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Abstract

This paper addresses subspace-based direction of arrival (DOA) estimation and its purpose is to complement previously

available theoretical results generally obtained for specific algorithms. We focus on asymptotically (in the number of

measurements) minimum variance (AMV) estimators based on estimates of orthogonal projectors obtained from singular

value decompositions of sample covariance matrices in the general context of noncircular complex signals. After extending

the standard AMV bound to statistics whose first covariance matrix of its asymptotic distribution is singular and deriving

explicit expressions of this first covariance matrix associated with several projection-based statistics, we give closed-form

expressions of AMV bounds based on estimates of different orthogonal projectors. This enable us to prove that these

AMV bounds attain the stochastic Cramer–Rao bound (CRB) in the case of circular or noncircular Gaussian signals.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Direction of arrival (DOA) subspace-based esti-
mates, i.e., estimates obtained by exploiting the
orthogonality between a sample subspace and a
parameter-dependant subspace, have proved useful
in many algorithms. There is considerable literature
about the performance of such algorithms in the
context of circular Gaussian signals. The perfor-
mance of such algorithms are often evaluated using
the stochastic and deterministic Cramer–Rao bound
(CRB) (see e.g., [1,2]). In particular Porat and
Friedlander [3] proved that the MUSIC algorithm is
e front matter r 2007 Elsevier B.V. All rights reserved
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asymptotically efficient for a single source and for
uncorrelated sources when the signal-to-noise ratio
(SNR) of all the sources tend to infinity, then Stoica
and Nehorai [1] extended this result when the
number of sensors tend to infinity. Furthermore,
they proved that the MUSIC algorithm is not
efficient if the sources are correlated and that the
difference between the asymptotic covariance given
by the MUSIC algorithm and the CRB may be
quite large if the sources are nearly coherent. These
results have been recently extended to noncircular
Gaussian signals where it has been proved [4] that
different subspace-based estimates used in the
context of noncircular digital modulations are
asymptotically efficient for a single source, but for
several sources, the efficiency decreases dramatically
for uncorrelated sources with low SNR, DOA and
noncircularity phase separations.
.
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This paper offers generic asymptotic results about
subspace-based estimates with emphasis on effi-
ciency, based on the notion of asymptotically
minimum variance (AMV) and asymptotically best
consistent (ABC) estimator introduced by Porat and
Friedlander [5] and Stoica et al. [6], respectively, and
then applied to Gaussian noncircular signals [7]. But
in all these papers, the first1 covariance matrix of the
asymptotic distribution of the involved statistics
was nonsingular. In this paper, this notion of AMV
estimators is extended to the case of a singular first
covariance matrix. This allows us to prove the
existence of a lower bound for the covariance
of the asymptotic distribution of DOA estimates
given by an arbitrary consistent subspace-based
algorithm. This bound can be used as a bench-
mark against which potential subspace-based
algorithms are tested. But this AMV bound is
generally lower bounded by the CRB because this
later bound concerns arbitrary functions of the
data. We will prove that this AMV bound
associated with different estimated projectors which
is function of the second-order statistics of the
involved processes only attains the stochastic CRB
in the case of circular or noncircular Gaussian
signals.

The paper is organized as follows. The array
signal model and a motivating example in the
context of noncircular signals are given in Section 2.
Section 3 extends the standard AMV results to
arbitrary statistics whose first covariance matrix of
their asymptotic distribution is singular, applies
these results to different projection-based statistics,
gives closed-form expressions of AMV bounds
based on estimates of different orthogonal projec-
tors and finally proves that these AMV bounds
attain the stochastic CRB in the case of circular or
noncircular Gaussian signals, which is the main
contribution of this paper.

The following notations are used throughout the
paper. Matrices and vectors are represented by
bold upper case and bold lower case characters,
respectively. Vectors are by default in column
orientation, while T, H, �, # and ? stand for
transpose, conjugate transpose, conjugate, Moor-
e–Penrose inverse and ortho-complement of range
space, respectively. Eð:Þ, Trð:Þ and Rð:Þ are the
expectation, trace and real part operators. I is
1For noncircular random variables x, the matrices E½ðx�

EðxÞÞðx� EðxÞÞH� and E½ðx� EðxÞÞðx� EðxÞÞT� are denoted first

and second covariance matrices, respectively.
the identity matrix. vecð�Þ is the ‘‘vectorization’’
operator that turns a matrix into a vector by
stacking the columns of the matrix one below
another which is used in conjunction with the
Kronecker product A� B as the block matrix
whose ði; jÞ block element is ai;jB and with the
vec-permutation matrix K which transforms vecðCÞ
to vecðCT

Þ.

2. Array signal model and motivating example

Let an array of M sensors receive the signals
emitted by K narrowband sources with KoM. The
observations are modeled as

yt ¼ Axt þ nt; t ¼ 1; . . . ;T ,

where ðytÞt¼1;...;T are independent and identically

distributed. A ¼
def
½a1; . . . ; aK � is the array response

matrix where ak is parameterized by the parameter
yk. In a more general setting, yk can contain more
parameters per source, e.g., azimuth, elevation,
distance, etc. Applications of the presented results
to the multiple parameter per source case is
straightforward (see Appendix D), but for nota-
tional simplicity we assume that yk is a real scalar,
referred to as the kth DOA. A is supposed to have

full rank for distinct DOAs yk. xt ¼ ðxt;1; . . . ;xt;K Þ
T

and nt model signals transmitted by sources and
additive measurement noise, respectively. xt and nt

are independent, zero-mean, nt is assumed to be
Gaussian complex circular, spatially uncorrelated

with Eðntn
H
t Þ ¼ s2nIM , while xt is complex noncir-

cular, not necessarily Gaussian and possibly spa-
tially correlated with nonsingular covariance

matrices Rx ¼
def

Eðxtx
H
t Þ and R0x ¼

def
Eðxtx

T
t Þ. Conse-

quently, this leads to two covariance matrices of yt

that convey information about Y ¼defðy1; . . . ; yK Þ
T:

Ry ¼ ARxA
H
þ s2nIM ¼

def
Rs þ s2nIM and

R0y ¼ AR0xA
T
¼
def

Rs0aO.

The noncircularity of the signals xt allows us to

exploit this second covariance matrix R0y to improve

the performances of the conventional algorithms

based on R0y only. Examples of such algorithms are

given in the literature (see e.g., [8,4]). We suppose
that Y is uniquely determined by the range space of
A and consequentlyY is uniquely determined by the
common orthogonal projector Py onto the noise

subspace associated with Ry and R0y as well. Using
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the extended observation ~yt ¼
def
ðyTt ; y

H
t Þ

T,

R ~y ¼
def

Eð~yt ~y
H
t Þ ¼

~AR ~x
~A
H
þ s2nI2M with ~A ¼

def
A O

O A�

 !

and R ~x ¼
def

Rx R
0

x

R
0�
x R�x

0
@

1
A,

where we suppose here that R ~x is nonsingular.2

Consequently Y is determined by the orthogonal
projector P ~y onto the 2ðM � KÞ-dimensional noise

subspace of R ~y also.

These covariance matrices are traditionally esti-

mated by Ry;T ¼ ð1=TÞ
PT

t¼1yty
H
t , R0y;T ¼ ð1=TÞPT

t¼1yty
T
t and R ~y;T ¼ ð1=TÞ

PT
t¼1y~y

H
t , respectively.

There are different alternatives to combine the

information conveyed by Ry;T and R0y;T . The first

ones are based directly on the matrices Ry;T and

R0y;T using the AMV [7] or maximum likelihood

approaches [9] and the second ones are based on the

orthogonal projectors (Py;T , P0y;T ) and P ~y;T onto

the noise subspace of the sample covariance

matrices Ry;T , R
0
y;T and R ~y;T , respectively. We note

that there is not a one-to-one mapping between

ðPy;T ;P
0
y;T Þ and P ~y;T , contrary to the-one-to one

mapping (Ry;T ;R
0
y;T Þ !R ~y;T . It is the reason why

we consider in the sequel these two statistics
separately.

The first idea to estimate Y from Ry;T and R0y;T is
to use similar subspace-based algorithms derived
from the projection matrices Py;T and P0y;T . For
example, the asymptotic performance of the esti-
mates given by the standard MUSIC algorithm and
a MUSIC-like algorithm based on Py;T and P0y;T ,
respectively, are similar. In particular for only one
source, the associated asymptotic variances are,
respectively, given by [4]

Cy1 ¼
1

a1
s2n
s21
þ

1

M

s4n
s41

� �
and Cy1 ¼

1

a1r21

s2n
s21
þ

1

M

s4n
s41

� �
,

with a1 is a purely geometric factor and where
r1 ð0pr1p1Þ is the noncircularity rate of xt;1

defined by Eðx2
t;1Þ ¼ r1e

if1Ejx2
t;1j ¼ r1e

if1s21 where
f1 is the phase of noncircularity. Examples of such
noncircular signals are given by the rectilinear
2The particular case R ~x singular is beyond the scope of this

paper. This later case occurs for example for uncorrelated

rectilinear signals xk;t for which the dimension of the noise

subspace becomes 2M � K.
signals (e.g., unfiltered ASK modulations) for which
xt;1 ¼ jxt;1je

if1=2 and r1 ¼ 1.
Consequently a problem crops up: how does one

combine the statistics Py;T and P0y;T to improve the
estimate of Y?

Another idea to estimate Y from Ry;T and R0y;T is
to use subspace-based algorithms derived from the
projection matrix P ~y;T . Efficient subspace-based
algorithms based on P ~y;T have been proposed and
analyzed in [4] in the particular case of uncorrelated
sources with maximum noncircularity rates. How-
ever, in the general case of arbitrary extended
spatial covariance R ~x of the sources, only weighted
MUSIC-like algorithms seem to take benefit of
the second covariance matrix R0y;T . But the asymp-
totic performances of these estimates are largely
outperformed by those of the AMV estimator
based on Ry;T and R0y;T [4]. Therefore, a question
arises as well: does there exist an algorithm based
on the projector P ~y;T whose performance ap-
proaches that of the AMV estimator based on
Ry;T and R0y;T?

A solution of the two aforementioned problems is
to use the notion of AMV estimators based,
respectively, on the matrix-valued statistics

ðPy;T ;P0y;T Þ and P ~y;T . But to apply the standard

results [10] on AMV estimators to these projectors,
two conditions must be satisfied. First, the involved
subspace-based algorithm considered as a mapping

must be complex differentiable w.r.t. ðPy;T ;P
0
y;T Þ

[resp., P ~y;T ] at the point ðPy;P
0
yÞ [resp., P ~y].

Second, the first covariance matrix Cs of the

asymptotic distribution of sT ¼
def

vecðPy;T ;P
0
y;T Þ

[resp., sT ¼
def

vecðP ~y;T Þ] must be nonsingular. While

the first condition is satisfied because the projection
matrices are Hermitian, it will be specified in Section
3.3, that the second is not satisfied. So we have to
elaborate a little bit by considering the case of
arbitrary sequences of statistics.
3. Asymptotic efficiency of subspace-based AMV

estimators

3.1. Asymptotically minimum variance estimator

Consider a general N-multidimensional mixture
of real- and complex-valued sequence of statistics sT

which is a consistent estimate of sðYÞ for which
the real-valued parameter Y 2 RK is identifiable
from sðYÞ. We suppose that sT is asymptotically
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zero-mean Gaussian distributed where the first
covariance matrix Cs is possibly singular:ffiffiffiffi

T
p
ðsT � sðYÞÞ!

L
Nð0;Cs;C

0
sÞ.

To consider the asymptotic performance of an
algorithm based on sT , we adopt a functional
analysis approach which consists in recognizing
that the whole process of constructing an estimate
YT of Y is equivalent to defining a functional
relation linking this estimate YT to the statistics sT

from which it is inferred. This functional depen-
dence is denoted sT 7�!YT ¼ AlgðsT Þ. Considering a
mapping Alg(.) differentiable w.r.t. ðRðsÞ;IðsÞÞ, the
following theorem is proved in [11].

Theorem 1. The covariance matrix CY of the

asymptotic distribution of a consistent estimator of

Y given by an arbitrary algorithm based on sT is

bounded below by the real symmetric matrix

C
AMVðsÞ
Y ¼ ðSHC#

s SÞ
�1

CYXðS
HC#

s SÞ
�1 (3.1)

if the following two conditions hold:

SpanðSÞ � SpanðCsÞ and s�T ¼ PsT , (3.2)

where P is a permutation matrix3and S ¼
def

dsðYÞ=
dY.

Remark 1. The second condition (3.2) holds for
Hermitian matrix-valued statistics with P ¼ K. For
complex symmetric matrix-valued statistics, the
complex conjugate associated terms must be added.

Remark 2. In the trivial case where there are N � r

linear relations between the components of sT with r

components statistically uncorrelated, there exists
an N � ðN � rÞ matrix B such that sT ¼ Bs0T with
Covðs0T Þ nonsingular. Consequently SpanðSÞ �
SpanðBÞ and SpanðCovðsT ÞÞ ¼ SpanðBÞ. Therefore,
the first condition (3.2) holds.

Remark 3. In their discussions about the general-
ization of the optimal weighted subspace fitting
approach, Cardoso and Moulines [12] have intro-
duced a range space condition different from
condition (3.2), and they have derived (3.1) as a
lower bound to the covariance of the asymptotic
distribution of weighted subspace fitting estimates.

Remark 4. Under the assumptions of Theorem 1, it
has been proved in [11], that the following nonlinear
3We note that in this case Cs ¼ C0sP, and the second covariance

matrix C0s of the asymptotic distribution of sT is deduced from the

first covariance matrix Cs.
least square estimate achieves the lower bound (3.1).

YT ¼ arg min
a2RK
½sT � sðaÞ�HC#

s ½sT � sðaÞ�. (3.3)

3.2. Asymptotic distribution of projector estimator

To apply Theorem 1 to the statistics vecðPy;T Þ,
vecðPy;T ;P0y;T Þ and vecðP ~y;T Þ, we need the expres-
sion of the first covariance matrice of their
asymptotic distribution. They are given by the
following lemma proved in [11].

Lemma 1. The first covariance matrices CP, C
P0
P and

C ~P of the asymptotic distribution of vecðPy;T Þ,

vecðPy;T ;P
0
y;T Þ and vecðP ~y;T Þ are given by

CP ¼ ðP
�
y �UÞ þ ðU� �PyÞ, ð3:4Þ

C
P0
P ¼

P�y �U P�y �U00

P�y �U00
H P�y �U0

0
@

1
A

þ

U� �Py U00
�
�Py

U00
T
�Py U0

�
�Py

0
@

1
A, ð3:5Þ

C ~P ¼ ðIþ KðJ� JÞÞððP�~y � ~UÞ þ ð ~U
�
�P ~yÞÞ, ð3:6Þ

with U ¼
def s2nR

#
s RyR

#
s , U

0 ¼
def s2nR

0�#
s R�yR

0#
s , U00 ¼

def s2nR
#
s

R0yR
0#
s and ~U ¼

def s2nR
#
~s R ~yR

#
~s , and where K is the vec-

permutation matrix of appropriate dimension which

transforms vecð:Þ to vecð:TÞ for any square matrix and

J ¼
O I

I O

� �
.

We note that the previous expressions of CP, C
P0
P

and C ~P, do not depend on the fourth-order

moments of the sources. Furthermore, CP does

not depend on R0y. Consequently, we have proved

the following:

Theorem 2. The asymptotic performance given by an

arbitrary subspace-based algorithm built from Ry;T ,
ðRy;T ;R

0
y;T Þ or R ~y;T depends on the distribution of xt

through its second-order moments only. Furthermore,
for subspace-based algorithms built from Ry;T ,this

asymptotic performance depends only on the first

covariance matrix Rx.

3.3. Asymptotically minimum variance subspace-

based estimator

We can now consider the two conditions (3.2) of
Theorem 1 to prove that this theorem applies to the
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statistics vecðPy;T Þ, vecðPy;T ;P
0
y;T Þ and vecðP ~y;T Þ. It

is proved in Appendix A that

Null spaceðCPÞ

¼ Spanfu�l0 � ul00 j1pl0; l00pK or Kol0; l00pMg,

ð3:7Þ

Null spaceðC
P0
P Þ

¼ Span
u�

l 0
� ul00

0
;

0

u�
l 0
� ul00

j1pl0; l00pK or Kol0; l00pM

( )
,

ð3:8Þ

Null spaceðC ~PÞ

¼ Spanf~u�l0 � ~ul00 j1pl0; l00p2K or 2Kol0; l00p2Mg.

ð3:9Þ

This allows us to prove in Appendix B that

qvecðPyÞ

qyk

? Null spaceðCPÞ; k ¼ 1; . . . ;K , (3.10)

and

qvecðPyÞ

qyk

qvecðPyÞ

qyk

0
@

1
A ? Null spaceðC

P0
P Þ; k ¼ 1; . . . ;K .

(3.11)

Consequently, because the nullspaces of the Hermi-
tian matrices CP and C

P0
P are the complementary

orthogonal of spanðCPÞ and spanðC
P0
P Þ, respectively,

the first condition (3.2) is satisfied for the statistics

vecðPy;T Þ and vecðPy;T ;P
0
y;T Þ. This condition is

proved in the same way for vecðP ~y;T Þ. Furthermore,

because these matrix-valued statistics are Hermi-
tian, the second condition of (3.2) is satisfied.
Consequently, Theorem 1 applies to the statistics

vecðPy;T Þ, vecðPy;T ;P
0
y;T Þ and vecðP ~y;T Þ.

Remark 5. We note that the asymptotic covariance
of the nonlinear least square estimate (3.3) is
preserved if the weighting matrix is replaced by

any consistent estimate WT of C#
s satisfying WT ¼

C#
s þ oðsT � sðYÞÞ by checking that the Jacobian

DAlg
s ¼ ðS

HC#
s SÞ

�1SHC#
s of the mapping Alg(.)

involved by (3.3) is preserved by following a
perturbation analysis similar to that of the proof
of Remark 4 given in [11]. Moreover, consistent

estimates of s2, Py, P ~y, Rs, R0s, R~s are available

from the singular value decompositions of Ry;T ,

R0y;T and R ~y;T and consequently, consistent esti-
mates of C#
P, C

#

P0
P and C#

~P can be derived as well

from Lemma 1.

3.4. Relation to the Cramer– Rao bound in the

Gaussian case

To evaluate the efficiency of the subspace-based
AMV estimators previously introduced, we consider
the particular case where the sources xt are
Gaussian distributed. The following main contribu-
tion of this paper is proved in Appendix C.

Theorem 3. When the sources are Gaussian distrib-

uted, the AMV bound (3.1) associated with the

statistics vecðPy;T Þ [resp. vecðPy;T ;P
0
y;T Þ and

vecðP ~y;T Þ] are equal to the statistical CRB associated

with the circular [resp. noncircular] Gaussian dis-

tribution.

C
AMVðPÞ
Y ¼ CRBCG

Y

¼
s2n
2
fR½DHPyD	 ðRxA

HR�1y ARxÞ
T
�g�1,

ð3:12Þ

C
AMVðP;P0Þ
Y ¼ CRBNCG

Y

¼
s2n
2

R DHPyD	 ½RxA
H;R0xA

T
�R�1~y

0
@

2
4

8<
:

�

ARx

A�R0x
�

" #1A
T3
5
9=
;
�1

,

ð3:13Þ

C
AMVð ~PÞ
Y ¼ CRBNCG

Y , (3.14)

with D ¼
def

dAðYÞ=dY.

Consequently the nonlinear least square DOA
estimators described at the end of Section 3.3 are
asymptotically efficient in the Gaussian context.

Remark 6. Because the statistic Py;T is a function

of ðPy;T ;P0y;T Þ, we have C
AMVðP;P0Þ
Y pC

AMVðPÞ
Y and

consequently CRBNCG
Y pCRBCG

Y for Gaussian

sources of same first spatial covariance matrices Rx.

4. Conclusion

This paper provides generic asymptotic results
about DOA subspace-based estimates with empha-
sis on efficiency. The standard AMV bound has
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been extended to statistics whose first covariance
matrices of their asymptotic distributions are
singular. This bound has been applied to several
projector estimators using the first covariance
matrices of their asymptotic distributions that have
been derived. This enables us to prove that these
AMV bounds attain the stochastic CRB in the case
of circular or noncircular Gaussian signals. Conse-
quently, there always exists asymptotically efficient
subspace-based DOA algorithms in the Gaussian
context.
Appendix A. Proof of rels. (3.7), (3.8) and (3.9)

(3.7) is straightforwardly proved, thanks to the

eigenvalue decomposition
PM

l¼1llulu
H
l of Ry which

implies Py ¼
PM

l¼Kþ1ulu
H
l and U ¼

PM
l¼1ðll=

ðll � s2nÞ
2
Þulu

H
l . Consequently CP becomes from

(3.4)

CP ¼
X

l0 ;l002L

ll0 ;l00 ðu
�
l0 � ul00 Þðu

T
l0 � uHl00 Þ,

where L is the set fðl0; l00Þj1pl0pKol00pM or 1p
l00pKol0pMg and the values of ll0 ;l00a0 are

irrelevant.
(3.8) is more involved to prove, but using the

singular value decomposition of U0 and U00, we can
write from the following expressions proved in [11]:

CP0 ¼ ðP
�
y �U0Þ þ ðU

0� �PyÞ and

CP;P0 ¼ ðP
�
y �U00Þ þ ðU00� �PyÞ,

CP0 ¼
X

l0 ;l002L

l0l0 ;l00 ðu
0�
l0 � u

0

l00 Þðu
0T
l0 � u

0H
l00 Þ,

CP;P0 ¼
X

l0 ;l002L1

l00l0;l00 ðu
�
l0 � u00l00 Þðu

T
l0 � u000Hl00 Þ

þ
X

l0 ;l002L2

l00l0 ;l00 ðu
00�
l0 � ul00 Þðu

000T
l0 � uHl00 Þ,

where ðu
0

lÞl¼1;...;K , ðu
00
l Þl¼1;...;K and ðu000l Þl¼1;...;K are

orthogonal basis of SpanðAÞ, ðu
0

lÞl¼Kþ1;...;M is an

orthogonal bases of SpanðAÞ? and where L1 and

L2 are the sets fðl0; l00Þj1pl0pKol00pMg and

fðl0; l00Þj1pl00pKol0pMg, respectively, and the

values of l0l0;l00a0 and l00l0 ;l00a0 are irrelevant.Consi-

dering the partitioned matrix C
P0
P constituted by CP,

CP0 and CP;P0 , the proof of (3.8) follows.

(3.9) is proved similarly by considering the

eigenvalue decomposition
P2M

l¼1
~ll ~ul ~u

H
l of R ~y which
implies P ~y ¼
P2M

l¼2Kþ1 ~ul ~u
H
l and

~U ¼
P2K

l¼1ð
~ll=ð~ll �

s2nÞ
2
Þ ~ul ~u

H
l . Consequently

ðP�~y � ~UÞ þ ð ~U
�
�P ~yÞ ¼

X
l0;l002L

~ll0;l00 ð~u
�
l 0 � ~ul00 Þð~u

T
l0 � ~u

H
l00 Þ,

where L is the set fðl0; l00Þj1pl0p2Kol00p
2M or 1pl00p2Kol0p2Mg and the values of
~ll0;l00a0 are irrelevant. Then from (3.6) and the

property [14, Theorem 9(b), p. 47] of K, we have

C ~P ¼
X

l0 ;l002L

~ll0 ;l00 ð~u
�
l0 � ~ul00 þ J~ul00 � J~u�l0 Þð~u

T
l0 � ~uHl00 Þ

and the proof is complete because ~u�l0 � ~ul00 þ J~ul00 �

J~u�l0a0 for all ðl0; l00Þ 2L.
Appendix B. Proof of (3.10) and (3.11)

Since fu1; u2; . . . ; uMg is an orthonormal basis of
CM , we have

qvecðPyÞ

qyk

� �H
ðu�l0 � ul00 Þ

¼ �
XK

k0¼1

u�k0 �
quk0

qyk

þ
qu�

k0

qyk

� uk0

� �H

ðu�l0 � ul00 Þ

¼ �
XK

k0¼1

ðuTk0u
�
l0 Þ

quH
k0

qyk

ul00

� �
þ

quT
k0

qyk

u�l0

� �
ðuHk0ul00 Þ

� �

¼ 0 for Kol0; l00pM

¼ ðuTl0 u
�
l0 Þ

quH
l0

qyk

ul00

� �
þ

quT
l00

qyl0
u�l

� �
ðuHl00ul00 Þ

¼
qðuH

l0
ul00Þ

qyk

¼ 0 for 1pl0ol00pK

¼ ðuTl u
�
l Þ

quHl
qyk

ul

� �
þ

quTl
qyl

u�l

� �
ðuHl ulÞ

¼
qkulk

2

qyk

¼ 0 for 1pl0 ¼ l00 ¼
def

lpK ,

which proves (3.10) using (3.7). From the range
space of C

P0
P given in (3.8), (3.11) is proved in the

same way.
Appendix C. Proof of Theorem 3

We separately consider the three statistics where
we will make relatively frequent use of the following
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identities (see e.g., [13, Theorems 7.16 and 7.17]):

vecðABCÞ ¼ ðCT
� AÞ vecðBÞ, ðC:1Þ

TrðABCDÞ ¼ vecTðAT
ÞðDT � BÞ vecðCÞ. ðC:2Þ

Projector vecðPy;T Þ:
Because Null space ðR#

s Þ ¼ SpanðPyÞ, we have
UPy ¼ O. This implies the two relations

ðP�y �UÞðU� �PyÞ
H
¼ P�yU

T �UPy ¼ O,

ðP�y �UÞHðU� �PyÞ ¼ P�yU
� �UPy ¼ O,

which, thanks to [13, Theorem 5.17], enables one to
write, the Moore–Penrose inverse of CP given by
(3.4) in the form:

C#
P ¼ ðP

�
y �UÞ# þ ðU� �PyÞ

#
¼ ðP#

y

�
�U#Þ

þ ðU#� �P#
y Þ ¼ ðP

�
y �U#Þ þ ðU#� �PyÞ

¼
1

s2n
ððP�y � AHAH

Þ þ ðA�H�AT
�PyÞÞ,

where the second equality is by [14, Theorem 5
(xvii), p. 33] and the last equality is deduced from

U# ¼ ð1=s2nÞRsR
�1
y Rs ¼ ð1=s2nÞARxA

HR�1y ARxA
H

¼ ð1=s2nÞAHAH with H ¼
def

RxA
HR�1y ARx, thanks to

[13, Theorems 5.6 and 5.7] because the Hermitian
matrices Rs and Ry have a common basis of

orthonormal eigenvectors. So, from Theorem 1

½ðC
AMVðPÞ
Y Þ

�1
�k;l ¼

1

s2n

qvecTðPT
y Þ

qyk

ððPT
y � AHAH

Þ

þ ððAHAH
Þ
T
�PyÞÞ

qvecðPyÞ

qyl

¼
1

s2n
Tr

qPy

qyk

AHAH qPy

qyl

Py

�

þ
qPy

qyk

Py

qPy

qyl

AHAH

�

¼
2

s2n
R Tr AH qPy

qyk

Py

qPy

qyl

AH

� �� �
,

where we have used identity (C.2) in the second
equality.

Then PyA ¼ O implying

qPy

qyi

AþPy
qA
qyi

¼ O; i ¼ k; l, (C.3)
we have

½ðC
AMVðPÞ
Y Þ

�1
�k;l ¼

2

s2n
R Tr

qAH

qyk

Py

qA
qyl

H

� �� �

¼
2

s2n
R

daHk
dyk

Py

dal

dyl

Hð Þl;k

� �
. ðC:4Þ

This proves (3.12), thanks to the expression of the
circular Gaussian CRB (see e.g., [2]).

Projector vecðPy;T ;P
0
y;T Þ:

As for the statistic vecðPy;T Þ, we have UPy ¼

U0Py ¼ U00Py ¼ O, which implies after straightfor-

ward algebraic manipulations, the two relations

P�y �U P�y �U00

P�y �U00
H P�y �U0

0
@

1
A

�

U� �Py U00
�
�Py

U00
T
�Py U0

�
�Py

0
@

1
A

H

¼ O,

P�y �U P�y �U00

P�y �U00
H P�y �U0

0
@

1
A

H

�

U� �Py U00
�
�Py

U00
T
�Py U0

�
�Py

0
@

1
A ¼ O. ðC:5Þ

This enables one to write, thanks to [13, Theorem
5.17], the Moore–Penrose inverse of C

P0
P given by

(3.5) in the form:

C#

P0
P ¼

P�y �U P�y �U00

P�y �U00
H P�y �U0

0
@

1
A
#

þ

U� �Py U00
�
�Py

U00
T
�Py U0

�
�Py

0
@

1
A
#

¼
K O

O K

 !
U U00

U00
H

U0

 !
�P�y

 !
K O

O K

 ! !#

þ
U� U00

�

U00
T

U0
�

 !
�Py

 !#

¼
K O

O K

 !
U U00

U00
H

U0

 !#

�P�y

0
@

1
A K O

O K

 !0
@

1
A

þ
U� U00

�

U00
T

U0
�

 !#

�Py

0
@

1
A, ðC:6Þ

where we have used the identity A� B ¼ KðB�

AÞK [14, Theorem 4, p. 47] in the second equality,
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and [13, Theorem 5.8] and [14, Theorem 5 (xvii),
p. 33] in the third equality. Noting that

K O

O K

 !
qvecðPy;PyÞ

qyi

¼

K
qvecðPyÞ

qyi

K
qvecðPyÞ

qyi

0
B@

1
CA ¼

qvecðP�yÞ
qyi

qvecðP�yÞ
qyi

0
B@

1
CA; i ¼ k; l,

we have from (C.6)

C
AMVðP;P0Þ
Y

� ��1� �
k;l

¼ 2R
qvecT

qyk

Py

Py

 !T
U U00

U00
H

U0

 !#
0
@

1
A

T

�Py

0
@

1
A

2
4

�
qvecðPy;PyÞ

qyl

3
5

¼ 2R Tr

qPy

qyk

qPy

qyk

0
B@

1
CAPy

qPy

qyl

qPy

qyl

� � U U00

U00
H

U0

 !#
0
B@

1
CA

2
64

3
75,

where identity (C.2) is used in the second equality.

Then from the definition of the matrices U, U0 and

U00 given in Lemma 1, we have

U U00

U00
H

U0

� �
¼ s2n

R#
s O

O R
0�
s

#

0
@

1
AR ~y

R#
s O

O R
0

s

#

0
@

1
A.

Since

rank
R#

s O

O R0s
�#

 !
¼ rank R ~y

R#
s O

O R0s
#

 ! !
,

theorem [13, Theorem 5.9] applies and using [13,
Theorem 5.14], we get

U U00

U00H U
0

 !#

¼
1

s2n
R ~y

R#
s O

O R0s
#

0
@

1
A

0
@

1
A
#

�

Rs O

O R0s
�

 !
. ðC:7Þ

Now, we must prove that

R ~y

R#
s O

O R0s
#

 ! !#

¼
Rs O

O R0s

 !
R�1~y . (C.8)

With A ¼
def

R ~yð
R#s
O

O

R0s
#Þ and X ¼

def
ðRs

O
O
R0s
ÞR�1~y , let us prove

that X is the Moore–Penrose inverse of A, by
proving that it satisfies the four axioms [13,
Definition 5.1] defining this Moore–Penrose inverse.

Since R#
s and R0s

#
satisfy these four axioms, we get

after some algebraic manipulations:

AXA ¼ R ~y

R#
s RsR

#
s O

O R0s
#
R0sR

0
s
#

0
@

1
A

¼ R ~y

R#
s O

O R0s
#

0
@

1
A ¼A,

XAX ¼
RsR

#
s Rs O

O R0sR
0
s
#
R0s

0
@

1
AR�1~y

¼

Rs O

O R0s

 !
R�1~y ¼ X,

ðXAÞH ¼
RsR

#
s O

O R0sR
0
s
#

0
@

1
A ¼ XA.

It remains to prove ðAXÞH ¼AX. Since

SpanðR0sÞ ¼ SpanðRsÞ implies

R0s
�
R#

s Rs ¼ R0s
�
,

R�sR
0
s
#
R0s ¼ R�s , ðC:9Þ

this give with the decomposition R ~y ¼ ð
Rs

R0s

R0s
�

R�s
Þþ

s2nI2M ¼
def

R~s þ s2nI2M :

R~s

R#
s Rs O

O R0s
#
R0s

 !
¼

RsR
#
s Rs R0sR

0
s
#
R0s

R0s
�
R#

s Rs R�sR
0
s
#
R0s

 !
¼ R~s.

(C.10)

After straightforward algebraic manipulations using

R�1~y ¼ s�2n I2M � s�2n R~sR
�1
~y and (C.10), we get

R ~y

R#
s Rs O

O R0s
#
R0s

0
@

1
AR�1~y

¼

R#
s Rs O

O R0s
#
R0s

0
@

1
A

þ R~s �

R#
s Rs O

O R0s
#
R0s

0
@

1
AR~s

0
@

1
AR�1~y

and using

R#
s Rs O

O R0s
#
R0s

 !
R~s ¼

R#
s RsRs R#

s RsR
0
s

R0s
#
R0sR

0
s
�

R0s
#
R0sR

�
s

 !
¼ R~s
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obtained from [14, Theorem 5, rel.(vii), p. 33] and
(C.9), we get

AX ¼ R ~y

R#
s Rs O

O R0s
#
R0s

 !
R�1~y ¼

R#
s Rs O

O R0s
#
R0s

 !
,

and therefore ðAXÞH ¼AX is proved. Conse-
quently from (C.7) and (C.8), we get

U U00

U00
H

U0

 !#

¼
1

s2n

Rs O

O R
0

s

 !
R�1~y

Rs O

O R
0�
s

 !

¼
1

s2n

ARxA
H O

O AR0xA
T

0
@

1
AR�1~y

�
ARxA

H O

O A�R0
�
xA

H

0
@

1
A

¼
1

s2n

A O

O A

 !
RxA

H O

O R0xA
T

0
@

1
AR�1~y

�

ARx O

O A�R0
�
x

 !
AH O

O AH

 !

¼
1

s2n

A O

O A

 !
~H

AH O

O AH

 !
,

with ~H ¼
def
ðRxA

H

O
O

R0xA
TÞR
�1
~y ð

ARx

O
O

A�R0�x
Þ. Consequently,

C
AMVðP;P0Þ
Y

� ��1� �
k;l

¼
2

s2n
R Tr

qPy

qyk

qPy

qyk

0
B@

1
CAPy

qPy

qyl

qPy

qyl

� � A O

O A

 !0
B@

2
64

� ~H
AH O

O AH

 !1CA
3
75

¼
2

s2n
R Tr

AH qPy

qyk

AH qPy

qyk

0
B@

1
CAPy

qPy

qyl
A

qPy

qyl
A

� �
~H

0
B@

1
CA

2
64

3
75.

Applying identity (C.3), we obtain

½ðC
AMVðP;P0Þ
Y Þ

�1
�k;l

¼
2

s2n
R Tr

qAH

qyk
Py

qA
qyl

qAH

qyk
Py

qA
qyl

qAH

qyk
Py

qA
qyl

qAH

qyk
Py

qA
qyl

0
B@

1
CA ~H

0
B@

1
CA

2
64

3
75
which gives after straightforward algebraic manip-
ulations

½ðC
AMVð ~PÞ
Y Þ

�1
�k;l

¼
2

s2n
R Tr

qAH

qyk

Py

qA
qyl

½RxA
H;R0xA

T
�R�1~y

 "

�

ARx

A�R0x
�

" #!#
,

which proves (3.13), thanks to the expression of the
noncircular Gaussian CRB [9].

Projector vecðP ~y;T Þ:
To prove Theorem 3 for this statistic, we first

must simplify the expression of C
AMVð ~PÞ
Y . Because

L ¼
def

Iþ KðJ� JÞ of (3.6) satisfies L2 ¼ 2L, the

Hermitian matrix C ~P becomes C ~P ¼
1
2
LCL with

C ¼
def
ðP�~y � ~UÞ þ ð ~U

�
�P ~yÞ and a simpler expression

of the AMV bound can be obtained from the
following minimization problem:

C
AMVð ~PÞ
Y ¼ min

DS¼IK

DC ~PD
H ¼ 1

2
min

DS¼IK

DLCLDH.

Checking that LS ¼ ðIþ KðJ� JÞÞ
dvecðP ~yÞ

dY ¼ Sþ

KvecðJðdP ~y=dYÞJÞ ¼ Sþ K vecðdP ~y=dYTÞ ¼ 2S,

thanks to identity (C.1) for the second equality and

the property JP ~yJ ¼ PT
~y [4] for the third equality;

the constraints DS ¼ I and DLS ¼ 2I are equiv-
alent.Consequently, the previous minimization is
tantamount to

C
AMVð ~PÞ
Y ¼ 2 min

ðDL=2ÞS¼IK

DL

2

� �
C

DL

2

� �H

.

Because C is structured similarly as CP (see (3.4)),
SpanðSÞ � SpanðCÞ. Consequently, the proof of

Theorem 1 given in [11] applies and C
AMVð ~PÞ
Y ¼

2 SHC#S
	 
�1

.

Noting that C ¼ ðP�~y � ~UÞ þ ð ~U
�
�P ~yÞ is struc-

tured similarly to CP, all the steps of the proof given
for the statistic vecðPy;T Þ extend up to equality (C.4)

by replacing A, Py and H ¼ RxA
HR�1y ARx, by

~A,P ~y ¼ ð
Py

O

O
P�y
Þ (from [4]) and ~H ¼

def
R ~x

~A
H
R�1~y

~AR ~x,re-

spectively, and consequently

½ðC
AMVð ~PÞ
Y Þ

�1
�k;l ¼

1

2

2

s2n
R Tr

q ~A
H

qyk

P ~y
q ~A
qyl

~H

 !" #
.
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Because all the matrices involved in ~H are struc-

tured in the form ðð&Þ
ð�Þ
�
ð�Þ

ð&Þ�
Þ, ~H is structured in the

same form as well, i.e., ~H ¼ ðH1

H�2

H2

H�1
Þ with H1 ¼

½RxA
H;R0xA

T
�R�1~y ½

ARx

A�R
0�
x

�. Then

q ~A
H

qyk

P ~y
q ~A
qyl

~H ¼

qAH

qyk
Py

qA
qyl

H1 ð�Þ

ð�Þ
� qAT

qyk
P�y

qA�
qyl

H�1

0
@

1
A

and

½ðC
AMVð ~PÞ
Y Þ

�1
�k;l ¼

2

s2n
R

daHk
dyk

Py

dal

dyl

ðH1Þl;k

� �
,

which proves (3.14) thanks to the expression of the
noncircular Gaussian CRB [9].

Appendix D. The case of multiple parameters per

source

It is straightforward to extend Theorem 3 to the
case of multiple parameters per source. One the one
hand, the circular and noncircular Gaussian CRB
are derived from slight modifications of the end of
the proofs given in [2] and of the proof given [9,
Appendix C], respectively. They are given by

CRBCG
Y ¼

s2n
2
fR½DHPyD	 ððRxA

HR�1y ARxÞ
T
� 1Þ�g�1,

CRBNCG
Y ¼

s2n
2

R DHPyD	 ½RxA
H;R0xA

T
�R�1~y

0
@

0
@

2
4

8<
:

�

ARx

A�R0x
�

" #1A
T

� 1

1
A
3
5
9=
;
�1

,

where 1 is a L� L matrix of 1 if there are L

parameters per source. The parameter Y and the
matrix of derivative D are organized as
ðy1; . . . ;f1; . . . ; yK ; . . . ;fK Þ

T and

D ¼
def da1ðy1; . . . ;f1Þ

dy1
; . . . ;

da1ðy1; . . . ;f1Þ

df1

; . . . ;

�
daK ðyK ; . . . ;fK Þ

dyK

; . . . ;
daK ðyK ; . . . ;fK Þ

dfK

�
.

On the other hand, the derivation of the AMV
bound follows the same lines as for a single
parameter per source except the last step when the
matrix A is decomposed in the different steering
vectors ak.
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