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Abstract

The purpose of this paper is to determine the domain of validity of spatial covariance-based narrowband DOA algorithms
when processing non-narrowband data. By focusing on the case of one source and two equipowered uncorrelated sources of
the same bandwidth, we examine order detection and asymptotic bias and covariance w.r.t. the bandwidth and the number of
snapshots given by any narrowband algorithm. An order detector scheme, based on numerical analysis arguments introduced
in channel order detection, is proposed. Closed-form expressions are given for the asymptotic bias and covariance of the
DOA’s estimated by the MUSIC algorithm, for which we show the key role that bandwidth plays w.r.t. the demodulation
frequency. Furthermore, a common closed-form expression of the Cramer–Rao bound is given for the DOA parameter of a
narrowband or wideband source, whose spectrum is symmetric w.r.t. the demodulation frequency, in the case of an arbitrary
array. This allows us to prove that the MUSIC algorithm retains its e9ciency over a large bandwidth range under these
conditions.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of estimating the directions of arrival
(DOA) of multiple plane waves impinging on an ar-
ray of sensors may be classi@ed into narrowband and
wideband data processing, according to whether the
complex envelope of the received signals can be con-
sidered as constant vs. variable in time along the array.
As the wideband approaches generally require an in-
creased computational complexity (see e.g., [12] and
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the references therein) compared to the narrowband
ones, it is of interest to examine if the narrowband
methods can be used for a su9ciently wide band-
width without sacri@cing performance. This question,
interestingly, has received little attention in the lit-
erature. Schell and Gardner [17] mention the break-
down of narrowband approximations as one depar-
ture from ideality among potentially others. Several
authors have proposed de@nitions of the narrowband
scenario but have not related it to the performance of
DOA algorithms. Based on the result shown in [4]
that more than 99.99% of the received power from
a single signal is characterized by the r = �2b�� +
1� largest eigenvalues of the spatio-temporal covari-
ance matrix (where b is the bandwidth of the received
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signal and �� is the propagation time across the ar-
ray including time spent traveling through the delay
lines in the sensors), Buckley [4] de@ned as a narrow-
band scenario the case where 2b�� + 1 is su9ciently
close to one. For wider bandwidths and greater prop-
agation time across the array, this notion of e?ective
rank allows Buckley and Gri9ths [5] to propose a
signal subspace algorithm in the context of wideband
signals. A similar approach has been proposed in the
context of spatial signal processing in [22] in which a
signal is considered narrowband if the second eigen-
value of the signal’s noise-free spatial covariance ma-
trix is smaller than the noise power. And recently, the
e?ect of nonzero bandwidth which is symmetric spec-
tra w.r.t. the demodulation frequency of the estimated
DOA’s has been analyzed in [18].
The purpose of this work is twofold. First, we ex-

tend the analysis of [18] to the case of non-symmetric
spectra and/or o?set of the centered value of the
spectra w.r.t. the demodulation frequency. Second,
considering order detection, the Cramer–Rao bound
and the comparison between narrowband and wide-
band algorithms, we prove that the vague de@nition
of a narrowband scenario often given in the liter-
ature, namely, that the array aperture is much less
than the inverse relative bandwidth (i.e., Mb=f0�1
where M denotes the number of sensors and where
the spacing between sensors is the halfwavelength)
is far too severe in the cases of one source or of
two equipowered uncorrelated sources of the same
bandwidth.
This paper is organized as follows. After the data

model and some notations are introduced in Section 2,
the performance of the eigendecomposition-based or-
der detectors are considered, where a criterion based
on numerical analysis arguments [13] is proposed in
Section 3. The asymptotic bias and covariance (w.r.t.
the number of snapshots and the signal bandwidth)
of the estimated DOA’s are then studied and illus-
trated in the case of the standard MUSIC algorithm in
Section 4. A common closed-form expression of the
Cramer–Rao bound (CRB) is given for the DOA pa-
rameter of a narrowband or wideband single source
of any power spectral density symmetric w.r.t. the de-
modulation frequency in the case of an arbitrary array
in Section 5. Finally, Section 6 is devoted to compar-
isons between narrowband and wideband algorithms
for two scenarios.

The following notations are used throughout the pa-
per. Matrices and vectors are represented by bold up-
per case and bold lower case characters, respectively.
Vectors are by default in column orientation, while
T; H and ∗ stand for transpose, conjugate transpose,
conjugate, respectively. E(·); Cov(·) and Tr(·) denote
the expectation, the covariance and the trace, respec-
tively. Vec(:) is the “vectorization” operator that rear-
ranges a matrix into a vector consisting of the columns
of the matrix stacked one below another; it will be
used in conjunction with the Kronecker product A⊗B
as the block matrix whose (i; j) block element is ai; jB.
The symbol � denotes elementwise multiplication of
A and B ([A � B]i; j = Ai; jBi; j). Diag(a1; : : : ; an) is a
diagonal matrix with diagonal elements ai and 1 is the
vector of all ones, whose dimension is inferred from
the context.

2. Data model

Consider K radiating sources impinging on an ar-
bitrary array of M sensors. The received signals that
are assumed wide-sense stationary, are bandpass @l-
tered 1 (with bandwidth B) around the frequency f0

of interest (with B¡ 2f0, see e.g., [11, Section 15.3]).
After down-shifting the sensor signals to baseband,
the complex envelope is generated. If the background
noise is white, the continuous-time noise envelope is
white in the bandwidth [−B=2;+B=2]. After sampling
the complex envelope signals at the rate 1=Ts � B,
the M -vectors of observed complex envelope at the
array output at times t = 1; : : : ; T form independent
snapshots. The M -vector nt , containing the complex
envelope of the noise, is assumed throughout the pa-
per to be temporally and spatially uncorrelated, with
E(ntnHt )=�2

nIM , and independent of the sources. If skt
denotes the complex envelope of the kth source w.r.t.
the frequency f0 of interest and �k(f) its spectral
measure [6, chap. 3], 2 the complex envelope of this

1 We suppose that their power spectral densities are zero near
DC.

2 This spectral representation skt =
∫ +B=2
−B=2 ei2�ft d�k (f) enables

us to easily generate wide-sense stationary bandlimited processes

by the approximation: skt ≈ ∑L−1
l=0 akl e

i2�flt with fl
def= (−L +

2l + 1)B=2L; L � 1 (with L = 200 in Monte Carlo simulations)
and (akl )l=0; :::;L−1; k=1; :::;K are uncorrelated random variables with
E|akl |2 = (B=L)Sk (fl), where Sk (f) denotes the power spectral
density of skt .
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source observed at the mth sensor is skt−�k;me
−i2�f0�k;m ,

where �k;m is the propagation delay associated with
the kth source and the mth sensor. These delays �k;m
contain information about the kth DOA �k , 3 and we
set�def= (�1; : : : ; �K)T. TheM -vector of observed com-
plex envelope at the array output is then

yt =
K∑

k=1

∫ +B=2

−B=2
ei2�fta(�k ; f0 + f) d�k(f) + nt ;

where a(�k ; �)
def= [e−i2���k; 1 ; : : : ; e−i2���k;M ]T. If the

sources are spatially uncorrelated, the spatial covari-
ance matrix may be written as

Rb = E(ytyHt ) =
K∑

k=1

∫ +B=2

−B=2
Sk(f)a(�k ; f0 + f)aH

(�k ; f0 + f) df + �2
nIM ; (2.1)

where Sk(f) denotes the power spectral density of the
kth source. For the zero bandwidth case, this matrix
becomes:

R0 =
K∑

k=1

�2
ka(�k ; f0)aH(�k ; f0) + �2

nIM ; (2.2)

where �2
k denotes the power of the kth source.

We consider that the power spectral density Sk(f)
of the complex envelope of the kth wideband
source is parameterized by its centered frequency

fm
def=

∫
fSk(f) df=

∫
Sk(f) df, its standard devia-

tionf�
def=(

∫
(f−fm)2Sk(f) df=

∫
Sk(f) df)1=2 4 and

by its power �2
k . The kth source spectrum is expressed

by Sk(f) = �2
k =f� S((f − fm)=f�), if S(f) denotes

a normalized function, i.e. a function satisfying∫
S(f) df = 1;

∫
fS(f) df = 0; and

∫
f2S(f) df = 1 (2.3)

and the kth source correlation is Rk(t)=�2
kR(f�t)ei2�fmt ,

where R(t) denotes the correlation function associated
with S(f) which satis@es from (2.3)

R(0) = 1; R′(0) = 0; R′′(0) =−4�2:

3 For notational simplicity we assume that �k is a real scalar.
4 In the special case of sources with uniform spectrum in

[f0 − b=2; f0 + b=2]; fm = 0 and f� = b=2
√
3.

Because a(�k ; f0+f)aH(�k ; f0+f)=a(�k ; f0)aH(�k ;
f0)�a(�k ; f)aH(�k ; f), the covariancematrixRb may
be written as

Rb =
K∑

k=1

a(�k ; f0)aH(�k ; f0)� Rsk + �2
nIM ; (2.4)

where Rsk is the M × M matrix whose (m; n)th term
is the source correlation

[Rsk ]m;n = E(skt−�k;m s
∗
t−�k; nk )

=
∫ +B=2

−B=2
Sk(f)ei2�f(�k; n−�k;m) df

= �2
k

∫
S(�)ei2�(�f�+fm)(�k; n−�k;m) d�

= �2
kR(f�(�k;n − �k;m))ei2�fm(�k; n−�k;m): (2.5)

If zm and pk denote, respectively, the coordinate vec-
tor of the mth sensor referenced to a speci@c sen-
sor and the unit wavevector associated with the kth
source, then �k;m=(1=f0)zTmpk =!0 (e.g., for a linear ar-
ray, �k;m = (dm=c)sin �k = (1=f0)(dm=!0)sin �k where
�k is the kth DOA relative to the array broadside, c is
the propagation velocity, dm is the distance from sen-

sor m to a reference sensor and !0
def= c=f0). Because

Rsk = �2
k11

T in the zero bandwidth case, we prove in
Appendix A that Rsk = �2

k11
T + $Rsk with

[$Rsk ]m;n = �2
k%m;n;k

[
i2�

(
fm

f0

)
− 2�2%m;n;k

(
f2

�

f2
0

)]

+O
(
f2

m

f2
0

)
+O

(
f3

�

f3
0

)
+O

(
fmf2

�

f3
0

)

for an arbitrary spectrum (2.6)

=−2�2�2
k%

2
m;n;k

(
f2

�

f2
0

)
+O

(
f3

�

f3
0

)

for an arbitrary spectrum
centered at f0 (2.7)

=−2�2�2
k%

2
m;n;k

(
f2

�

f2
0

)
+O

(
f4

�

f4
0

)

for a symmetric spectrum
centered at f0 (2.8)
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with %m;n;k
def= (zn − zm)Tpk =!0. Therefore Rb may be

considered as a perturbation of R0:

Rb = R0 + $Rb with

$Rb =
K∑

k=1

a(�k ; f0)aH(�k ; f0)� $Rsk : (2.9)

3. Performance of the detector

First, we consider the performance of the eigen-
decomposition-based order detectors. Many methods
have been suggested for the detection of the number of
sources in array processing. The most commonly used
detectors are formulated in terms of the eigenvalues
of the sample spatial covariance matrix Rb(T ) derived
from T independent snapshots yt . Typical examples
are the Akaike information criterion (AIC) and the
minimum description length (MDL) detectors. These
methods are easy to implement and as long as the data
come from the idealized zero bandwidth assumption;
MDL gives a strongly consistent estimate of the num-
ber of sources independent of the signal-noise-ratio.
Unfortunately if the bandwidth of the signal increases,
the AIC and MDL criteria rapidly tend to overestimate
the number of sources and, in practice, the estimated
number of sources by these detectors may be far from
the true number [21]. The general design of robust de-
tection methods that work with non-narrowband sig-
nal remains an open problem.
The detection of the number of non-narrowband sig-

nals from the sample spatial covariance matrix, how-
ever, is analogous to the detection of the “e?ective”
order of the impulse response of a channel from the
sample spatio-temporal covariance matrix. In fact, the
sample spatial covariance matrix Rb(T ) observed in
a non-narrowband scenario can be considered as the
sum of an “ideal” rank-K matrix R and a “perturba-
tion” matrix $Rb;T ,

Rb(T ) = R + $Rb;T ;

where K is the number of sources and R is the
signal’s noise-free spatial covariance matrix associ-
ated with K zero bandwidth signals. The “perturba-
tion” matrix $Rb;T incorporates the inRuence of the
non-narrowband assumption, the inRuence of the ad-
ditive noise, and the inRuence of the estimated (i.e.,
inexact) statistics. Using the concept of canonical

angles between subspaces and invariant subspace per-
turbation results, a “maximally stable” decomposition
of the range space of the sample covariance matrix
into signal and noise subspace has been proposed in
the channel order determination context by Liavas et
al. [13]. This approach leads to the following crite-
rion: The detected order K̂ is the value of k which
minimizes

r(k)def=

{ !k+1
!k−2!k+1

if !k+16 !k
3 ;

1 otherwise;

where !1¿ !2¿ · · ·¿ !M denote the eigenvalues of
the sample covariance matrix Rb(T ). We propose ap-
plying this criterion in the context of non-narrowband
array processing. Contrary to the AIC and MDL crite-
ria, which base their detection on the similarity of the
smallest eigenvalues, the proposed criterion is based
on the existence of an eigenvalue gap; these points
are detailed in [14]. Because simulations (see, e.g.,
Fig. 1 and [22]) show that as the signal’s bandwidth
is increased, eigenvalues pop up from the noise Roor
one at a time, the proposed criterion is potentially
promising.
Fig. 2 compares the MDL and Liavas criteria to that

derived for wideband signals proposed by Wang and
Kaveh [20] with the same data (complex envelopes
sampled at the Nyquist rate 1=Ts = b). The @gure
shows that the Liavas criterion is much more robust
to bandwidth increases than the MDL criterion. Nat-
urally, the Wang criterion which is adapted to wide-
band scenarios outperforms our criterion. What can
be said about the quality of the estimates obtained by
our criterion is given by its behavior as the snapshot
size increases to in@nity. Figs. 3 5 and 4 show, re-
spectively, for one and two equipowered sources, the
domain of fractional bandwidth Mb=f0 for which the
MDL and Liavas criteria correctly detect the number
of sources in the large-sample limit (i.e., with exact
statistics). In these @gures the Liavas criterion consis-
tently outperforms the MDL criterion. Furthermore,
they show that the robustness of the MDL and Liavas

5 For example, Fig. 3a should be understood in the following
way. The MDL criterion detects 1 source (Km = 1) for Mb=f0
approximately less than 1:5 × 10−1 and otherwise more than 1
source, while the Liavas criterion detects 1 source (Kl = 1) for
Mb=f0 approximately less than 7×10−1 and otherwise more than
1 source.
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Fig. 1. Eigenvalues of the signal’s noise-free spatial covariance matrix for one or two equipowered sources (DOA separation of 15◦) of
centered Rat spectrum of bandwidth b and a uniform linear array of M = 5 sensors as a function of the fractional bandwidth Mb=f0.
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Fig. 2. Detected mean number of sources (from 100 runs) by the MDL, Liavas and Wang criteria as a function of the fractional bandwidth
Mb=f0 for a uniform linear array of M = 5 sensors, one or two equipowered sources (DOA separation of 15◦), of centered Rat spectrum
of bandwidth b with a SNR of 20 dB and T = 320 snapshots (10 sections of 32 frequencies for the Wang criterion).

criteria to a bandwidth increase can be reduced with
an increase of SNR or DOA separation. 6 Of course, a

6 Because these detectors correctly detect the number of sources
in the entire domain of SNR and DOA separation represented
on these @gures for zero bandwidth signals, this point does not
contradict the improvement of the performance of these detector
tests to increasing the SNR or DOA separation with narrowband
signals.

fair and thorough comparison between the MDL and
Liavas criteria would require a large quantity of sce-
narios (various arrays, DOA’s, sources spectra and
SNR). For example, an extensive study of scenarios of
two equipowered symmetric spectra sources imping-
ing on a uniform linear array shows sometimes that
the Liavas criterion falsely detects 1 source for a small
number of sensors, a favorable SNR and a small DOA
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Fig. 3. Asymptotic (w.r.t. the number of snapshots) detected number of sources by the MDL (Km) and Liavas (Kl) criteria as a function
of the fractional bandwidth Mb=f0, the number of sensors or the SNR for a uniform linear array and one source of centered Rat spectrum
of bandwidth b.

separation while the MDL criterion correctly detects
2 sources; similar cases are observed for two sources
with di?erent powers.

4. Asymptotic bias and covariance

To consider the asymptotic bias and covariance
of the DOA’s (w.r.t. to the number of snapshots
and signal bandwidth) estimated by a narrowband
second-order statistics (SOS)-based algorithm, we
adopt a functional approach that consists of recogniz-
ing that the whole process of constructing an estimate
�(T ) of � is equivalent to de@ning a functional rela-
tion linking this estimate�(T ) to the sample statistics
Rb(T ) = 1

T

∑T
t=1 yty

H
t from which it is inferred. This

functional dependence is denoted�(T )=alg(Rb(T )).
Clearly, � = alg(R0), and therefore the di?erent
narrowband SOS-based algorithms alg(·) constitute
distinct extensions of the mapping R0 → � generated
by (2.2) to any unstructured Hermitian matrix Rb(T ).
Rb(T ) may be considered as a perturbation of Rb:

Rb(T ) = Rb + $RT ; (4.1)

where �RT is the @nite sample size error, verify-
ing E(�RT ) = O and Cov($RT ) = O(1=T ). Because
the mapping alg(·) is su9ciently regular in a

neighborhood of Rb for most SOS-based algorithms,
we have from (4.1),

�(T ) = alg(Rb) + (Dalg
Rb

; $RT ) + O(‖$RT‖2); (4.2)

where (Dalg
Rb

; $RT ) denotes the di?erential of the map-
ping alg(·) evaluated at point Rb applied to $RT . Tak-
ing expectations, we obtain:

E(�(T )) = alg(Rb) + O
(
1
T

)
: (4.3)

By considering Rb as a perturbation of R0 (see (2.9)),
a @rst-order perturbation analysis of a narrowband
SOS-based algorithm acting on Rb evaluated at the
point R0 gives

alg(Rb) = alg(R0) + (Dalg
R0

; $Rb) + O(‖$Rb‖2)

=�+Dalg
R0

Vec($Rb) + O(‖$Rb‖2); (4.4)

where Dalg
R0

denotes the matrix associated with the dif-
ferential 7 of the narrowband SOS-based algorithm
alg(·) at point R0. So, from (4.3), (4.4) and (2.9) and
from (2.7) and (2.8) for spectra centered on f0, the
following result holds:

7 Algorithm-dependent expressions of Dalg
R0

and Dalg
Rb

are ordi-
narily deduced from perturbation calculus (see e.g., the expression
(B.1) of Dmusic

R0
given in Appendix B).
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Fig. 4. Asymptotic detected number of sources (w.r.t. the number of snapshots) by the MDL (Km) and Liavas (Kl) criteria as a function of
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sources of centered Rat spectrum of bandwidth b.

Result 1. The asymptotic bias of the estimate �(T )
(w.r.t. the number of snapshots and signal band-
width) given by a narrowband SOS-based algorithm
is given by

E(�(T ))−�

=Dalg
R0

Vec($Rb) + O(‖$Rb‖2) + O
(
1
T

)

for an arbitrary spectrum

=
K∑

k=1

balgk

(
f2

�

f2
0

)
+O

(
f3

�

f3
0

)
+O

(
1
T

)

for an arbitrary spectrum
centered at f0 (4.5)

=
K∑

k=1

balgk

(
f2

�

f2
0

)
+O

(
f4

�

f4
0

)
+O

(
1
T

)

for a symmetric spectrum centered at f0

(4.6)
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with balgk
def= Dalg

R0
Vec(a(�k ; f0)aH(�k ; f0)��2

kUk), and

[Uk ]m;n
def= − 2�2%2m;n;k .

Then, from (4.2) and (4.3), the mapping alg(·) gives
the deviation from the asymptotic mean E(�(T )):

�(T )− E(�(T ))

=Dalg
Rb

Vec($RT ) + O
(
1
T

)
+O(‖$Rb‖2): (4.7)

We therefore have:

Result 2. The asymptotic covariance of the estimate
�(T ) (w.r.t. to the number of snapshots and signal
bandwidth) given by a narrowband SOS-based algo-
rithm may be written as

Cov(�(T )) =
1
T
Dalg
Rb
CRb(D

alg
Rb
)H + O

(
1
T 2

)

+O
(
1
T

)
O(‖$Rb‖2) + O(‖$Rb‖4)

=
1
T
Dalg
Rb
(R∗

0 ⊗ R0)(D
alg
Rb
)H

+
1
T
Dalg
Rb
(R∗

0 ⊗ $Rb)(D
alg
Rb
)H

+
1
T
Dalg
Rb
($R∗

b ⊗ R0)(D
alg
Rb
)H

+O
(

1
T 2

)
+O

(
1
T

)
O(‖$Rb‖2)

+O(‖$Rb‖4) (4.8)

withCRb=limT→∞ T Cov(Vec(Rb(T ))=limT→∞ TE
(Vec($RT )VecH($RT )) = R∗

b ⊗ Rb for independent
circular complex snapshots yt , [3, p. 336].

These general results enable us to extend the results
of [18] for symmetric spectra to the general case of
non-symmetric spectra and/or o?set of the centered
value of the spectra w.r.t. the demodulation frequency
f0. Due to the complexity of the computations, we
concentrate on the standard MUSIC algorithm and the
presented results are illustrated in the cases of one
source or two equipowered sources in the following
subsection.

4.1. Monosource case

For the speci@c case of one source, the following
results are proved in Appendix B:

Result 3. The asymptotic bias (w.r.t. to the number
of snapshots and signal bandwidth) is given for an
arbitrary spectrum by

E(�1(T ))− �1 =
8�2

M%�1

(
fm

f0

) M∑
n;m=1

%m;n;1
zTnp

′
1

!0

+O
(
f3

�

f3
0

)
+O

(
f2

m

f2
0

)

+O
(
f2

�fm

f3
0

)
+O

(
1
T

)

for an arbitrary spectrum (4.9)

= O
(
f3

�

f3
0

)
+O

(
1
T

)

for an arbitrary spectrum
centered at f0 (4.10)

= O
(
f4

�

f4
0

)
+O

(
1
T

)

for a symmetric spectrum
centered at f0 (4.11)

with p′1
def=dp1=d�1.

Result 4. In the speci6c case of an arbitrary linear
array and a symmetric spectrum w.r.t. f0 + fm

E()1(T ))− )1 =)1
fm

f0
+ O

(
f4

�

f4
0

)
+ O

(
1
T

)
;

(4.12)

where )1 denotes here the spatial parameter )1 =
� sin �1, with �1 the DOA relative to the array broad-
side.

We note that the expression of the bias given
for an arbitrary array and a symmetric spec-
trum w.r.t. f0 in (4.11) is more accurate than
the expression *(f2

�=f
2
0) + O(1=T ) given in [18].
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Furthermore, the numerical computation 8 of the
asymptotic bias (w.r.t. the number of snapshots) sat-
is@es |music(Rb)−�1|¡ 10−6 for uniform linear and
circular arrays (with M6 20, for all �1) and for a
source with Rat spectrum (for all b). Result 3 shows
that the behavior of the estimate �1(T ) depends criti-
cally on the symmetry and the center of the spectrum
w.r.t. the demodulation frequency.
Concerning the asymptotic variance w.r.t. the num-

ber of snapshots and signal bandwidth, we prove in
Appendix C the following result for an arbitrary spec-
trum centered on f0:

Result 5.

Var(�b
1(T )) = Var(�01(T ))

(
1 + c

(
f2

�

f2
0

)

+O
(
f4

�

f4
0

))
+O

(
1
T 2

)
; (4.13)

where Var(�01(T )) is the classic asymptotic variance
of the MUSIC algorithm for a narrowband scenario
(see, e.g., [19, rel. (3.12)]) and where an expression
for c is given in Appendix C.

The performance degradation due to center fre-
quency mismatch is illustrated in Figs. 5 and 6. These
@gures show the mean square error of the spatial
DOA )1 estimated by the standard MUSIC algo-
rithm: MSE()1(T )) = bias2()1(T )) +Var()1(T )) in
which the bias and variance are given, respectively,
by )1fm=f0 (see (4.12)) and by 1=TDmusic

Rb
(R∗

0 ⊗
R0 + R∗

0 ⊗ $Rb + $R∗
b ⊗ R0)

(
Dmusic
Rb

)H
(see (4.8))

where $Rb is given by (2.7) and (2.9). The principal
term of this MSE may be written as

MSE()1(T ))

=)2
1

(
f2

m

f2
0

)
+
[
c0
T

+
c1
T

(
fm

f0

)
+

c2
T

(
f2

�

f2
0

)]
;

(4.14)

in which c0=T denotes the asymptotic variance (w.r.t.
the number of snapshots) of theMUSIC algorithm act-
ing on zero bandwidth data. We see the key role of the
frequency o?set fm between the centered frequency

8 We note that the relative Ratness of the MUSIC localization
function has revented us from obtaining precise values of the bias
due to the limited precision e?ects.

of the spectrum and the demodulation frequency f0:
the narrowband SOS-based algorithms are much more
sensitive to frequency o?set than to bandwidth. Fur-
thermore, because the bias is constant in T , this sen-
sitivity to fm increases with the number of snapshots.

4.2. Two equipowered sources case

In the case of two equipowered sources, even
for symmetric spectra w.r.t. f0, the terms Dmusic

R0
(l; :

)Vec($Rb), l = 1; 2, do not vanish and therefore the
asymptotical bias (w.r.t. the bandwidth and the num-
ber of snapshots) is of order greater than or equal to
f2

�=f
2
0. In the speci@c case of two symmetric spectra

w.r.t. f0, it is proved in Appendix D that

Dmusic
R0

(l; :)Vec($Rb) = cl

(
f2

�

f2
0

)
+O

(
f4

�

f4
0

)
;

l= 1; 2; (4.15)

where the expression for the constant cl is given in
Appendix D. Therefore, three asymptotic expressions
of bias, w.r.t. the bandwidth and the number of snap-
shots, are given

(a) Dmusic
R0

(l; :)Vec($Rb); (b) cl

(
f2

�

f2
0

)
and

(c) musicl(Rb)− )l; l= 1; 2

in which the @rst two are analytical and the third is
numerical.
For the parameters of Fig. 7, it is shown that these

three values show good agreement up to Mb=f0 = 1
and moreover, as the biases of the two sources are of
opposite sign (negative for �1 = 25◦ and positive for
�2 = 40◦), the estimated DOA’s move further apart
with increasing source bandwidth. As such, the resolu-
tion capabilities of the standard MUSIC algorithm po-
tentially improves with increasing source bandwidth
with these speci@c parameters. In fact, when the num-
ber of sensors increases, the estimated DOA’s keep
moving further apart with increasing source band-
width, but the biases are no longer opposite. Conse-
quently, the usual resolution capability criterion (see
e.g., [10] based on a threshold equation evaluated at
mid-angle 1

2 (�1 +�2)) is not appropriate for our situa-
tion. We note that these favorable properties no longer
apply when the two sources have di?erent powers.
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Fig. 5. Analytical asymptotical (w.r.t. b and T ) MSE (rel. (4.14)) and estimated MSE (1000 runs with 99% con@dence interval) using
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impinging on a uniform linear array of 5 sensors with a SNR of 20 dB and T = 160 or 320.
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Fig. 6. Constant theoretical MSE (rel. (4.14)) contours as a function of the fractional bandwidth b=f0 and the fractional o?set fm=f0 in
the conditions of Fig. 5.

5. Cramer–Rao lower bound

In the case of wideband sources with spectra sym-
metric w.r.t. the demodulation frequency f0, it was
shown in Section 4 (see rel. (4.5)), that the esti-
mated DOA parameter given by any narrowband
SOS-based algorithm is asymptotically unbiased

w.r.t. the number of snapshots and signal bandwidth.
Therefore, in this case, it makes sense to consider the
CRB of the DOA parameter for sources of non-zero
bandwidth.
Furthermore, in the case of one source, it was

pointed out that the bias is negligible for all useable
bandwidths. In these conditions, it is interesting to
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Fig. 7. Asymptotic (w.r.t. b and T ) (a), (b), (c) bias and estimated (dots) by Monte Carlo simulation (1000 runs) bias of the spatial
DOAs )k = � sin �k for two equipowered sources of centered Rat spectrum of bandwidth b, �1 = 25◦. (1), �2 = 40◦ (2) impinging on a
linear array of 5 sensors, SNR = 20 dB, T = 160 vs. Mb=f0.

relate the CRB of the parameter �1 associated to a
wideband and a narrowband source. In this latter case,
the spatial covariance matrix (2.1) has the common
expression:

Rb = &�1R,&
H
�1

with &�1
def= Diag(e−i2�f0�1; 1 ; : : : ; e−i2�f0�1; M ) and

R,
def= Rs1 + �2

nIM where Rs1 is a real-valued symmet-
ric 9 matrix thanks to the symmetry of the spectrum
of the source w.r.t. the frequency f0. Consequently,
Rb is uniquely parameterized by - = (�1; ,) where
,=()0;0; )1;0; : : : ; )M−1;M−1) with ()i;j)06j6i6M−1

denotes the diagonal and subdiagonal of R,. In the
case of T independent circular complex Gaussian
zero-mean snapshots yt , the CRB for the DOA pa-
rameter �1 alone can be obtained by following the
same lines as in [2, Appendix]. 10 Therefore the CRB

9 In the speci@c case of a uniform linear array, Rs1 is additionally
a Toeplitz matrix.
10 We note that using the property that Rb is linear in the param-

eters ,, another more intricate expression (requiring a projection
matrix) may be obtained; see e.g., [16] with a rather elaborate
proof and [1, Appendix 4.C] with a short direct proof.

of the parameter �1 is

CRB�1 =
1
2T

(Tr(−&2
�1′ + &

′
�1R

−1
, &

′
�1R,))−1; (5.1)

where &′
�1
def= − 2�f0 Diag(

d�1; 1
d�1

; : : : ; d�1; Md�1
).

We propose in the following to relate the CRB of
the parameter �1 associated with a wideband and a
narrowband source. Using the expression of CRB�1
given in (5.1), in which R, becomes

R, = (�2
111

T + �2
nIM ) + $Rs1 ;

the following result is proved in Appendix E.

Result 6. The CRB of the parameter �1 issued from
a non-zero bandwidth source is given by

CRB�b
1
= CRB�01

(
1 + c′

(
f2

�

f2
0

)
+O

(
f4

�

f4
0

))
(5.2)

where CRB�01
is the classic CRB given in a narrow-

band scenario and c′ is given in Appendix E.

In the case of several sources of symmetric spec-
tra w.r.t. f0, the spatial covariance matrix Rb is
parameterized by (�k)k=1; :::;K , �2

n and the diagonal
and subdiagonal of (Rsk )k=1; :::;K (see Eq. (2.4)). And
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algorithm, (o) estimated (1000 runs) with 99% con@dence interval (with error bars) MSE given by the MUSIC algorithm.

this time, this parameterization is no longer unique
(i.e., these parameters are not identi@able from the
knowledge of Rb alone). To overcome this di9culty,
we have to resort to side information. For example, if
the normalized shape S(f) (see (2.3)) of the spectra
of the sources is known a priori, Rb is now uniquely
parameterized by - = (�1; : : : ; �K ; f�; �2

1 ; : : : ; �
2
K ; �

2
n).

In this latter case, the approach developed for one
source is no longer valid 11 and we have to resign
to inverting the Fisher information matrix I(-) (see,
e.g., [11, rel. (15.52)]):

[I(-)]k; l = T Tr
(
R−1

b
@Rb

@ k
R−1

b
@Rb

@ l

)
and numerically extracting the DOA’s corner of
I(-)−1.
In the following, we illustrate the CRB of the DOA

parameter in two situations. Fig. 8 explores the case
of one source of centered Rat spectrum of bandwidth b

11 We note that if the normalized shape S(f) and the stan-
dard deviation f� of the spectra are known, - = (�;,) with

,def= (�21 ; : : : ; �
2
K ; �2n) with Rb linear in the parameters comprising

,. Consequently, the approach of [1, Appendix 4.C] to directly
extract a closed-form expression of the CRB for the DOA’s pa-
rameter � alone can be used.

impinging on a linear array of 5 sensors with a SNR of
20 dB and T=320, showing the mean square errors of
the DOA estimated by the standard MUSIC algorithm
with respect to Mb=f0 compared with the CRB. We
notice:

• a good agreement between the exact CRB (2) and
the asymptotic CRB (3) CRB�01

(1 + c′(f2
�=f

2
0)) up

to Mb=f0 = 0:6;
• a good agreement between the theoretical MSE and
the estimated MSE given by the standard MUSIC
algorithm up to Mb=f0 = 1:8;

• the asymptotic CRB (w.r.t. b) (5.2) coincides with
the asymptotic MSE (w.r.t. b) (4.13) given by the
standard MUSIC algorithm for all values of b.

Consequently, the standard MUSIC algorithm, which
is e9cient in the zero bandwidth scenario, remains
e9cient with increasing bandwidth up toMb=f0=0:6.

Fig. 9 explores the case of two equipowered sources
(DOA separation of 15◦ with �1 = 25◦) of centered
Rat spectrum of bandwidth b impinging on a linear
array of 5 sensors with a SNR of 20 dB and T = 320.
We note the good agreement between the theoretical
and the estimated MSE given by the standard MUSIC
algorithm up to Mb=f0 = 1. Although the standard
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Fig. 9. MSE and CRB of the spatial DOA )1 =� sin �1 vs. Mb=f0, (1) analytical asymptotically (w.r.t. b and T ) MSE given by the MUSIC
algorithm, (2) exact CRB�1 , (o) estimated (1000 runs) with 99% con@dence interval (with error bars) MSE given by the MUSIC algorithm.

MUSIC algorithm is not e9cient, this @gure shows
that it remains nearly e9cient up to Mb=f0 = 0:4.

6. Comparison between narrowband and wideband
algorithm

Naturally, a thorough comparison between narrow-
band and wideband algorithms would require a large
quantity of scenarios (various arrays, DOA’s, source
spectra and SNR), and is beyond the scope of this
paper. Moreover, comparing spatial covariance matri-
ces based narrowband algorithms with cross-spectral
density matrix based wideband algorithms comes up
against the problem of the choice of the parameters
that characterize asymptotic performance. It would
seems natural to compare the respective asymptotic
covariance of the estimated DOA’s w.r.t. the number
of snapshots. However, we note that these snapshots
represent temporal samples that are generally as-
sumed independent in spatial covariance matrix based
narrowband algorithms to simplify the performance
analysis. By contrast, in the cross-spectral density
matrix-based wideband algorithms, the sensor out-
puts are sectioned and windowed and the snapshots
represent the Fourier transforms of these successive

sections for the frequencies of interest. Under these
conditions, the only fair setting is to compare these
two approaches with the same observation interval.
With the same sampling rate, this amounts to com-
paring them with the same number of consecutive
temporal samples.
In the following, we consider the two scenarios of

Section 5 where the MUSIC algorithm and the fo-
cusing algorithm by Friedlander and Weiss [9] pro-
cess the same data (complex envelopes sampled at the
Nyquist rate 1=Ts=b). We note that, in this approach,
the temporal samples are no longer independent and
consequently the CRB results and the performance
of the MUSIC algorithm given in Section 5 are no
longer valid. However, it was show in [8] that in the
zero bandwidth scenario, the asymptotic performance
of an arbitrary second-order DOA algorithm does not
depend on the spectra of the sources nor on the sam-
pling frequency if 1=Ts¿ b, but on the observation
time only.
Figs. 10 and 11 show that the asymptotic perfor-

mance of the MUSIC algorithm (whose performance
slightly degrades w.r.t. those of Figs. 8 and 9) and of
the focusing algorithm (in the conditions of Fig. 2)
are equivalent up to Mb=f0=0:1 and that the focusing
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algorithm slightly outperforms the MUSIC algo-
rithm 12 for 0:1¡Mb=f0 ¡ 2.

12 Naturally, the MUSIC algorithm fails for Mb=f0 ¿ 2.

7. Conclusion

In this paper we have extended the analysis of [18]
to the case of nonsymmetric spectra and/or o?set of the



J.-P. Delmas, Y. Meurisse / Signal Processing 83 (2003) 493–510 507

centered value of the spectra w.r.t. the demodulation
frequency f0. We found that the behavior of the DOA
estimators strongly depends on the symmetry of the
source spectra w.r.t. their centered value and on the
o?set of this centered value w.r.t. f0. We showed in
particular that the narrowband SOS-based algorithms
are much more sensitive to the frequency o?set than
to the bandwidth.
Considering the order detection, the Cramer–Rao

bound and the comparison between narrowband
and wideband algorithms, we have proved that the
vague de@nition of narrowband scenario often given
in the literature, namely, that the array aperture is
much less than the inverse relative bandwidth (i.e.,
Mb=f0 � 1) is far too severe in the cases of one
source or two equipowered uncorrelated sources of the
same symmetric bandwidth w.r.t. the demodulation
frequency.
Consequently, the narrowband DOA algorithms

indeed are robust with respect to signal bandwidth,
which certainly explains their popularity in practi-
cal conditions. However, questions such as spatially
correlated sources and sources of di?erent powers
require further investigation.

Appendix A. Proof of rels. (2.6), (2.7) and (2.8)

From (2.5), we have

[Rsk ]m;n = �2
kR

(
f�

f0
%m;n;k

)
ei2�(fm=f0)%m; n; k

= �2
k

[
1− 2�2

(
f2

�

f2
0

)
%2m;n;k

+
1
6

(
f3

�

f3
0

)
%3m;n;kR

′′′(0) + O
(
f4

�

f4
0

)]

×
[
1 + i2�

fm

f0
%m;n;k +O

(
f2

m

f2
0

)]
;

which straightforwardly gives (2.6) for an arbitrary
spectrum. For an arbitrary spectrum centered at f0,
fm = 0 which gives (2.7). For a symmetric spectrum
w.r.t. f0, we have fm=0 and R′′′(0)=0, which gives
(2.8).

Appendix B. Proof of rels. (4.9), (4.10), (4.11) and
(4.12)

First of all, we note that the di?erential matrix Dalg
R0

of the standard MUSIC algorithm deduced from per-
turbation calculus (see, e.g. [7]) is

Dmusic
R0

(l; :)

=
1
%�l

(
aT�l1

∗
s ⊗ a′H�l 2n + a′T�l2

∗
n ⊗ aH�l1s

)
;

l= 1; : : : ; K; (B.1)

where 2n and 1s denote the orthogonal projection
onto the noise space associated with R0 and the
Moore–Penrose pseudoinverse (R0 − �2

nIM )#, respec-

tively, and where a�l
def= a(�l; f0); l=1; : : : ; K and %�l is

the geometrical factor 2a′H�l 2na′�l with a
′
�l
def= da�l =d�l.

Therefore the asymptotic bias becomes

[Dmusic
R0

Vec($Rb)]l

=
2
%�l

R(aH�l1s$Rb2na′�l)

=
2
%�l

R(aH�l1s(Rb − �2
nIM )2na′�l)

=
2
%�l

K∑
k=1

∫ +B=2

−B=2
Sk(f)

×R(aH�k1s&�k ;fa�ka
H
�k&

H
�k ;f2na′�l) df; (B.2)

where R(:) denotes “the real part of” and &�k ;f
def=

Diag(e−i2�f�k; 1 ; : : : ; e−i2�f�k;M ).
Substituting the expressions 1s = (1=M 2�2

1) ×
a�1a

H
�1 , 2n = IM − a�1aH�1 =M and a′�1 = i&′

�1a�1 with

&′
�1
def= Diag(−2�f0�′1;1; : : : ;−2�f0�′1;M ) in (B.2) we

get

[Dmusic
R0

Vec($Rb)]1

= − 2
M%�1�

2
1

∫ +B=2

−B=2
S1(f)

×I

(
aH�1&�1 ;fa�1a

H
�1&�1 ;−f

(
IM − a�1a

H
�1

M

)
&′

�1a�1

)
df:

Because aH�1&�1 ;fa�1 =
∑M

m=1 e−i2�f�1; m and

aH�1&�1 ;−f&
′
�1a�1 = − ∑M

n=1(2�f0�′1; n)e
i2�f�1; n , the
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asymptotic bias becomes, after some algebra,

[Dmusic
R0

Vec($Rb)]1

=
2

M%�1�
2
1

M∑
n=1

2�f0�′1; n

×I

(
M∑

m=1

∫ +B=2

−B=2
S1(f)ei2�f(�1; n−�1; m) df

)

− 2
M 2%�1�

2
1

M∑
n=1

2�f0�′1; n

×I


 M∑

m;l=1

∫ +B=2

−B=2
S1(f)ei2�f(�1; l−�1; m) df




=
2

M%�1

M∑
n=1

2�f0�′1; n

×I

(
M∑

m=1

R(f�(�1; n − �1;m))ei2�fm(�1; n−�1; m)

)

− 2
M 2%�1

M∑
n=1

2�f0�′1; n

×I


 M∑

m;l=1

R(f�(�1; l − �1;m))ei2�fm(�1; l−�1; m)


 :

The normalized correlation R(t) satis@es R(t) = 1 −
2�2t2+O(t3) which proves (4.9) in case of an arbitrary
spectrum and (4.10) in case of an arbitrary spectrum
centered at f0. For a symmetric spectrum w.r.t. f0,
R(t) is real and symmetric. Consequently, the asymp-
totic bias is vanishing and thanks to the expression
(2.9) of $Rb, (4.11) is proved.
In the speci@c case of an arbitrary linear array and of

a symmetric spectrumw.r.t.f0+fm,Rb can be written
as Rb=�2

1a(�1; f0+fm)aH(�1; f0+fm)�R′
s1 +�2

nIM
where R′

s1 is symmetric and real. Therefore Rb may

be considered as a perturbation of R′
0
def= �2

1a(�1; f0 +
fm)aH(�1; f0 +fm): Rb =R′

0 + $R′
b and a @rst-order

perturbation analysis of a narrowband SOS-based
algorithm estimating )1 acting on Rb evaluated at

point R′
0 gives

alg(Rb) = alg(R′
0) + (Dalg

R′
0
; $R′

b) + O(‖$R′
b‖2)

=)1
f0 + fm

f0
+Dalg

R′
0
Vec($R′

b)

+O(‖$R′
b‖2): (B.3)

Following the steps of the proof of (4.11) gives the
proof of (4.12). We note that (4.12) can also be de-
rived from (4.9) applied to )1 from straightforward
but tedious calculus.

Appendix C. Proof of rel. (4.13)

From result 2 where Dmusic
Rb

is replaced by Dmusic
R0

because Dmusic
Rb

=Dmusic
R0

+ O(‖$Rb‖2), Var(�b
1(T )) is

given by

Var(�b
1(T ))

=Var(�01(T ))

+
1
T

(
f2

�

f2
0

)
Dmusic
R0

(R∗
0 ⊗ (�2

1a
H
�1a�1 �U1))

+(�2
1a

H
�1a�1 �U1)∗ ⊗ R0)(Dmusic

R0
)H

+O
(

1
T 2

)
+O

(
f4

�

f4
0

)
;

where from (B.1), Dmusic
R0

= 1=%�1 (a
T
�11

∗
s ⊗ a′H�12n +

a′T�12
∗
n ⊗aH�11s) with %�1 =2(‖a′�1‖2−

|aH�1a
′
�1
|2

M ). (4.13)
is proved after some straightforward but tedious alge-
braic manipulations, where c becomes

c=
2
%�1

�2
1

�2
n

(
dH�1U1d�1 +

2
M

I[(a′H�1 a�1 )(d
H
�1U11)]

+
1
M

�2
1|aH�1a′�1 |2 + �2

n‖a′�1‖2
�2
n +M�2

1
(1TU11)

)
(C.1)

thanks to the identities xT(A � B)y = Tr[Diag(x)A
Diag(y)BT] with Diag(a�1 )=&�1 , Diag(a

′
�1 )=i&′

�1&�1 ,

&H
�1a�1 = 1 and d�1

def= &′
�11:

Appendix D. Proof of rel. (4.15)

Using the expression of $Rb deduced from (2.8),
viz.,

$Rb =
(
f2

�

f2
0

) 2∑
k=1

(a�ka
H
�k � �2

kUk) + O
(
f4

�

f4
0

)
;
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expression (4.15) follows where the constant c1 and
c2 are given by

cl =
1
%�l

(aT�l1
∗
s ⊗ a′H�l 2n + a′T�l2

∗
n ⊗ aH�l1s)

×
2∑

k=1

(a∗�k ⊗ a�k )� �2 Vec(Uk) l= 1; 2;

in which �def= �1 =�2 and where 1s and 2n are given,
respectively, by

1s =
1

M 2�2(1− |*|2)2 ((1 + |*|2)(a�1aH�1 + a�2aH�2 )

−2*∗a�2a
H
�1 − 2*a�1a

H
�2 );

2n = IM − 1
M (1− |*|2)

×(a�1a
H
�1 + a�2a

H
�2 − *∗a�2a

H
�1 − *a�1a

H
�2 )

with *def= aH�1a�2 =‖a�‖2.

Appendix E. Proof of rel. (5.2)

Using R, = �2
111

T + (�2
nIM + $Rs1 ) with

(�2
nIM + $Rs1 )

−1 =
1
�2
n
IM − 1

�4
n
$Rs1 + O($R2

s1 );

the matrix inversion lemma (see, e.g., [11, p. 571])
gives, after some algebraic manipulations,

R−1
, =

(
1
�2
n
IM − 1

�4
n
$Rs1

)
−
(

1
�2
n
IM − 1

�4
n
$Rs1

)

×
(

�2
n�

2
1

M�2
1 + �2

n
11T +

�4
1

(M�2
1 + �2

n)2
11T$Rs111

T

+O($R2
s1 )

)(
1
�2
n
IM − 1

�4
n
$Rs1

)
+O($R2

s1 )

=
1
�2
n
IM − �2

1

�2
n(M�2

1 + �2
n)
11T

+ a($Rs1 ) + O($R2
s1 );

where a($Rs1 ) is the following linear expression of
$Rs1 :

a($Rs1 )
def= − 1

�4
n
$Rs1 +

�2
1

�4
n(M�2

1 + �2
n)

×($Rs111
T + 11T$Rs1 )

− �4
1

�4
n(M�2

1 + �2
n)2
11T$Rs111

T

= �2
1

(
f2

�

f2
0

)(
− 1

�4
n
U1

+
�2
1

�4
n(M�2

1 + �2
n)
(U111

T + 11TU1)

− �4
1

�4
n(M�2

1 + �2
n)2

(11TU111
T)
)

+O
(
f4

�

f4
0

)
= �2

1

(
f2

�

f2
0

)
VRs1 + O

(
f4

�

f4
0

)

with VRs1
def= −(1=�4

1)U1+(�2
1=�

4
n(M�2

1+�2
n))(U111

T+
11TU1)−(�4

1=�
4
n(M�2

1 +�2
n)

2)(11TU111
T), and where

U1 is de@ned in Result 1. To derive the CRB of the pa-
rameter �1, we must consider matrices &′

�1R
−1
, &

′
�1R,

and &′2
�1 (see (5.1)). Substituting the expressions of

R, and R−1
, , we get after some tedious algebraic ma-

nipulations

−Tr(&′2
�1 ) + Tr(&′

�1R
−1
, &

′
�1R,)

=
(�4

1=�
4
n)(‖a�1‖2‖a′�1‖2 − |a′H�1a�1 |2)

1 +M ( �
2
1

�2
n
)

×
(
1− c′

(
f2

�

f2
0

)
+O

(
f4

�

f4
0

))

with

c′ =
1

‖a�1‖2‖a′�1‖2 − |a′H�1 a�1 |2

= [*1dT�1U1d�1 + *21TU11− 2dT�1&
′
�1U11

+*3I(dT�1U11a
′H
�1 a�1 )];
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where

*1
def=

M�2
1 + 2�2

n

�2
n

;

*2
def=

�2
1�

2
n‖a′�1‖2 + �4

1|a′H�1 a�1 |2
�2
n(M�2

1 + �2
n)

and

*3
def= 2

�2
1

�2
n
:

Consequently applying (5.1), result 6 is proved if we
note that the CRB given in the narrowband scenario
(see e.g., [15, rel. (17)]) becomes with our notations,

CRB�01
=

1
2T

1 +M (�2
1=�

2
n)

(�4
1=�4

n)(‖a′�1‖2‖a�1‖2 − |aH�1a′�1 |2)
:
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