
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 89 (2009) 2670–2675
0165-16

doi:10.1

� Cor

E-m

jean-pie

(H. Abe
journal homepage: www.elsevier.com/locate/sigpro
Asymptotic distribution of circularity coefficients estimate of
complex random variables
Jean Pierre Delmas �, Habti Abeida
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In this correspondence we mainly consider the asymptotic distribution of the estimator

of circularity coefficients of scalar and multidimensional complex random variables. A

particular attention is paid to rectilinear RV. After deriving new properties of the

circularity coefficients, the maximum likelihood estimate of the circularity coefficients

in the Gaussian case and asymptotic distribution of this estimate for arbitrary

distributions are given. Finally, an illustrative example is presented in order to

strengthen the obtained theoretical results.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many papers (see, e.g. [1–3]) show that significant
performance gains can be achieved by the second-order
algorithms exploiting the statistical information con-
tained in the complementary covariance [4] matrix R0z ¼
EðzzT Þ provided it is non-zero (also termed as relation
matrix in [5] and pseudo-covariance matrix in [6]) in
addition to that contained in the standard covariance
matrix Rz ¼ EðzzHÞ. Signals such that R0zaO, referred to as
improper [4] or second-order non-circular [5,6], occur in
many signal processing applications. Particularly many
digital modulations of practical interest, such as BPSK,
M-ASK, OQPSK MSK and GMSK contain improper pro-
cesses. But these signals have received a resurgence of
interest. To assess detection or estimation performance of
ll rights reserved.

: +33160 76 44 33.

da3@yahoo.fr
algorithms adapted to improper signals, the circularity
spectrum, whose elements are referred to as circularity
coefficients in [6] and fruitfully interpreted as canonical
correlations between z and z� simultaneously and in-
dependently introduced in [7], has been introduced. These
parameters have been studied from different points of
view. They allow one to specify conditions for identifia-
bility, separability and uniqueness in complex-valued
independent component analysis in [6]. They are used to
design a generalized likelihood ratio test (GLRT) for
impropriety in [7] through a specific measure for the
degree of impropriety. Different measures of this degree of
impropriety have been proposed in [8], where upper and
lower bounds have been derived. Finally, it has been
proved in [9] that two random variables (RVs) with
identical covariance matrix Rz ¼ EðzzHÞ and identical
circularity coefficients can behave differently in second-
order estimation and detection. Note that the results of
this paper have already been partially presented in [10].

The aim of this correspondence is twofold. First, it aims
in Section 2 to complement previously available theore-
tical results by introducing the non-circularity phase for
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scalar complex RV and attempts to extend it to multi-
dimensional complex RVs with particular attention paid
to rectilinear complex RVs. Second, since the knowledge of
the circularity coefficients are generally crucial for using
specific second-order algorithms dedicated to improper
signals (e.g., in direction of arrival estimation, the specific
algorithms [11,12] dedicated to rectilinear sources fails
when they are used for quasi-rectilinear sources), the
maximum likelihood (ML) estimate of the circularity
coefficients in the Gaussian case and asymptotic distribu-
tion of this estimate for arbitrary distributions useful in
practice for deriving confidence intervals are considered
in Section 3. We note that ML estimates have also been
considered in [7]. However, the problem addressed was
not the ML estimate of the circularity coefficients, but
rather the GLRT for impropriety of complex signals where
only the ML estimates of Rz and R0z are needed to derive
the GLRT.
2. Rectilinear complex random variable

2.1. Scalar complex random variable

Let z ¼ xþ iy denote a zero-mean second-order scalar
complex RV with variance s2

z ¼
def

Eðjzj2Þ and complemen-
tary variance Eðz2Þ. The circularity coefficient r of z that is
real-valued, non-negative and bounded above by 1 (see
e.g. [6, lemma 4]) is defined by

re2if ¼
def Eðz2Þ

Eðjzj2Þ
, (1)

where f 2 ½0;pÞ is referred to as the non-circularity phase
of z in [13]. We note that this non-circularity phase has
been introduced as a crucial parameter to study the
statistical performance of MUSIC-like algorithms for
estimating DOA of narrowband complex non-circular
sources in [13] and then to characterize the resolution of
closely spaced sources in [14].

If r ¼ 0, z is referred to as proper in [15,4] or
circular to the second-order in [5,6] and if r ¼ 1, z is
referred to as rectilinear in [16] (because in this
case z ¼ jzjeif and z lies in one line of C) or most improper
in [9]. If rco ¼

def
EðxyÞ=sxsy with sx ¼

def ffiffiffiffiffiffiffiffiffiffiffi
Eðx2Þ

p
and

sy ¼
def ffiffiffiffiffiffiffiffiffiffiffi

Eðy2Þ
p

, denotes the correlation coefficient bet-
ween the real x and imaginary y parts of z, the following
relations between r and rco are proved in the
Appendix.1

Result 1. The circularity coefficient r of a scalar complex
non-degenerate (sxa0 and sya0) RV z and the correla-
tion coefficient rco between its real x and imaginary y

parts are related by the following relations:
2 Note that the expression ððs2
x þ s2

y Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
�

2 2 2 2 2 2
r ¼ 13rco ¼ �1,

ðsx þ sy Þ � 4sxsy ð1� rcoÞÞ=2 of this distance as a function of the
�
correlation coefficient rco given by the minimum eigenvalue of Rw is

much involved.
r ¼ 0) rco ¼ 0, the converse is false because rco ¼ 0
does not imply sx ¼ sy,
3 Note that the coherence matrix M depends on the specific square
�
 r � jrcoj and r ¼ jrcoj when sx ¼ sy.
1 Note that there is a typo in the third property of Result 1 of [10].
To interpret the non-circularity phase f of z, the following
result is proved in the Appendix:

Result 2. For a non-circular scalar complex RV z, the
orthogonal regression line of the couple ðx; yÞ has a
direction given by the non-circularity phase f and the
mean square orthogonal distance to this line is given2 by

Eðd2
Þ ¼

s2
z

2
ð1� rÞ. (2)

Consequently, the larger r is, the smaller the mean square
distance of ðx; yÞ to the orthogonal regression line will be
and this distance is zero if and only if z is rectilinear along
this orthogonal regression line whose direction is given by
the non-circularity phase f.

2.2. Multidimensional complex random variable

Consider now a full K-dimensional zero-mean second-
order complex RV z ¼ xþ iy (i.e., with Rz nonsingular).
The canonical correlations between z and z� i.e., the
circularity coefficients of z, denoted by ðrkÞk¼1;...;K has been
defined in [6,7] as the singular values of the coherence
matrix3 M ¼ R�1=2

z R0zR�T=2
z associated with z and z�, that

arranged in decreasing order satisfy 1 ¼ r1 ¼ � � � ¼

rr4rrþ1 � � � � � rK � 0 where r denotes the number of
circularity coefficients equal to 1.

To attempt to extend the notion of non-circularity
phase introduced in the scalar case, we first interpret the
specific case r ¼ K introduced in [9] and referred to as
most improper complex RVs z. Using [9, rel. (12)] and [7,
rel. (18), (19)] with K ¼ I), it is straightforward to prove
the following equivalences using the definitions
z̃ ¼

def
½zT ; zH�T , w ¼

def
½xT ; yT �T , Rz̃ ¼

def
Eðz̃z̃H

Þ and Rw ¼
def

EðwwT Þ:
(i)
root

Herm

are a
the circularity spectrum is maximum, i.e., r1 ¼ r2 ¼

� � � ¼ rK ¼ 1,

(ii)
 rankðRz̃Þ ¼ K (i.e., z̃ belongs to a K-dimensional

subspace of C2K ),

(iii)
 rankðRwÞ ¼ K (i.e., w belongs to a K-dimensional

subspace of R2K ),

(iv)
 there exists a square root R1=2

z of Rz suchthat R0z ¼
R1=2

z R�=2
z ,
(v)
 there exist square roots R1=2
x and R1=2

y of Rx and Ry,

respectively, such that Rx;y ¼ R1=2
x R1=2

y .
By analogy with the scalar case, we propose to call
rectilinear such complex multidimensional RVs z whose
circularity spectrum is maximum. Note that if the
components ðz1; . . . :; zK Þ of z are all rectilinear, there are
K linear relations yk ¼ tanðfzk

Þxk ðk ¼ 1; . . . ;KÞ between
R1=2
z of Rz , unique only if it is imposed to be positive definite

itian, in contrast to the circularity coefficients ðr1; . . . ;rK Þ which

lways unique [6, th. 2].
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the components of w, consequently rankðRwÞ ¼ K and z is
rectilinear.4 But the converse is not true: if z is rectilinear,
its components ðzkÞk¼1;...;K need not have maximum
circularity coefficients rzk

. For example, let z ¼ ðz1; z2Þ
T

where z1 is circular and z2 ¼ x2 þ iy2 with x2 ¼ ax1 and
y2 ¼ y1. z is rectilinear because w belongs to a two-
dimensional subspace of R4 but the circularity coeffi-
cients of z1 and z2 are rz1

¼ 0 and rz2
¼ ja2 � 1j=ða2 þ 1Þ.

To extend to the multidimensional case, the non-
circularity phase f defined in the scalar case by (1), we
propose a definition based on the K-dimensional ortho-
gonal regression subspace of ðx1; . . . ; xK ; y1; . . . ; yK Þ which
is the support of w for a maximum circularity spectrum.
The canonical angles ðf1;f2; . . . ;fK2 Þ between this sub-
space and each of the K hyperspaces ðyk ¼ 0Þk¼1;...;K of R2K

satisfy this aim. However, two questions remain open.
First, how to extend the expression (2) of the mean square
orthogonal distance to this K-dimensional orthogonal
regression subspace given in Result 2? Second, can on
prove that the parameter (q;/;Rz) with / ¼

def
ðf1;f2;

. . . ;fK2 Þ
T makes up a one to one parametrization of

ðRz;R
0
zÞ?

3. Asymptotic distribution of the circularity
spectrum estimate

Let us consider the estimation of the circularity
spectrum q from T independent identically distributed
realizations ðztÞt¼1;...;T . The scalar and multidimensional
cases are distinguished for the ease of the reader although
the derivation mainly follows the same lines.

3.1. Scalar complex random variable

In the scalar-valued case, the following result is proved
in the Appendix.

Result 3. When zt is Gaussian distributed, the maximum

likelihood estimate ðbrT ;
bfT Þ of ðr;fÞ is given by

ðj
PT

t¼1 z2
t j=
PT

t¼1 jzt j
2; 1

2Argð
PT

t¼1 z2
t =
PT

t¼1 jztj
2ÞÞ. Further-

more, when zt is arbitrarily distributed with ro1, the

sequence
ffiffiffi
T
p
ðbrT � rÞ converges in distribution to the

zero-mean Gaussian distribution of variance

cr ¼ 1� 2r2 þ r4 þ r2kþ k
2
þ
r2Rðk0Þ

2
� 2r2Rðk00Þ

if cra0, (3)

where k, k0 and k0 0 are the normalized-like cumu-

lants Cumðz; z; z�; z�Þ=ðEðjzj2ÞÞ2, Cumðz; z; z; zÞ=ðEðz2ÞÞ
2 and

Cumðz; z; z; z�Þ=Eðjzj2ÞEðz2Þ, respectively, which are invari-
ant to any rotation of the distribution of z.

Note that the variance cr of the asymptotic distribution
of brT is a decreasing function 1� 2r2 þ r4 of r when zt is
Gaussian distributed (k ¼ k0 ¼ k00 ¼ 0). Furthermore, note
that cr 	 1� 2r2 þ r4 is not valid for an arbitrary
4 Note that the components ðzkÞk¼1;...;K of z do not need to be

uncorrelated as it is usually assumed in DOA estimation of non-circular

sources (see e.g., [13,11,12]).
distribution of z (in other words, the Gaussian case is
not a worst case for the estimation of r). To be convinced,
consider z ¼

def
reia where r and a are, respectively, Bernoulli

ðpÞ and uniform on ½0;2pÞ independent RVs. In this case, z

is zero-mean and circular to the second-order (i.e., r ¼ 0)
and Eðjzj4Þ ¼ Eðjzj2Þ ¼ p. Consequently

k ¼ Eðjzj4Þ � 2ðEðjzj2ÞÞ2 � jEðz2Þj2

ðEðjzj2ÞÞ2
¼

1

p
� 2

and

c0 ¼ 1þ
k
2
¼

1

2p
41� 2r2 þ r4

jr¼0

for po1
2.

In the particular case of rectilinear RVs for which r ¼ 1,
we have zt ¼ rteif with rt is a real-valued RV and with f
fixed. Consequently, the circularity coefficient and the
non-circularity phase are perfectly estimated, i.e., brT ¼ 1
and bfT ¼ f. Besides in this case, k ¼ k0 ¼ k00 are real-
valued and we check from (3) that cr ¼ 0 for arbitrary
distribution. Furthermore, note that it is possible that cr ¼

0 with ro1 (such a situation will be illustrated in Section
3.3). In this case, the sequence TðbrT � rÞ converges in
distribution [19, Th.B, p. 124] to a Hermitian form rHXr,
where r a two-dimensional zero-mean complex Gaussian
RV, whose distribution is defined by the right-hand side of
(7), and where our first-order analysis does not allow one
to specify the matrix X.

3.2. Multidimensional complex random variable

In the multidimensional-valued case, the following
result is proved in the Appendix.

Result 4. When zt is Gaussian distributed, the ML
estimate bqT of q ¼ ðr1;r2; . . . ;rK Þ

T is given by the
vector containing the K singular values of the empi-

rical coherence matrix MT ¼ R�1=2
z;T R0z;T R�T=2

z;T where

Rz;T ¼
def
ð1=TÞ

PT
t¼1ztzH

t and R0z;T ¼
def
ð1=TÞ

PT
t¼1ztzT

t . Further-

more, when zt is arbitrarily distributed and when the
circularity spectrum q has distinct elements, the sequenceffiffiffi

T
p
ðbqT � qÞ converges in distribution to a zero-mean

Gaussian distribution that extends Result 3, whose
covariance is given by

Cr ¼ 2RðArCMAH
r þ ArC0MAT

rÞ, (4)

where5 Ar ¼
1
2 ðU 
UÞH with UDUT is the singular value

decomposition (SVD) of the coherence matrix M and CM and

C0M are the two covariance matrices of the asymptotic dis-

tribution of the estimated coherence matrix MT given by (12).

3.3. Illustrative example

Consider the baseband signal associated with a BPSK
modulation. We assume no frequency offset, a sampling at
the symbol rate and an inter-symbol interference of P
5 A 
 B denotes the Kharti–Rao matrix product (which is a column-

wise Kronecker product, see e.g. [17]).
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Fig. 1. Asymptotic theoretical variance cr given by (3) as a function of

the circularity coefficient r for BPSK and Gaussian symbols st for P ¼ 2

and 500 realizations of a Rayleigh channel whose three coefficients have

same variance.
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and BPSK symbols associated with different channels ðh0 ;h1Þ for r ¼ 0:7.
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symbol, i.e.,

zt ¼
XP

i¼0
hist�i with st 2 f�1;þ1g equiprobable and

ðstÞt¼1;2;... independent.

Naturally the sequence st is rectilinear, but zt is no longer
rectilinear, except for hi ¼ aih0, i ¼ 1; . . . ; P with ai real
valued. We note that according to the values of ðhiÞi¼0;...;P ,
the circularity coefficient r of zt can take arbitrary values
in ½0;1�. For example, zt becomes circular for

PP
i¼0h2

i ¼ 0.
Regarding the values of the asymptotic variance cr

given by (3), we note that contrary to the Gaussian
distribution, r does not fix cr. In particular cr ¼ 0 and
cr ¼ 1� 2r2 þ r4 can be obtained for ðhiÞi¼0;...;P as roots of
polynomials in ðhi;h

�

i Þi¼0;...;P . For example, for P ¼ 1, it is
straightforward to prove that

ðh0;h1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

2

r
; i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

2

r !
and

ðh0;h1Þ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

qr
;
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

qr !

gives cr ¼ 0 and cr ¼ 1� 2r2 þ r4, respectively, for
arbitrary r 2 ½0;1�. Furthermore, we note that extensive
numerical simulations show that cr is bounded above by
its value associated with a Gaussian distribution, i.e.,

cr 	 1� 2r2 þ r4. (5)

This property seems valid for arbitrary channel impulse
response ðhiÞi¼0;...;P , but we have not succeeded to prove it.

Through 500 realizations of a Rayleigh channel, Fig. 1
validates (5) and consequently shows that the asymptotic
accuracy of the estimate brT is always better for BPSK than
for Gaussian symbols and arbitrary value of r 2 ½0;1�.

Fig. 2 represents the asymptotic theoretical
variance and empirical MSE of the estimate brT , as a
function of T independent observations zt after decimat-
ing the original sequence zt by a factor of P þ 1, where P is
the memory of the simulated channel impulse response,
for BPSK and Gaussian symbols for P ¼ 1 and r ¼ 0:7.
More precisely for Gaussian symbols, ðh0;h1Þ ¼

ð0:921;0:387iÞ with cr ¼ 0:260 and for BPSK symbols
ðh0;h1Þ ¼ ð0:710;0:492þ 0:502iÞ, ðh0;h1Þ ¼ ð0:887;0:225þ
0:402iÞ and ðh0;h1Þ ¼ ð0:921;0:387iÞ are associated with
cr ¼ 0:260, 0:084 and 0, respectively. We see that the
domain of validity of our asymptotic analysis for cpa0 is
very large ðT4100Þ. Furthermore, we see that for cp ¼ 0,
the empirical MSE varies in 1=T2 in contrast to cpa0, for
which the asymptotic theoretical variance is cr=T .

Appendix
Proof of Result 1. From the following expression of the
circularity coefficient:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx

sy
�
sy

sx

� �2

sx

sy
þ
sy

sx

� �2
þ 4r2

co

1

sx

sy
þ
sy

sx

� �2

vuuuuuut ,

the first two bullets are straightforwardly proved.

For the third one,

r2 ¼ 1�
4ð1� r2

coÞ

sx

sy
þ
sy

sx

� �2
� r2

co

because

sx

sy
þ
sy

sx
� 2: &

Proof of Result 2. The orthogonal regression line (see e.g.
[18]) of the couple ðx; yÞ is given by the line orthogonal to
the eigenvector u associated with the minimum eigenva-
lue l of the covariance matrix Rw of w ¼

def
½x; y�T and the

mean square orthogonal distance Eðd2
Þ to this line is given

by l. To solve easily this problem, it is convenient to work
with the augmented vector z̃ ¼

def
½z; z��T whose covariance
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matrix Rz̃ is related to Rw by Rw ¼
1
2THRz̃T using

z̃ ¼
ffiffiffi
2
p

Tw, where T is the unitary matrix 1ffiffi
2
p ð11

i
�iÞ. Because

the minimum eigenvalue and the associated unit eigen-

vector of Rz̃ ¼ s2
z ð

1
re�2if

re2if

1 Þ are l ¼ s2
z ð1� rÞ and

u ¼ ði=
ffiffiffi
2
p
Þ½eif;�e�if�T , the minimum eigenvalue and

the associated unit eigenvector of Rw are 1
2l and

THu ¼ ½� sinf; cosf�T ? ½cosf; sinf�T : &

Proof of Result 3. When zt is Gaussian distributed, the
log-likelihood function associated with ðztÞt¼1;...;T can be
classically written after dropping the constants as

Lðr;f;s2
z Þ ¼ �

T

2
ðln½DetðRz̃Þ� þ TrðR�1

z̃ Rz̃;T ÞÞ (6)

with Rz̃;T ¼
def
ð1=TÞ

PT
t¼1z̃t z̃

H
t , where the parameter ðr;f;s2

z Þ

is embedded in the covariance matrix Rz̃. Due to the
structure ½ ð�Þ

ð�Þ
�
ð�Þ

ð�Þ
�� of Rz̃, the ML estimation of Rz̃ becomes

a constrained optimization problem which is not stan-
dard. But maximizing the log-likelihood (6) without any
constraint on the Hermitian matrix Rz̃ reduces to a
standard maximization problem, whose solution is Rz̃;T .
Because

Rz̃;T ¼

1

T

PT
t¼1

jztj
2 1

T

PT
t¼1

z2
t

1

T

PT
t¼1

z�t
2 1

T

PT
t¼1

jztj
2

266664
377775

is also structured as ½ ð�Þ
ð�Þ
�
ð�Þ

ð�Þ
��, Rz̃;T is the ML estimate of Rz̃.

Using the invariance property of the ML estimate
implies that the ML estimate of ðr;fÞ is given by
ðj
PT

t¼1 z2
t j=
PT

t¼1 jzt j
2; 1

2Argð
PT

t¼1 z2
t =
PT

t¼1 jztj
2ÞÞ.

Deriving the asymptotic distribution of the empirical

estimate brT when zt is arbitrarily distributed, relies on the

standard central limit theorem6 applied to the indepen-

dent identically distributed bidimensional complex RVs

ð
rz;T

r0
z;T

Þ with rz;T ¼ ð1=TÞ
PT

t¼1 jz
2
t j and r0z;T ¼ ð1=TÞ

PT
t¼1 z2

t :

ffiffiffi
T
p rz;T � rz

r0z;T � r0z

 !
!
L

NC

0

0

� �
;

cr cr;r0

cr0 ;r cr0

 !
;

c0r c0r;r0

c0r0 ;r c0r0

 ! !
,

(7)

where rz ¼ Ejz2
t j ¼ s2

z , r0z ¼ Eðz2
t Þ ¼ rs2

z ei2f and where

ð cr

cr0 ;r

cr;r0

cr0
Þ and ð c0r

c0
r0 ;r

c0
r;r0

c0
r0
Þ denote the covariance and the

complementary covariance matrices of the bidimensional

RV ðjz2
t j; z

2
t Þ

T . Using the identity

Eðz1z2z3z4Þ ¼ Eðz1z2ÞEðz3z4Þ þ Eðz1z3ÞEðz2z4Þ

þ Eðz1z4ÞEðz2z3Þ þ Cumðz1; z2; z3; z4Þ, (8)

we straightforwardly obtain

cr cr;r0

cr0 ;r cr0

 !
¼ s4

z

1þ r2 þ k re�i2fð2þ k00�Þ

rei2fð2þ k00Þ 2þ k

 !
, (9)

c0r c0r;r0

c0r0 ;r c0r0

 !
¼ s4

z

1þ r2 þ k rei2fð2þ k00Þ

rei2fð2þ k00Þ r2ei4fð2þ k0Þ

 !
. (10)
6
!
L

means the convergence in distribution when T !1, while

NRðm;CÞ and NC ðm;C;C0Þ denote Gaussian real and complex distribu-

tion with mean, covariance and complementary covariance are m, C and

C0 , respectively.
Then, considering the following mappings:

ðrz;T ; r
0
z;T ÞCmT ¼

r0z;T
rz;T

C brT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mT m�T

p
,

with their associated differentials

dm ¼ �
r0

r2
dr þ

1

r
dr0 and dr ¼ 1

2r ðm
�dmþmdm�Þ,

the standard theorem of continuity (see e.g. [19, Th. A,

p. 122]) on regular functions of asymptotically Gaussian

statistics applies. Consequently, we obtain the following

convergence in distribution with m ¼ r0z=rz ¼ rei2f:ffiffiffi
T
p
ðmT �mÞ!

L
NCð0; cm; c

0
mÞ,

where

cm ¼ �
r0z
r2

z

1

rz

 !
cr cr;r0

cr0 ;r cr0

 ! �
r0�z
r2

z

1

rz

0BBB@
1CCCA,

c0m ¼ �
r0z
r2

z

1

rz

 !
c0r c0r;r0

c0r0 ;r c0r0

 ! �
r0z
r2

z

1

rz

0BBB@
1CCCA (11)

andffiffiffi
T
p
ðbrT � rÞ!

L
NRð0; crÞ,

where

cr ¼
1

4r2
m� m
� � cm c0m

c0m
� c�m

 !
m

m�

� �
¼

1

2
ðcm þRðc0me�4ifÞÞ.

Inserting (9) and (10) into expressions (11) of cm and c0m,

(3) follows thanks to simple algebraic manipulations.

When z is replaced with zeia with a fixed, using the

multilinearity of Cumðz1; z2; z3; z4Þ, the normalized-like

cumulants k, k0 and k0 0 are invariant, so cp as well,

whereas the non-circularity phase f is replaced by

fþ a. &

Proof of Result 4. The proof follows the same steps that
for Result 3. When zt is Gaussian distributed, the log-
likelihood function Lðq;/;RzÞ has form (6) and conse-
quently Rz̃;T is the ML estimate of Rz̃. Using the SVD of the
coherence matrix [20, 4.4.4] M ¼ UDUT

¼ R�1=2
z R0zR�T=2

z ,
the invariance property of the ML implies that the ML
estimate of q is given by the Kth vector diagðDT Þ contain-
ing the K singular values of the empirical coherence
matrix MT ¼ R�1=2

z;T R0z;T R�T=2
z;T .

Deriving the asymptotic distribution of the empirical

estimate bqT when zt is arbitrarily distributed is based on

the following mapping:

ðRz;T ;R
0
z;T ÞCMT ¼

def
R�1=2

z;T R0z;T R�T=2
z;T ¼ UTDT UT

T C bqT ¼
def

diagðDT Þ.

Thus, the first step consists in deriving the asymptotic

distribution of ðRz;T ;R
0
z;T Þ given by the standard central
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limit theorem:ffiffiffi
T
p
ðvecðRz;T ;R

0
z;T Þ � vecðRz;R

0
zÞÞ

!
L

NC 0;
CR CR;R0

CR0 ;R CR0

 !
;

C0R C0R;R0

C0R0 ;R C0R0

0@ 1A0@ 1A,

where the expressions of the different covariance matrices

are deduced from identity (8). For example

ðCRÞiþðj�1ÞK ;kþðl�1ÞK ¼ Eðzt;iz
�
t;jz
�
t;kzt;lÞ � Eðzt;iz

�
t;jÞEðz

�
t;kzt;lÞ

¼ Eðzt;iz
�
t;kÞEðz

�
t;jzt;lÞ þ Eðzt;izt;lÞEðz

�
t;jz
�
t;kÞ

þ Cumðzt;i; z
�
t;j; z

�
t;k; zt;lÞ

which gives CR ¼ R�z 
 Rz þ KðR0z 
 R0z
�
Þ þ Q z where

ðQ zÞiþðj�1ÞK;kþðl�1ÞK ¼ Cumðzt;i; z
�
t;j; z

�
t;k; zt;lÞ and where 
 de-

notes the standard Kronecker product of matrices and K

the vec-permutation matrix which transforms vecðCÞ to

vecðCT
Þ for any square matrix C. The other covariance

matrices are deduced in the same way (see e.g. [3]) and

are given by

CR0 ¼ Rz 
 Rz þ KðRz 
 RzÞ þQ 0z,

C0R ¼ CRK,

C0R0 ¼ R0z 
 R0z þ KðR0z 
 R0zÞ þQ 0 0z,

CR;R0 ¼ CH
R0 ;R ¼ R0z

�

 Rz þ KðRz 
 R0z

�
Þ þQ 000z ,

C0R;R0 ¼ C0TR0 ;R ¼ R0z 
 R�z þ KðR0z 
 R�z Þ þ Q 0000z ,

where ðQ 0zÞiþðj�1ÞK;kþðl�1ÞK ¼ Cumðzt;i; zt;j; z
�
t;k; z

�
t;lÞ, ðQ

00
z Þiþðj�1Þ

K; kþ ðl� 1ÞK ¼ Cumðzt;i; zt;j; zt;k; zt;lÞ, ðQ
000

z Þiþðj�1ÞK ;kþðl�1ÞK ¼

Cumðzt;i; z
�
t;j; z

�
t;k; z

�
t;lÞ and ðQ 0000z Þiþðj�1ÞK;kþðl�1ÞK ¼ Cumðzt;i;

z�t;j; zt;k; zt;lÞ.

With the differential of the mapping ðRz;T ;R
0
z;T ÞCMT ¼

R�1=2
z;T R0z;T R�T=2

z;T

vecðdMÞ ¼ � ððR�1=2
z R0Tz 
 IÞ þ ðI
 R�1=2

z R0zÞÞ

�ððR�T=2
z 
 IÞ þ ðI
 R�1=2

z ÞÞ
�1
ðR�T

z 
 R�1
z ÞvecðdRzÞ

þ ðR�T=2
z 
 R�1=2

z ÞvecðdR0zÞ

¼
def

ArvecðdðRzÞ þ Ar0vecðdR0zÞÞ,

we obtain the following convergence in distribution by

the standard theorem of continuity (see e.g., [19, Th.A,

p. 122]):ffiffiffi
T
p
ðvecðMT Þ � vecðMÞÞ!

L
NCð0;CM ;C

0

MÞ, (12)

where CM ¼ ArCRAH
r þ ArCR;R0A

H
r0 þ Ar0CR0RAH

r þ Ar0CR0A
H
r0 and

C0M ¼ ArC
0

RAT
r þ ArC

0

R;R0A
T
r0 þ Ar0C

0

R0RAT
r þ Ar0C

0

R0A
T
r0 .

Finally, consider the mapping MT C bqT ¼ diagðDT Þ. Not-

ing that the eigenvalues of MT MH
T are the squares of the

singular values of MT , the differential of the simple

eigenvalues of MT MH
T gives (see e.g., [21, th. 8, ch. 9])

dðr2
k Þ ¼ uH

k dðMMH
Þuk, (13)

where uk denotes the left singular vector of M associated

with the singular value rk. Using MHuk ¼ rku�k, (13) gives
drk ¼
1
2ðu

H
k dMu�k þ uT

k dMHu�kÞ, and more compactly

dq ¼ 1
2ððU 
 UÞHvecðdMÞ þ ðU 
UÞT vecðdM�ÞÞ

¼
def

ArvecðdMÞ þ A�rvecðdM�Þ.

Consequently, the covariance matrix of the asymptotic

Gaussian distribution of bqT is given by (4). &
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[11] P. Chargé, Y. Wang, J. Saillard, A non-circular sources direction
finding method using polynomial rooting, Signal Process. 81 (2001)
1765–1770.
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