2.

We note that the behavior of the adaptive estiméte§:), A(k)) of (+uy, A1) are similar
to the behavior of their batch estimates. More preciselw (k) and A\(k) denote now
the dominant eigenvector and the associated eigenvalue of the sample e€lithate

3 SF . x(i)x7 (i) of C,, a standard result [3, th.13.5.1, p.541]) gives

VE (8(k) —8,) 5 N (0,Cy), (42.7.10)

. Cw O
with Cg = < o7 2\
and\(k) are asymptotically uncorrelated and the estimation of the eigenvaliewell
conditioned in contrast to those of the eigenveetpwhose conditioning may be very bad
when\; and )\, are very close.

Expressions of the asymptotic bidas;, .., E[@(k)] — 6. can be derived from (42.7.4).
Aword of caution is nonetheless necessary because the convergencéofo,, (k) — 6.)
to a limiting Gaussian distribution with covariance ma#ly does not guarantee the con-
vergence of its moments to those of the limiting Gaussian distribution. In batch estimation,
both the first and the second moments of the limiting distributiow/f6(k) — 6..) are
equal to the corresponding asymptotic moments for independent Gaussian distributed data
x(k). In the following, we assume the convergence of the second-order moments allowing
us to write

) whereCy, = 3i, ozusu] . The estimatesv(k)

E[(6,(k) — 0.)] (6,,(k) — 6.)"] = nCp + o(1s).

Let 8,(k) = 0. + 6, with 0, = ( 1)\11 ) Provided the datx(k) are independent
1

(which implies thatw (k) andx(k)x” (k) are independent) argj, (k) is stationary, taking
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the expectation of both sides of (42.4.1) and (42.4.2) glves

E[C.(u1 4 dwy) — (w1 + 6wy)(ug + 6wi)"Cy(uy + 0wg)] = 0
E[(u; 4 6wy) " Cu(ur + 6wy) — (A +0As)] = 0.

Using a second-order expansion, we get after some algebraic manipulations

Cm — )\1:[” — 2)\111111{ 0 E(éwk)
22 u? ~1 || E(@X)

—(2>\ch + TI"(Cwa)In)ul _

Solving this equation ifE(dwy) andE(d)\x) using the expression df,,, gives the fol-
lowing expressions of the asymptotic bias

n 2
Efw (k)] - uy = —p (Z M) w+o(n) and EAK)] - A = o(u).

We note that these asymptotic biases are similar to those obtained in batch estimation
derived from a Taylor series expansion [76, p.68] with expression (42.7.X0) .of

1 [ A 1

Elw(k)] —u; = % (; M) u; + 0(%) and E[Mk)] -\ = 0(%).
Finally, we see that in adaptive and batch estimation, the square of these biases are an order
of magnitude smaller that the variancesJity) or O(4).

This methodology has been applied to compare the theoretical asymptotic performance

of several adaptive algorithms for minor and principal component analysis in [22, 26].
For example, the asymptotic mean square eB@fW (k) — W, ||,,) of the estimate
‘W (k) given by the WSA algorithm (42.6.9) is shown in Figure 1, where the stepsize
chosen to provide the same value fdfr(Cg). We clearly see in this figure that the value
B2/81 = 0.6 optimizes the asymptotic mean square error/speed of convergence tradeoff.

10 T T T
WSA algorithm

I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration Number

Figure 1 Learning curves of the mean square ef0f W (k) — W || 3., ) averaging 100 independent
runs for the WSA algorithm, for different values of parametey3: = 0.96 (1), 0.9 (2), 0.1 (3),
0.2 (4), 0.4 (5) and 0.6 (6) compared withuTr(Ce) (0) in the casen = 4, r = 2, C, =
Diag(1.75,1.5,0.5,0.25), where the entries &W (0) are chosen randomly uniformly in [0,1].

\We note that this derivation would not be possible for non-polynomial adaptafi@(), x(k)).
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42.7.3.2 Convergence and performance analysis of Oja’s algorithm Con-
sider now Qja’s algorithm (42.5.5) described in Subsection 42.5.1. A difficulty arises in
the study of the behavior 8V (k) because the set of orthonormal bases of-tdeminant
subspace forms eontinuumof attractors: the column vectors 8 (k) do not in general
tend to the eigenvectots, . .., u,, and we have no proof of convergenceWf(k) to a
particular orthonormal basis of their span. Thus, considering the asymptotic distribution of

‘W (k) is meaningless. To solve this problem, in the same way as Williams [77] did when

he studied the stability of the estimated projection maR{%) def W (k)W (k) in the

dynamics induced by Oja’s learning equati®®2 = [I,, — W (1)W (1)T]CW (1), viz
4P (1)

—— = (L, — P())CP(t) + P()C(I, — P(t)), (42.7.11)

lef

we consider the trajectory of the matrR(k) 1
governed by the stochastic equation

W (k)W (k) whose dynamics are

P(k+1) = P(k) + ui f (P(k), x(k)x" (k) + pZh(P(k), x(k)x" (k) (42.7.12)
with £(P,C) % (1, — P)CP + PC(I,, — P) andh(P, C) ¥ (I, - P)CPC(I, — P).
A remarkable feature of (42.7.12) is that the figldnd the complementary terindepend
only onP (k) andnoton W (k). This fortunate circumstance makes it possible to study the
evolution of P (k) without determining the evolution of the underlying matW&(k). The
characteristics oP (k) are indeed the most interesting since they completely characterize
the estimated subspace. Since (42.7.11) has a unique global asymptotically stable point
P. = II, [68], we can conjecture from the stochastic approximation theory [13, 43] that
(42.7.12) converges almost surelyBa. And consequently the estimaW (k) given
by (42.5.5) converges almost surely to the signal subspace in the meaning recalled in
Subsection 42.2.4.

To evaluate the asymptotic distributions of the subspace projection matrix estimator given

by (42.7.12), we must adapt the results of Subsection 42.7.2 because the pakhgter
here am x n rank+ symmetric matrix. Furthermore, we note that some eigenvalues of the
derivative of the mean field(P) = E[f(P, x(k)x” (k))] are positive real. To overcome
this difficulty, let us now consider the following parametrizatio®d) in a neighborhood
of P, introduced in [24, 25]. If6;;(P)|1 < i < j < n} are the coordinates @& — P, in
the orthonormal basisS; ;)1<.<;j<» defined by

uu’ 1=
Si,j == uiu?+uj-u? . .
s 1<

with the inner product under consideratior( s, B) def Tr(ATB), then,

P=P.+ > 0,PS;;

1<i,j<n

andd;;(P) = Tr{S;;(P — P,)} for 1 <1i < j <n. The relevance of this basis is shown
by the following relation proved in [24, 25]

P=P,.+ Y 0;(P)S;+O(P-P.|%,), (42.7.13)
(4,J)EPs
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whereP, & {(i,5) |1 <i<j <nandi <r}. There are;(2n — r + 1) pairs in P, and
this is exactly the dimension of the manifold of thex n rank+ symmetric matrices. This
point, together with relation (42.7.13), shows that the matriXSet| (¢, j) € P,}isin fact
an orthonormal basis of the tangent plane to this manifold at fjntin other words, an

n x n ranks symmetric matrixP lying less thare away fromP,, (i.e., |P — P.|| < €) has
negligible (of ordere?) components in the direction &;; for r < i < j < n. It follows
that, in a neighborhood @.., then x n rank+ symmetric matrices are uniquely determined

by the 5(2n — r + 1) x 1 vector@(P) defined by:6(P) & STvec(P — P,.), whereS

denotes the following? x £(2n — r + 1) matrix: S e [...,vec(Ssj),...], (4,7) € Ps.

If P(0) denotes the unique (fdf@|| sufficiently small)n x n rank+ symmetric matrix
such thatSTvec(P(0) — P,) = 6, the following one-to-one mapping is exhibited for
sufficiently small||@(k)||:

vec(P(O(k))) = vec(P.) +SO(k) + O(||0(k)||?) < O(k) = STvec(P(k) — P,)
(42.7.14)

We are now in a position to solve the Lyapunov equation in the new paraghet€he
stochastic equation governing the evolutiorddk) is obtained by applying the transfor-
mationP (k) — 0(k) = STvec(P(k) — P.) to the original equation (42.7.12), thereby
giving

O(k +1) = O(k) + urd(0(k), x(k)) + pzp (0(k), x(k)) (42.7.15)
whereg(0,x) ' STvec(f(P(6),xxT)) andi)(6,x) = STvec(h(P(6), xxT)). Solv-
ing now the Lyapunov equation associated with (42.7.15) after deriving the derivative of the
mean fieldp(8) and the covariance of the fie}d @ (k), x(k)) for independent Gaussian dis-
tributed datax(k), yields the covarianc€y of the asymptotic distribution @(k). Finally
using mapping (42.7.14), the covarianGe = SCeST of the asymptotic distribution of
P(k) is deduced [25]

i
CP = Z 7J(ul ® llj —+ llj ® ui)(ui ® Uj + llj ® lli)T. (42716)

1<i<r<j<n (i =A5)

To improve the learning speed and misadjustment tradeoff of Oja’s algorithm (42.5.5), it has
been proposed in [25] to use the recursive estimate (42.3.6€) fok) = E[x(k)x” (k)].
Thus the modified Oja’s algorithm, called the smoothed Oja’s algorithm, reads:

Clk+1) = C(k)+ au[x(k)x" (k) — C(k)], (42.7.17)
W(k+1) = W(k)+ mll, - WEWT (K)]C(k)W(k), (42.7.18)

whereq is introduced in order to normalize both algorithms because if the learning rate
of (42.7.17) has no dimension, the learning rate of (42.7.18) must have the dimension of
the inverse of the power of(k). Furthermorex can take into account a better tradeoff
between the misadjustments and the learning speed. Note that the performance derivations
may be extended to this smoothed Oja’s algorithm by considering that the coupled stochastic
approximation algorithms (42.7.17)(42.7.18) can be globally written as (42.7.1) as well.
Reusing now the parametrizatidf;; ), <,<;j<» becauseC(k) is symmetric as well, and
following the same approach, we obtain now [25]

CP = E m(ul (029] Uj =+ Uj ® ui)(ui X u]‘ + Uj ® ui)T. (42719)
L= 2= )
1<i<r<j<n
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with a;; % a/(+ A — Aj) < L.

This methodology has been applied to compare the theoretical asymptotic performance
of several minor and principal subspace adaptive algorithms in [24, 25]. For example,
the asymptotic mean square erioff| P (k) — P.||3,,) of the estimatd® (k) given by the
Oja’s algorithm (42.5.5) and the smoothed Oja’s algorithm (42.7.17) are shown in Figure
2, where the step sizeof the Oja’s algorithm and the coup(g, «) of the smoothed Oja’s
algorithm are chosen to provide the same valugfbr(Cp). We clearly see in this figure
that the smoothed Oja’s algorithm with= 0.3 provides faster convergence than the Oja’s
algorithm.

10" : : : . ! : ! . T
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Figure 2 Learning curves of the mean square eft¢j P (k) — P.||3,,) averaging 100 independent
runs for the Oja’s algorithm (1) and the smoothed Oja’s algorithm with 1 (2) anda = 0.3 (3)
compared withuTr(Cp) (0) in the same configuratiol(,;, W (0)) that Figure 1.

Regarding the issue of asymptotic bias, note that there is a real methodological problem
to apply the methodology of the end of Subsection 42.7.3.1. The trouble stems from the
fact that the matridP (k) = W (k)W (k) does not belong to a linear vector space because
it is constrained to have fixed ramk< n. The set of such matrices is not invariant under
addition; it is actually a smooth submanifold Bf**™. This is not a problem in the first-
order asymptotic analysis because this approach amounts to approximating this manifold by
its tangent plane at a point of interest. This tangent plane is linear indeed. In order to refine
the analysis by developing a higher order theory, it becomes necessary to take into account
the curvature of the manifold. This is tricky business. As an example of these difficulties,
one could show (under simple assumptions) that there exist no projection-valued estimators
of a projection matrix that are unbiased at or@€r:); this can be geometrically pictured by
representing the estimates as points on a curved manifold (here: the manifold of projection
matrices).

Using a more involved expression of the covariance of the field (42.7.7), the previously
described analysis can be extended to correlatedxdta Expressions (42.7.16) and
(42.7.19) extend provided that\; is replaced by\;A; + A; ; where ), ; is defined in
[25]. Note that whemx (k) = (zx, g1, ..., Zr—ny1)” With 25, being an ARMA stationary
process, the covariance of the field (42.7.7) and thyscan be expressed in closed form
with the help of a finite sum [23].

The domain of learning ratefor which the previously described asymptotic approach is
valid and the performance criteria for which no analytical results could be derived from our
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first-order analysis, such as the speed of convergence and the deviation from orthonormality

() W ()W (k) — I.||%,, can be derived from numerical experiments only. In

order to compare Oja’s and the smoothed Oja’s algorithms, the associated parameters
and («, 1) must be constrained to give the same valug®f(Cp). In these conditions,

it has been shown in [25] by numerical simulations that the smoothed Oja’s algorithm
provides faster convergence and a smaller deviation from orthonorni&(jty than Oja’s
algorithm. More precisely, it has been shown th&tu) o 2 [resp., o u?] for Oja’s
[resp., the smoothed Oja’s] algorithm. This result agrees with the presentation of Oja’s
algorithm given in Subsection 42.5.1 in which the teéiu;) was omitted from the
orthonormalization of the columns &V (k).

Finally, using the theorem of continuity (e.g., [58, Th.6.2a]), note that the behavior
of any differentiable function oP (k) can be obtained. For example, in DOA track-
ing from the MUSIC algorithrt? (see e.g., Subsection 42.8.1), the MUSIC estimates
(0i(k))i=1,...r Of the DOAs at timek can be determined as thedeepest minima of the
localization functiona? (6)[L,, — P(k)]a(#). Using the mappin@® (k) — 6(k) where
hered (k) ef (01(k), ..., 0.(k))T, the Gaussian asymptotic distribution of the estingte
can be derived [24] and compared to the batch estimate. For example for a single source,
it has been proved [24] that

TL02 02 02
0 (k) = u—L (14 2| n .
Var (6, (k) u2a1( +M%> 23+ o)

whereo? is the source power ang is a purely geometrical factor. Compared to the batch
MUSIC estimate

11 0721 JZ 1
Var(&l(k)) = E()Tl (1 + na%) 0_7% + O(E)7

the variances are similar provided.o? is replaced by,%. This suggests that the step size
u of the adaptive algorithm must be normalizedriy?.

42.8 ILLUSTRATIVE EXAMPLES

Fast estimation and tracking of the principal (or minor) subspace or components of a se-
quence of random vectors is a major tool for parameter and signal estimation in many
signal processing communications and RADAR applications (see e.g., [11] and the refer-
ences therein). We can cite, for example, the Direction of Arrival (DOA) tracking and the
blind channel estimation including CDMA and OFDM communications as illustrations.
Going back to the common observation model (42.3.1) introduced in Subsection 42.3.1

x(k) = A(k)r(k) + n(k), (42.8.1)

whereA (k) is ann x r full column rank matrix withr < n, the different applications are
issued from specific deterministic parametrizatidr(g(k)) of A(k) whereg(k) € R?is
a slowly time-varying parameter comparedrt@). When this parametrizatiop(k) —

12Naturally in this application, the data are complex-valued, but using the conjugate transpose operator instead of

transpose, and a complex parametrization based on the orthonormalasis <, ;<. whereH; ; = u;ulf
H

w0 wef gl
fori = j, % fori < j and# fori > jinstead of the orthonormal bagi8; ;) 1<i<j<n,
expressions (42.7.16) and (42.7.19) are still valid.
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A(¢(k)) is nonlinearg (k) is assumed identifiable from the signal subspaee[A (k)]
or the noise subspaell[AT (k)] which is its orthogonal complement, i.e.,

span [A(¢(k))] = span [A(¢'(k))] = ¢'(k) = (k)

and when this parametrizatiah(k) — A (¢(k)) is linear, this identifiability is of course
up to a multiplicative constant only.

42.8.1 Direction of arrival tracking

In the standard narrow-band array data modekp) is partitioned inta- column vectors as

A(p) def [a(é1),-..,a(¢,)], where(¢;);=1,... , denotes different parameters associated

with ther sources (azimuth, elevation, polarization,...). In this case, the parametrization is
nonlinear. The simplest case corresponds to one parameter per speteg (e.g., for a
uniform linear arraya(¢;) = (1, 274 sinéi__ ei2n U5 sin6:)T)  For convenience and
without loss of generality, we consider this case in the following. A simplistic idea to track
ther DOAs would be to use an adaptive estimBtg(%) of the noise orthogonal projection
matrix IL,, (k) given byW (k)W (k) orI,, — W (k)W (k) whereW (k) is, respectively,
given by a minor or a dominant subspace adaptive algorithm introduced in Sectiolf 42.5,
and then to derive the estimated DOAs asntiminima of the cost function

a' (¢)TL, (k)a(¢)
by a Newton-Raphson procedure
pi(k+1) = ¢i(k) R
Rla;" (@(k) L (k + Dal (4(k))]

Rl (6 (k)T (k + 1)al (:(k)) + a7 (63 (k) TLa (k + 1)a'™ (4(k)]
=1

)

yeeey T

wherea/, e Cfiij anda L ‘f—ag While this approach works for distant different DOAs,

it breaks down when the DOAs of two or more sources are very close and particularly in
scenarios involving targets with crossing trajectories. So the difficulty in DOA tracking

is the association of the DOA estimated at different time points with the correct sources.
To solve this difficulty, various algorithms for DOA tracking have been proposed in the
literature (see e.g., [59] and the references therein). To maintain this correct association, a
solution is to introduce the dynamic model governing the motion of the different sources

def d)z(k + 1) 1 T T2/2 (ﬁl(k) nlyi(k)
$i(k+1) = | ¢i(k+1) | =10 1 T oi(k) | + | n2u(k) |,
¢ (k+1) 00 1 ¢ (k) n3.i(k)

whereT" denotes the sampling interval artd;;(k)),_, , ; are random process noise
terms that account for random perturbations about the constant acceleration trajectory.
This enables us to predict the state (position, velocity, and acceleration) of each source in
any interval of time using the estimated state in the previous interval. An efficient and
computationally simple heuristic procedure has been proposed in [65]. It consists of four

130f course, adapted to complex-valued data.
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steps by iteratiotk. First, a predictionzi(k + 1/k) of the state from the estima&(k/k)

is obtained. Second, an update of the estimated noise projection Eﬁalt(kx) given by a
subspace tracking algorithm introduced in Section 42.5 is derived from the new snapshot
x(k). Third, for each source, an estimategi(k + 1) given by a Newton-Raphson step
initialized by the predicted DOA;ASi(k + 1/k) given by a Kalman filter of the first step
whose measurement equation is given by

R oi(k)
¢i(k) = [1,0,0] [ &5 (k) ] + n4,i(k)
7 (k)

where the observatiaﬁi(k) is the DOA estimated by the Newton-Raphson step at iteration
k — 1. Finally, the DOAG; (k + 1/k) predicted by the Kalman filter is also used to smooth
the DOA qAﬁi(k + 1) estimated by the Newton-Raphson step, to give the new estimate
¢A>i(k: + 1/k + 1) of the state whose its first component is used for tracking th®As.

42.8.2 Blind channel estimation and equalization

In communication applications, the matched filtering followed by symbol rate sampling
or oversampling yields an-vector datax(k) which satisfies the model (42.8.1), where
r(k) contains different transmitted symbdlg. Depending on the context, (Single Input
Multi Output (SIMO) channel, or Code Division Multiple Access (CDMA), Orthogonal
Frequency Division Multiplexing (OFDM), Multi Carrier CDMA (MC CDMA) with or
without intersymbol interference, different parametrization?\¢k) arise which are gen-
erally linear in the unknown parameig(k). The latter represents different coefficients of
the impulse response of the channel that are assumed slowly time-varying compared to the
symbol rate. In these applications, two problems arise. First, the updating of the estimated
parameterg(k), i.e., the adaptive identification of the channel can be useful to an optimal
equalization based on an identified channel. Second, for particular models (42.8.1), a di-
rect linear equalizatiom” (k)x(k) can be used from the adaptive estimation of the weight
m(k). Toillustrate subspace or component-based methods, two simple examples are given
in the following.

For the two channel SIMO model, we assume that the two channels are ofowetet
that we stack then + 1 most recent samples of each channel to form the observed data
x(k) = [x1(k),x2(k)]T. In this case we obtain the model (42.8.1) wherék) is the
following 2(m + 1) x (2m + 1) Sylvester filtering matrix

¢0(k3) ¢m(k-)
bo(k) - Pm(R)

andr(k) = (bk, ...,bk_gm)T, with ¢1(k‘) = (hi71(k),hi,2(ki))T, 1=0,....m Wherehi,j
represents théh term of the impulse response of tli¢h channel. These two channels

do not share common zeros, guaranteeing their identifiability. In this specific two-channel
case, the so called least square [79] and subspace [48] estimates of the impulse response
o(k) = [dE (k),..., oL (k)] defined up to a constant scale factor, coincide [80] and are
given by ¢ (k) = Tv(k) with v(k) is the eigenvector associated with the unique smallest
eigenvalue ofC, (k) = E (x(k)x” (k)) whereT is the antisymmetric orthogonal matrix
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Im+1 ® |: 701 é
impulse responsé(k) can be derived from the adaptive estimation of the eigenvector
v(k). Note that in this example, the ranlof the signal subspace is given by= 2m + 1
whose ordern of the channels that usually possess "small” leading and trailing terms is
ill defined. For such channels it has been shown [45] that blind channel approximation
algorithms should attempt to model only the significant part of the channel composed of the
large impulse response terms because efforts toward modeling small leading and/or trailing
terms lead to effective overmodeling, which is generically ill-conditioned and, thus, should
be avoided. A detection procedure to detect the order of this significant part has been given
in [44].

Consider now an asynchronous direct sequence CDMA systemusers without
intersymbol interference. In this case, model (42.8.1) applies, whékg is given by

Consequently an adaptive estimation of the slowly time-varying

A(k) = [a1(k)s1, .., ar (k)s,]

wherea; (k) ands; are respectively the amplitude and the signature sequence otlthe
userand(k) = (by.1, ..., br)T Whereby ; is the symbok of thei-th user. We assume that

only the signature sequence of User 1, the user of interest, is known. Two linear multiuser
detectoram” (k)x(k), namely, the decorrelation detector (i.e. that completely eliminates
the multiple access interference caused by the other users) and the linear MMSE detector
for estimating the symbdal, ;, has been proposed in [75] in terms of the signal eigenvalues
and eigenvectors. The scaled version of the respective weigti} of these detectors are
given by

(A(k) - 02(WL,) " UT(k)s:
AL (k) UT (k)sy,

m(k) = Us(k)
m(k) = Uy(k)
whereU, (k) = [vi(k), ..., v.(k)], A(k) = Diag(A1(k), ..., (k) ando2 (k) = Ay 1(k)
issued from the adaptive EVD &, (k) = E (x(k)x” (k)) including the detection of the
numberr of user that can change by a rank tracking procedure (e.g., [71]).

42.9 CONCLUDING REMARKS

Although adaptive subspace and component-based algorithms were introduced in signal
processing three decades ago, a rigorous convergence analysis has been only derived for
the celebrated Oja’s algorithm, whose Oja’s neuron is a particular case, in stationary envi-
ronment. In general all these techniques are derived heuristically from standard iterative
computational techniques issued from numerical methods of linear algebra. So a theo-
retical convergence and performance analysis of these algorithms is necessary, but seem
very challenging. Furthermore, such analysis is not sufficient because these algorithms
may present numerical instabilities due to rounding errors. Consequently, a comprehensive
comparison of the different algorithms that have appeared in the literature from the per-
formance (convergence speed, mean square error, distance to the orthonormality, tracking
capabilities), computational complexity and numerical stability points of view, that are out
the scope of this chapter, would be be very useful for practitioners.

The interest of the signal processing community in adaptive subspace and component-
based schemes remains strong as it is evident from the numerous articles and reports
published in this area each year. But we note that these contributions mainly consist in
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the application of standard adaptive subspace and component-based algorithms in new
applications and in refinements of well known subspace/component-based algorithms,
principally to reduce their computational complexity and to numerically stabilize the minor
subspace/component-based algorithms, whose literature is much more limited than the
principal subspace and component-based algorithms.

Problems

42.1 Let )\ be a simple eigenvalue of a real symmetrig n matrix Cy, and letug be a
unit 2-norm associated eigenvector, so Bat, = \guy. Then a real-valued functiok(.)
and a vector function(.) are defined for alC in some neighborhood (e.g., among the real
symmetric matrices) o€, such that

A(Co) = Ap, u(Cp) =up and Cu = Au under the constrainful|, = 1.

Using simple perturbations algebra manipulations, prove that the functionandu(.)
are differentiable on some neighborhood®f and that the differentials &, are given by

SA=ul(6C)uy and du= —(C — \IL,)#(6C)uy, (42.9.2)

where# stands for the Moore Penrose inverse. Prove that if the consfrajpt= 1 is
replaced byal u = 1, the differentialiu given by (42.9.2) remains valid.

Now consider the same problem wheg is a Hermitian matrix. To fix the perturbed
eigenvecton, the condition||ul|? = 1 is not sufficient. So suppose now thafu = 1.
Note that in this cas& no longer has unit 2-norm. Using the same approach as for the
real symmetric case, prove that the functior(s) and u(.) are differentiable on some
neighborhood ofC, and that the differentials &, are now given by

SA=ull(6C)uy and du= —(C — \IL,)# (I, — upul)(6C)ug.  (42.9.3)

In practice, different constraints are used to dix For example, the SVD function of
MATLAB forces all eigenvectors to be unit 2-norm with a real first element. Specify in
this case the new expression of the differenfialgiven by (42.9.3). Finally, show that the
differential ju given by (42.9.2) would be obtained with the conditiafi su = 0, which

is no longer derived from the constraihi||; = 1.

42.2 Consider am x n real symmetric or complex Hermitian mat¥, whose ther

smallest eigenvalues are equabtowith \,,_, > \,_,;+1. LetII, the projection matrix
onto the invariant subspace associated with Then a matrix-valued functiofl(.) is

defined as the projection matrix onto the invariant subspace associated withrttedlest
eigenvalues ofC for all C in some neighborhood af, such thalI(C,) = II,. Using

simple perturbations algebra manipulations, prove that the funciibpnsis two times
differentiable on some neighborhood@f and that the differentials &, are given by

SIL = — (no(ac)s# + s#((sC)nO)
+ SH(6C)IL,(5C)SH — I, (5C)ST2(5C)I, + ST (6C)ST (5C)IT,
+ TII(6C)S¥(5C)SY — S#2(5C)IIy(6C)ITy — Iy (6C)IL, (5C)SE2,
whereS, ¥ ¢, — ¢21,,.

42.3 Consider a Hermitian matrixC whose real and imaginary parts are denoted by
C, and C; respectively. Prove that each eigenvalue eigenvector (Pan) of C is
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associated with the eigenvalue eigenvector p@i:s( E’" )) and (A, ( _uu"' )) of the

1 T

T *Ci

real symmetric matn{ c, C.

} whereu,. andu; denote the real and imaginary parts
of u.

42.4 Consider what happens when the orthogonal iteration method (42.2.11) is applied
with » = n and under the assumption that all the eigenvalue8 afe simple. The QR
algorithm arises by considering how to compute the m&lgif(léf WTCW, directly from

this predecessdr’; ;. Prove that the following iterations

Ty = Q{CQO whereQ is an arbitrary orthonormal matrix
fori=1,2,... T,_1 = Q;R; QR factorization
T; = RiQ,

produce asequenc®’;, QoQ;...Q;) thatconverges tDiag (A1, ..., A\n), [£uq, ..., £u,]).

42.5 Specify what happens to the convergence and the convergence speed, if the step
‘W, = orthonorr{ CW,_, } of the orthogonal iteration algorithm (42.2.11) is replaced by

the following{W, = orthonorm{ (I,, + nC)W,_; }. Same questions, for the st€V,; =
orthonormalization o€ ~'W,_; }, then{W, = orthonormalization ofI,, — uC)W,_1 }.

Specify the conditions that must satisfy the eigenvalue€ @nd .. for these latter two

steps. Examine the specific case- 1.

42.6 Usingthe EVD ofC, prove that the solutior’® of the maximizations and minimiza-
tions (42.2.7) are given bW = [uy, ..., u,]Q andW = [u,, 41, ..., u,|Q respectively,
whereQ is an arbitrary- x r orthogonal matrix.

42.7 Consider the scalar function (42.2.14)W) % E(|lx — WWTx|2) of W =

[w1,...,w,] with C & E(xxT). Let Vw = [Vi,..., V,] where(Vy)i_1.. ., is the
gradient operator with respecttg,. Prove that

VwJ =2(—2C+CWW" + WW'C)W. (42.9.4)

Then, prove that the stationary points 6fW) are given byW = U, Q where ther
columns ofU,. denote arbitrary distinct unit-2 norm eigenvectors among, ..., u,, of C
and wherdQ is an arbitraryr x r orthogonal matrix. Finally, prove that at each stationary

point, J(W) equals the sum of eigenvalues whose eigenvectors are not invol¥&d in

Consider now the complex valued case whé(av) e E(||x — WWx]|2) with

c¥ E(xx) and use the complex gradient operator (see e.g., [35]) defin&apy=

%[VR +iV ;] whereV g andV ; denote the gradient operators with respect to the real and
imaginary parts. Show tha& w.J has the same form as the real gradient (42.9.4) except
for a factor 1/2 and changing the transpose operator by the conjugate transpose one. By
noticing thatVwJ = O is equivalent toV pJ = VJ = O, extend the previous results

to the complex valued case.

42.8 With the notations of Exercice 42.7, suppose now that- .., and consider first
the real valued case. Show that ligj)th bIockViVjTJ of the block Hessian matrild
of J(W) with respect to thexr-dimensional vectoijw? , ..., wl'|T is given by

1
5ViViJ = 0;(-2C+CWW' + WW'C)
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+ (W] Cwy)L, + (] w;)C + Cw,w] +w,w/C.

After evaluating the EVD of the block Hessian matik at the stationary point®V =
U, Q, prove thatH is nonnegative ifU, = [uy,...,u,]. Interpret in this case the zero
eigenvalues oH. Prove that whefU,. contains an eigenvector different from, ..., u,,
some eigenvalues & are strictly negative. Deduce that all stationary points@V) are
saddle points except the poir¥¥ whose associated matri¥,. contains the- dominant
eigenvectorsiy, ..., u,. of C which are global minima of the cost function (42.2.14).
Extend the previous results by considering2he x 2nr real Hessian matrid = VV J

with V< (V% .., V5 VT, . VT T,

42.9 With the notations of the NP3 algorithm described in Subsection 42.5.1.3, write
(42.5.15) in the form

1 ~1/2

Gk +1)= 5 [G*l/Q(k)(In +ab” + ba’ + aaa?)GT/2(k)
with a < LG (k)y(k), b & LG (k)z(k) anda ' ||x(k)|>. Then, using the EVD
vierel + vyeqel of the symmetric rank two matrixb” + ba” 4 aaa”, prove equalities
(42.5.16) and (42.5.17) where ™' 1 —1/\/; + 1,i = 1,2.

42.10 Consider the following stochastic approximation algorithm derived from Oja’s
algorithm (42.5.5) where the sign of the step size can be reversed and where the estimate
W (k) is forced to be orthonormal at each time step

W (k+1) = W(k)+ pgL, — W(E)WT (k)]x(k)x” (kYW (k)
W(k+1) = W(k+ DWW (k+ )W (k+1)"2, (42.9.5)

wherelW'” (k+1)W’(k~+1)] /2 denotes the symmetric inverse square roddsf (k -+
1)W'(k + 1). To compute the later, use the updating equatioMd{ % + 1) and keep-
ing in mind thatW (k) is orthonormal, prove tha®’" (k + 1)W'(k + 1) = I, + zz”
with z % p||x(k) — W(k)y(k)|ly(k) wherey(k) % W7 (k)x(k). Using identity
(42.5.9), prove thafW'” (k + 1)W'(k + 1)]"/2 = 1, + 7y(k)yL (k) with 7, %
A/ly (R)I1%) ((1/(1 + 1|1 (k) — W (k)y (k)[|*[ly (k)||*)!/*) — 1). Finally, using the up-
date equation oW (k + 1), prove that algorithm (42.9.5) leadsW (k + 1) = W (k) £
pp(k)yT (k) with p(k) < 7/ W )y (k) + (1+ 7 [y (k) ||2) (x(k) — W (R)y (k).
Alternatively, prove that algorithm (42.9.5) leads¥¥é(k + 1) = H(k)W (k) where

H(k) is the Householder transform given BY(k) = I,, — 2u(k)u® (k) whereu(k) def

p(k)/lp(k)]-
def

42.11 Consider the scalar function (42.5.200W) = Tr[ln(WTCW)] - Tr(WTW).
Using the notations of Exercice 42.7, prove that

VwJ =2 (CW(W'CW) ' - W). (42.9.6)

Then, prove that the stationary points HfW) are given byW = U, Q where ther
columns ofU,. denotes arbitrary distinct unit-2 norm eigenvectors amoag, ..., u,, of C
and whereQ is an arbitraryr x r orthogonal matrix. Finally, prove that at each stationary
point, J(W) = Y7 In(),,) — r, where ther eigenvalues\,, are associated with the
eigenvectors involved iJ,..
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42.12 With the notations of Exercice 42.11 and using the matrix differential method [46,
Chap. 6], prove that the Hessian matkkof J(W) with respect to thewr-dimensional
vector[w{, ..., wl]T is given by
H = I, (W'CW) '@ [CWW'CW)'W'(C]

K, [CW(WTCW) ] @ [(WTCW) 'WTC] + (WICW) ' o C,

N

where K., is the nr x rn commutation matrix [46, Chap. 2]. After evaluating this
Hessian matrid at the stationnary poinfv = U,.Q of J(W) (42.5.21), subtituting the
EVD of C and deriving the EVD of, prove that whem\, > \.,;, H is nonnegative
if U, = [uy,...,u,]. Interpretin this case the zero eigenvaluedbf Prove that when
U, contains an eigenvector different from, ..., u,, some eigenvalues @i are strictly
positive. Deduce that all stationary points.&fW) are saddle points except the poiWié
whose associated matrl{,. contains the- dominant eigenvectors,, ..., u,. of C which
are global maxima of the cost function (42.5.21).

42.13 Supposethe columnery (k), ..., w..(k)] of then x r matrixW (k) are orthonormal
and letW’(k + 1) be the matrixW (k) + upx(k)xT (k)W (k). If the matrix S(k + 1)
performs a Gram-Schmidt orthonormalization on the columri@/éfk + 1), write this in
explicit form for the columns of matri¥ (k +1) = W'(k +1)S(k + 1) as a power series
expansion inu; and prove that

wi(k+1) = wi(k) + [In = wi(k)w] (k) —2 ij(k)ij(k)]
j=1

x(k)xT (k)w;i(k) +O(u3) for i=1,...,r.

Following the same approach with noW’(k + 1) = W (k) £ x(k)xT (k)W (k)T'(k)
whereI' (k) = uiDiag(1, as, ..., ), prove that

wi(k+1) = wi(k) +aipk |:In —wi(k)w] (k) — i(l + J:)Wj(k’)WjT(k)]

42.14 Specify the stationary points of the ODE associated with algorithm (42.6.10).
Using the eigenvalues of the derivative of the mean field of this algorithm, prove that
if A\n_r11 < 1 and andg > % — 1, the only asymptotically stable points of the
associated ODE are the eigenve%&w_r+1, R

42.15 Prove that the set of thex r orthogonal matriceSV (denoted the Stiefel manifold
St,,.») is given by the set of matrices of the fore® W whereW is an arbitraryn x r
fixed orthogonal matrix and is a skew-symmetric matrix” = —A).

Prove the following relation

J(W + W) = J(W) + Tr[dAT (H,WH, W — WH, WTHS,)] + 0o(6W),

where J(W) = Tr[WH,; WTH,] (whereH,; and H, are arbitraryr x r andn x n
symmetric matrices) defined on the setrof< r orthogonal matrices. Then, give the
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differential d.J of the cost function/(W) and deduce the gradient 3fW) on this set of
n x r orthogonal matrices

VwJ = [HWH, W - WH, W H,|W. (42.9.7)

42.16 Prove that iff(8) = —VJ, whereJ(0) is a positive scalar functionf(0(t))
tends to a constant atends toxo, and consequently all the trajectories of the ODE (42.7.2)
converge to the set of the stationary points of the ODE.

42.17 Let6. be astationary pointofthe ODE (42.7.2). Consider a Taylor series expansion
of f(@) about the poind = 6.,

af(6)

f(8) = f(6.) + W‘GZO*(G’ —0.)+0[(6 - 6.)](6 - 6.).

By admitting that the behavior of the trajectd@ft ) of the ODE (42.7.2) in the neighborhood
of 6. is identical to those of the associated linearized O@}t@ =D (6(t) — 60.) (with

D &f %IO:G*) about the poin®.,, relate the stability of the stationary poifit to the

behavior of the eigenvalues of the matFix

42.18 Consider the general stochastic approximation algorithm (42.7.1) in which the
field f(0(k),x(k)x” (k)) and the residual perturbation temd(k), x(k)x” (k)) depend
on the datax(k) throughx(k)x” (k) and are linear in(k)x” (k). The datax(k) are

independent. The estimated parameter is here dettigd def 0. + 60;. We suppose

that the Gaussian approximation result (42.7.4) applies and that the convergence of the
second-order moments allows us to witgé,,(k) — 0..)] (8,,(k) — 0.)"] = uCo +o(p).

Taking the expectation of both sides of (42.7.1), proviggd= 1 and8,,(k) stationary,

gives that

aof po*f

0=E(f(8. +66,.C.) = 55 B0+ 575

vec(Cg) + o(p).

Deduce a general expression of the asymptotic hias .. E[6(k)] — 0...
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