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In this paper, the problem of testing impropriety (i.e., second-order noncircularity) of a

sequence of complex-valued random variables (RVs) based on the generalized like-

lihood ratio test (GLRT) for Gaussian distributions is considered. Asymptotic (w.r.t. the

data length) distributions of the GLR are given under the hypothesis that RVs are proper

or improper, and under the true, not necessarily Gaussian distribution of the RVs. The

considered RVs are independent but not necessarily identically distributed: assumption

which has never been considered until now. This enables us to deal with the practical

important situations of noncircular RVs disturbed by residual frequency offsets and

additive circular noise. The receiver operating characteristic (ROC) of this test is derived

as byproduct, an issue previously overlooked. Finally illustrative examples are pre-

sented in order to strengthen the obtained theoretical results.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

For complex-valued RVs, many papers (see, e.g., [1–4])
show that significant performance gains can be achieved by
second-order algorithms based on both Cx ¼ EðxxT Þ and
Rx ¼ EðxxHÞ. They exploit the statistical information con-
tained in Cx, provided it is nonzero in addition to that
contained in the standard covariance matrix Rx. These algo-
rithms face an additional complexity. Moreover, some such
algorithms (see e.g., [5]) adapted for improper or second-
order noncircular signals, i.e., with nonzero matrices Cx, fail or
suffer of too slow convergence when they are used for proper
ll rights reserved.

,
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or second-order circular signals. It is thus important to adapt
the processing to the properness of the observation.

Hence, the question arises as to how we can classify a
signal as proper or improper. This problem is a binary
hypothesis test H0: Cx¼0 versus H1: Cxa0. In practice, as
the parameters Rx and Cx are clearly unknown, only the
GLR detector can be used. This detector was introduced
independently by Ollila and Koivunen [6] and Schreier
et al. [7] under the traditional assumption of independent
and identically distributed Gaussian samples ðxkÞk ¼ 1,...,K .
But in these works, its performance was illustrated by a
Monte Carlo simulation only. Walden and Rubin-Delan-
chy [8] derived recently this GLRT as well by formulating
this testing problem in terms of real-valued Gaussian
random vectors. Note that they have also presented a
theoretical analysis of the null asymptotic distribution of
the GLR with several numerical studies based on Monte
Carlo simulations for the alternative distribution under
the Gaussian distribution of the signals. Furthermore,
there have been recent extensions of this GLRT to
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2 C linear transformations include rotation and scaling, but not

widely linear operations.
3 This means that not only Eðx2

k Þ ¼ 0, but also the fourth-order

cumulants satisfy cumðxk ,xk ,xk ,xkÞ ¼ 0 and cumðxk ,xk ,xk ,x�kÞ ¼ 0 [15]. We

note, it is possible that Eðx2
k Þ ¼ 0 with cumðxk ,xk ,xk ,xkÞa0 or cumðxk ,xk ,

xk ,x�kÞa0. In this case, the asymptotic distribution of ĝx is much more

involved (see the proof of Result 1 in the Appendix).
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non-Gaussian RVs. Authors in [9] have extended this GLRT
to complex elliptically symmetric distributions, with a
slight adjustment by dividing it with an estimated scaled
standardized fourth-order moment. Then in [10], a GLRT
based on complex generalized Gaussian distributions
have been provided. These extensions make the GLRT
more robust to non-Gaussian distributions, but surpris-
ingly they do not improve the performance for sub-
Gaussian distributions [10], which include the majority
of applications in communications and radar.

The aim of this paper is to complement the theoretical
asymptotical analysis of [8,9]. The originality of our
approach consists in considering the null and alternative
asymptotic distribution of the GLR derived under the
Gaussian distribution, but used in practice under indepen-
dent not necessarily identically Gaussian distributed data.
This paper is organized as follows. The GLRT is recalled for
the convenience of the reader in Section 2. The asymptotic
distribution of the GLR under the hypothesis that RVs are
proper or improper is considered in Section 3, using the
asymptotic distributions of the circularity coefficients
given in [11]. This asymptotic distribution is given in the
scalar case and then extended to the multidimensional
case under the assumption of independent identically not
necessarily Gaussian distributed RVs. An interpretable
closed-form expression of the ROC is given in the scalar
case due to the simplicity of the asymptotic distribution of
the GLR. Then, extension of this study to independent
nonidentically distributed RVs is considered in Section 4.
This enables us to deal with practical situations of non-
circular RVs disturbed by residual frequency offsets and
additive circular noise. Finally some illustrative examples
are presented in Section 5. Note that some results of this
paper have been given in [12].

The following notations are used throughout the
paper. Matrices and vectors are represented by bold upper
case and bold lower case characters, respectively. Vectors
are by default in column orientation, while T, H and �
stand for transpose, conjugate transpose, conjugate,
respectively. vecð�Þ is the ‘‘vectorization’’ operator that
turns a matrix into a vector by stacking the columns of
the matrix one below another which is used in conjunc-
tion with the Kronecker product A� B as the block matrix
whose (i, j) block element is ai,jB and with the vec-
permutation matrix K which transforms vecðCÞ to
vecðCT

Þ for any matrix C.

2. Generalized likelihood ratio decision rule

We assume that ðxkÞk ¼ 1,...,K 2 C
N is a realization of K

independent identically zero-mean complex Gaussian
distributed RVs. Their covariance matrices Rx ¼ EðxxHÞ

and Cx ¼ EðxxT Þ are unknown. Consider the following
binary composite hypothesis testing problem:

H0 : Cx ¼ 0, Rx,

H1 : Cxa0, Rx:

In the likelihood ratio, the GLR replaces the unknown
parameters Rx and Cx by their maximum likelihood (ML)
estimates. It is thus straightforward to derive its
expression which is given by [6,7]

Lðx,KÞ ¼
def pððxkÞk ¼ 1,...K ; R̂x,Ĉx,H1Þ

pððxkÞk ¼ 1,...K ; R̂x,0,H0Þ
¼

detðR̂xÞ
K

detðR̂ ~x Þ
K=2

ð1Þ

with R̂x ¼
def
ð1=KÞ

PK
k ¼ 1 xkxH

k and R̂ ~x ¼
def
ð1=KÞ

PK
k ¼ 1

~xk ~x
H
k

where ~xk ¼
def
½xT

k ,xH
k �

T . The GLRT decides H1 if

Lðx,KÞ4l ð2Þ

and otherwise H0. In the scalar case N¼1, the GLRT is the
UMP linearly invariant test [8]. But note that no uniformly
most powerful (UMP) C linearly2 invariant test for
impropriety exists for N41 [8]. It becomes especially
simple

Lðx,KÞ ¼ ð1�ĝ2
x Þ
�K=2

ð3Þ

with ĝx ¼ jð1=KÞ
PK

k ¼ 1 x2
k j=ð1=KÞ

PK
k ¼ 1 jxkj

2 is the ML esti-

mate [13,11] of the circularity coefficient gx ¼
def
jEðx2

k Þj=Ejxkj
2.

By the increasing monotony of (3), the GLRT decides H1 if

ĝx4l0, ð4Þ

which is quite intuitive.

3. Asymptotic distribution of GLR for IID observations

Throughout this section, this GLRT is used for inde-
pendent identically zero-mean nonnecessarily Gaussian
distributed RVs ðxkÞk ¼ 1,...,K . For such non-Gaussian RVs,
decision rule (2) is no longer a GLRT. However, it generally
provides good performance in practice (see e.g., for the
detection of a known signal corrupted by noncircular
interference [14]) and is simple to implement.

3.1. Scalar complex random variable

Let xk be a scalar valued RV of arbitrary distribution
with finite fourth-order moments. We suppose that under
H0, xk is circular up to the fourth-order.3 Then, the follow-
ing result is proved in the Appendix:

Result 1. Under the respective hypothesis H0 and H1, the
following convergences in distribution hold when K-1ffiffiffiffiffiffiffiffiffiffiffiffiffi

K

1þ
kx

2

vuut ĝx-
L Rð1Þ, ð5Þ

ffiffiffiffi
K
p
ðĝx�gxÞ-

L N ð0,s2
g Þ if gxa1: ð6Þ

In (5) and (6), Rð1Þ and N ð0,s2
g Þ denote the Rayleigh

distribution with unit scale (i.e., the chi distribution with
two degrees of freedom w2) and the zero-mean Gaussian
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Fig. 1. Approximative probability density function (PDF) of ĝx under H0

and H1.
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distribution with variance s2
g , respectively, with

s2
g ¼ ð1�g

2
x Þ

2
þg2

xkxþ
kx

2
þ
g2

xRðk0xÞ
2

�2g2
xRðk00xÞ if s2

ga0,

ð7Þ

where under H0,kx is the normalized-like cumulant
cumðxk,xk,x�k,x�kÞ=ðEðjxkj

2ÞÞ
2, and under H1,kx,k0x and

k00x are the normalized-like cumulants cumðxk,xk,x�k,x�kÞ=
ðEðjxkj

2ÞÞ
2, cumðxk,xk,xk,xkÞ=ðEðx

2
k ÞÞ

2 and cumðxk,xk,xk,x�kÞ=
Eðjxkj

2Þ Eðx2
k Þ, respectively, which are invariant to any

rotation of the distribution of xk.
Naturally general expression (7) of s2

g simplifies for
certain complex distribution classes for which the nor-
malized-like cumulants kx, k0x and k00x are redundant. For
example, the following result is proved in the Appendix.

Result 2. For generalized complex elliptically symmetric
distributions (GCES)4 introduced in [16] in the multi-
dimensional case, s2

g (7) reduces to

s2
g ¼ ð1�g

2
x Þ

2 1þ
kx

2þg2
x

� �
: ð8Þ

Remark 1. This theoretical result means that the esti-
mate ĝx is approximately Rayleigh (of scale ð1þkx=2Þ=K)
or Gaussian N ðgx,s2

g=KÞ distributed under H0 and H1,
respectively, for Kb1. Furthermore the domain of validity
of this approximation depends on gx and s2

g through the
approximate relation gx�2sg=

ffiffiffiffi
K
p

40. For practical use of
this result, i.e., for probability of detection PDa1 and
probability of false alarm PFAa0, note that the distribu-
tion of ĝx under H0 and H1 must overlap. This is roughly
achieved for gx�2sg=

ffiffiffiffi
K
p

o4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þkx=2

p
=
ffiffiffiffi
K
p

as illustrated
in Fig. 1.

Remark 2. For rectilinear RVs, gx ¼ 1 and thus xk ¼ rkeif

where rk is a real-valued RV and with f fixed. In this case,
the circularity coefficient gx is perfectly estimated, i.e.,
ĝx ¼ 1. Consequently, the detection problem is singular
and for a threshold l0 close to 1, PD and PFA are equal to
1 and 0, respectively.

Remark 3. Note that s2
g can be zero with gxo1 (an

example of such a situation is given in [11]). In this case,
the sequence Kðĝx�gxÞ converges in distribution [17,
Theorem B, p. 124] to a Hermitian form rHXr, with r a
two dimensional zero-mean complex Gaussian RV. The
distribution of this Hermitian form is defined by the right
hand side of (17). But our first-order analysis does not
allow one to specify the matrix X.

Remark 4. Note that for gx close to zero and Kb1,

2lnLðx,KÞ ¼�Klnð1�ĝ2
x Þ � Kĝ2

x . Furthermore for Gaussian

distributed xk, kx ¼ 0. In these conditions (5) gives

2lnLðx,KÞ-
L w2

2 under H0: ð9Þ

This asymptotic property is consistent with the constant
false alarm rate (CFAR) detector where the number 2 of
degree of freedom of the chi-squared distribution is equal to

the number of real-valued components of cx ¼
def

Eðx2
k Þ, given
4 Which include the Gaussian distribution.
by Wilk’s theorem [18, p. 132].5 But for non-Gaussian
distributions, detector (4) is no longer asymptotically CFAR.
From the practical point of view, similarly as [9], by dividing

the test statistic ĝx with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk̂x=2

p
where k̂x is any

consistent estimate of kx, we obtain an adjusted GLRT
which becomes asymptotically CFAR. Hence, once the
threshold is fixed for a given PFA, the obtained PD will

depend naturally on the unknown parameters gx and s2
g (7).

Remark 5. For Gaussian distributed RVs, the normalized-
like cumulants kx, k0x and k00x are zero. Thus the variance
s2
g of the asymptotic distribution of ĝx under the hypoth-

esis H1 given by (7) and (8) becomes equal to ð1�g2
x Þ

2. It is
a decreasing function of gx. Consequently for a fixed PFA,
i.e., for fixed threshold l0, PD is an increasing function of gx

that does not depend on the power of xk. This property is
very intuitive.

For arbitrary, not necessarily Gaussian distributions of
xk, Result 1 allows us to derive

PFA ¼ Pðĝx4l0=H0Þ �Qw2
2

Kl02

1þ
kx

2

0
B@

1
CA,

PD ¼ Pðĝx4l0=H1Þ � QN

ffiffiffiffi
K
p
ðl0�gxÞ

sg

 !
,

where Qw2
2
ð�Þ and QN ð�Þ denote the complementary cumu-

lative distribution functions (i.e., Qf ðxÞ ¼
def R þ1

x f ðtÞ dt where

f ð�Þ is the associated probability density function) of the
chi-squared distribution with 2 degrees of freedom and of
the zero-mean, unit-variance Gaussian distribution,
respectively, and where sg is given by (7). Eliminating

the threshold l0 between PFA and PD gives the following
5 Note that this theorem has been used in [8,13] for vector and

scalar cases to directly derive asymptotic distribution (9).



7 We only consider scalar complex-valued RVs, because the exten-

sion to multidimensional complex-valued RVs would involve overly too
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closed-form expression of the ROC of GLR detector (4)

PD �QN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

kx

2

� �
Q�1
w2

2

ðPFAÞ

r
�

ffiffiffiffi
K
p

gx

sg

0
BB@

1
CCA: ð10Þ

From this expression, we clearly see that for fixed PFA, PD is
an increasing function of the data length K and for
Gaussian distributed RVs, an increasing function of the
circularity coefficient gx.

3.2. Multidimensional complex random variable

In the multidimensional case ðN41Þ, Result 1 cannot
be easily extended as explained in the Appendix where
we can only prove for arbitrary distributions with finite
fourth-order moments the following result.

Result 3. Under hypothesis H1, the following convergence
in distribution holds when K-1 for the decision statistic

‘ðx,KÞ ¼
def
½Lðx,KÞ��2=K

ffiffiffiffi
K
p
ðlðx,KÞ�‘1Þ-

L N ð0,s2
1Þ under H1, ð11Þ

where the expressions of ‘1 and s2
1 are derived in the

Appendix.

Remark 6. Note that for the Gaussian distribution, i.e., for
the only distribution for which the decision statistic Lðx,KÞ
given by (1) is a GLR, Wilk’s theorem [18, p. 132] applies6

and gives

2lnLðx,KÞ-
L w2

NðNþ1Þ under H0: ð12Þ

The degree of freedom of the chi-squared distributions is
equal to the number N(Nþ1) of real-valued independent
parameters in the Hermitian matrix Cx. Under H1, in the
particular case where Cx is ‘‘close’’ to 0 (see a more formal
definition in [19, Chapter 23.7]), the analysis of [20,
Section II] is valid and gives the following approximation
of distribution when Kb1:

2lnLðx,KÞ �
a w0NðNþ1Þ2ðmÞ under H1:

In this expression, w0NðNþ1Þ2ðmÞ represents a noncentral
chi-squared distribution with N(Nþ1) degree of freedom
and noncentral parameter m. This parameter is a measure
of the discrimination between H0 and H1. A general
expression of this parameter which depends on K is given
by [20, exp. (4)].

4. Extension to nonidentically distributed RVs

For practical purposes, RVs are not always identically
distributed. In particular, when noncircular RVs are dis-
turbed by residual frequency offsets and additive circular
noise, RVs could be seen as circular depending on the
signal to noise ratio (SNR) and the number K of samples.
So in this section, we still consider the previous GLRT that
has been derived under the assumption of independent
identically zero-mean complex Gaussian distribution.
6 Note that Wilk’s theorem has been invoked in this context in [8,9].
But it is used here for independent zero-mean nonneces-
sarily identically Gaussian distributed RVs7

ðxkÞk ¼ 1,...,K . To
take account of the dependence of the distribution of xk

with k, the following notation is used: rx,k ¼
def

Ejx2
k j,

cx,k ¼
def

Eðx2
k Þ, rx,K ¼

def
ð1=KÞ

PK
k ¼ 1 rx,k, cx,K ¼

def
ð1=KÞ

PK
k ¼ 1 cx,k,

cumx,k ¼
def

cumðxk,xk,x�k,x�kÞ, cum0x,k ¼
def

cumðxk,xk,xk,xkÞ and

cum00x,k ¼
def

cumðxk,xk,xk,x�kÞ.

For arbitrary distributions with finite fourth-order
moments such that the following Lyapunov conditions
[21, Theorem 2.7.2] are satisfied8:

lim
K-1

PK
k ¼ 1 Ejjx2

k j�rx,kj
3

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k ¼ 1 Eððjx2

k j�rx,kÞ
2
Þ

q Þ
3
¼ 0 and

lim
K-1

PK
k ¼ 1 Ejx2

k�cx,kj
3

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k ¼ 1 Eððx2

k�cx,kÞ
2
Þ

q Þ
3
¼ 0, ð13Þ

where rx,k, cx,k, cumx,k, cum0x,k and cum00x,k are bounded
and where we suppose that under H0, ðxkÞk ¼ 1,...,K are
circular up to the fourth-order, the following result
extending Result 1 is proved in the Appendix.

Result 4. Under the respective hypotheses H0 and H1, the
following convergences in distribution hold when K-1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K

aKþ
kx,K

2

vuut ĝx-
L Rð1Þ, ð14Þ

s�1
g,K ðĝx�gx,K Þ-

L N ð0,1Þ, ð15Þ

where aK ¼
def
ð1=r2

x,K Þð1=KÞ
PK

k ¼ 1 r2
x,k and kx,K ¼

def
ð1=r2

x,K Þð1=KÞPK
k ¼ 1 cumx,k, gx,K is the time-averaged circularity coeffi-

cient jcx,K j=rx,K ¼ jð1=KÞ
PK

k ¼ 1 Eðx2
k Þj=ð1=KÞ

PK
k ¼ 1 Ejxkj

2 and

where the expression of sg,K is derived in the Appendix.

Remark 7. Clearly for identically distributed RVs, rx,k ¼

rx,K ¼ rx, cumx,k=r2
x ¼ kx and thus aK ¼ 1 and kx,K ¼ kx in

(14) and Result 3 reduces to Result 1 under H0. Under H1,
the derivation of s2

g,K (23) in the Appendix comes down to
the proof of (6), (7) given in [11] for identically distributed
RVs where sg,K ¼ sg=

ffiffiffiffi
K
p

.

5. Illustrative examples

This section has two purposes. First, we examine the
domain of validity of our asymptotic results, and second,
we study the performance of the GLR detector in a specific
example.

The following MIMO channel (extension of the exam-
ple given in [7]) that transmits Q independent equiprob-
able BPSK symbols aq,k 2 f�1,þ1g over an additive noise
channel is considered. It also rotates independently the
phase of the transmitted symbols aq,k by fq,k and are
cumbersome notations.
8 Which are not severe and are clearly satisfied for the RVs described

by (16).
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disturbed by residual frequency offsets Dfq.

xk ¼
XQ

q ¼ 1

sqaq,keifq,k ei2pkDfq sqþnk, ð16Þ

where sq and sq are Q unknown amplitudes and steering
vectors with unit first component. The components of nk

are independent zero-mean complex circular Gaussian RV
of unknown variance s2

n.
We consider three experiments. In the first one, there

is no residual frequency offset and under H0 and H1, we

assume that the phase terms ðfq,kÞk ¼ 1,: :,K ,q ¼ 1,: :,Q are

independent and, respectively, uniformly distributed on

½0,2p� or Gaussian distributed with mean fq0
and variance

s2
fq

. So we are interested in classifying this channel as

either incoherent or partially coherent. This is a binary
composite hypothesis testing problem. We easily deduce
that

Rx ¼
XQ

q ¼ 1

s2
qsqsH

q þs
2
nIQ

and

Cx ¼

0 under H0,PQ
q ¼ 1 s2

qe2ifq0 e
�2s2

fq sqsT
q under H1:

8<
:

For Q¼1 and N¼1, kx ¼�1=ð1þr�1
x Þ

2 under H0 and gx ¼

e
�2s2

f1 =ð1þr�1
x Þ, kx ¼�ð1þe

�4s2
f1 Þ=ð1þr�1

x Þ
2 k0x ¼ e

�4s2
f1

�3 and k00x ¼�2=ð1þr�1
x Þ under H1, with an SNR of

rx ¼
defs2

1=s2
n.

Fig. 2 shows the detection performance PD for different
fixed PFA for N¼Q¼1 as a function of the SNR for two
values of sf1

deduced from the asymptotic distribution of
ĝx given by Result 1. We see that the PD for fixed PFA is
very sensitive to the coherence of the channel. When sf1

increases for a fixed SNR, the circularity coefficient gx

decreases and detection worsens.
In the second experiment, model (16) with N¼Q¼1 is

compared to the Gaussian model obtained when f1,k does
not depend on k and a1,k are independent zero-mean
complex circular or real-valued Gaussian RVs under H0
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as a function

of SNR for N¼Q¼1 and K¼100.
and H1, respectively. Fig. 3 shows the northwest corner of
the ROC curve for the GLRT detector for K¼100 and
rx ¼ 0:63 (�2 dB) for BPSK model with a coherent chan-
nel (i.e., sf1

¼ 0) and Gaussian model, and thus associated
with the same value of gx ¼ 0:387. We note that the ROC
curve is sensitive to the distribution of the RVs xk,
the performance is improved for the BPSK model w.r.t.
the Gaussian model and that the empirical ROC fits the
asymptotic theoretical ROC for the relatively small data
length K¼100.

Fig. 4 shows the ROC curve for the GLRT detector
for the same parameters as in Fig. 3, but with four
residuals of frequency offset Df1 for which rx,k ¼ rx,K ¼

s2
1þs2

n, cx,k ¼ s2
1e2if1 e4pikDf1 , cx,K ¼ s2

1e2if1 e2piðK�1ÞDf1

ðsin2pKDf1= sin2pDf1Þ,

gx,K ¼
1

1þr�1
x

1

K

sin2pKDf1

sin2pDf1
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runs) ROC curve associated with Gaussian model for four values of KDf1.
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and cumx,k ¼ 0 for a Gaussian signal. Comparing to Fig. 3,
we note in Fig. 4 a degradation owing to the frequency
offset for which the time-averaged circularity coefficient
gets closer to zero under H1. The performance of the
detector begin decreasing from KDf1 ¼ 0:002 for which
PFA¼0.1 and 0.05 are obtained for PD¼0.980 and 0.960,
respectively, against PD¼0.989 and 0.970 for no residual
frequency offset. The detection capability collapses for
KDf1 ¼ 0:5 where the time-averaged circularity coeffi-
cient gx,K ¼ 0. We see also that the empirical ROC fits
the asymptotic theoretical ROC for the relatively small
data length K¼100.

Finally in the third experiment, we consider the multi-
dimensional Gaussian model9 (fq ¼

deffq,k does not depend
on k and aq,k are independent zero-mean complex circular
or real-valued Gaussian RVs under H0 and H1, respec-
tively), with no residual of frequency offset. Here, Q¼2,
s1 ¼ s2, with an array of N¼2 omnidirectional sensors
equispaced half a wavelength apart. The direction of
arrival with respect to broadside of the two sources are
y1 ¼ 01 and y2 ¼ 51. Fig. 5 shows the detection perfor-
mance PD for different fixed PFA as a function of the SNR
for two values of Df¼deff1�f2. PD and PFA are deduced
from the asymptotic distribution of lðx,KÞ under H1 given
by Result 4 and of 2lnLðx,KÞ under H0 given by (12),
respectively. We see that the GLRT is very sensitive to Df.
In particular for very close DOAs (i.e., s1 � s2) and equi-
powered sources, C� 0 under H1 for Df¼ p=2 radians,
which implies a very bad capability of circularity detec-
tion. Furthermore we see that the empirical PD fits the
asymptotic PD for the relatively small data length K¼100,
except for weak PD.
9 We note that in this case under H0, the asymptotic distribution of

the test statistic is only available for Gaussian distributions of the RVs

(see (12)). In this case, this test is asymptotically CFAR and once the

threshold is fixed for a given PFA, the obtained PD derived by (11) will

depend naturally on the unknown parameters ‘1 ¼ det½I�ðR�1
x CxÞ

�R�1
x Cx�

and s2
1 derived in the Appendix.
6. Conclusion

In this paper, some new enlightening results about the
asymptotic distribution of the GLR for impropriety of
complex signals have been investigated. The associated
GLRT derived under the usual assumption of independent
identically distributed Gaussian RVs is studied under
nonnecessarily identical Gaussian distributions of the
RVs. For the scalar case, the asymptotic distribution of
the circularity coefficient has been given under H0 and H1

for independent identical or independent nonidentical
arbitrary distributions of the RVs. In particular this allows
us to deal with the important practical situations where
discrete RVs are disturbed by residual frequency offsets
and additive Gaussian circular noise which has never
been considered until now. For the multidimensional
case, the asymptotic distribution of the GLR has been
given under H1 for independent and identically arbitrary
distributions of the RVs. These results enable us to specify
the probability of detection for a specified probability of
false alarm, and thus to derive the ROC of this test, an
issue previously totally overlooked.

Appendix
Proof of Result 1. Under H1, (6) is directly issued from
[11, Result 3]. But under H0, [11, Result 3] is not valid
because it does not holds for gx ¼ 0. Nevertheless the
analysis of [11] still applies. The classical central limit10

applied to the independent identically distributed bidi-
mensional complex RVs ðr̂ x,ĉ xÞ with r̂ x ¼ ð1=KÞ

PK
k ¼ 1 jx

2
k j

and ĉ x ¼ ð1=KÞ
PK

k ¼ 1 x2
k yields for gx ¼ 0

ffiffiffiffi
K
p r̂ x�rx

ĉx�cx

 !
-
L N C

0

0

� �
,

s4
xþcumx cum

00�
x

cum00x 2s4
xþcumx

 !
,

 

s4
xþcumx cum00x

cum00x cum0x

 !!
, ð17Þ

where s2
x ¼

def
Ejx2

k j, cumx ¼
def

cumðxk,xk,x�k,x�kÞ, cum0x ¼
def

cumðxk,
xk,xk,xkÞ and cum00x ¼

def
cumðxk,xk,xk,x�kÞ. Then, considering

the mapping

ðr̂ x,ĉ xÞ/m̂x ¼
ĉ x

r̂ x
/ĝx ¼ jm̂xj, ð18Þ

whose differential of the first step is

dm¼
1

r
dc ð19Þ

under H0, the standard theorem of continuity (see e.g.,
[17, Theorem A, p. 122]) on regular functions of asymp-
totically Gaussian statistics applies. Consequently, we
obtain the following convergence in distribution to a
complex zero-mean Gaussian distribution of variance
ð1=s4

x Þð2s4
xþcumxÞ and pseudo-variance ð1=s4

x Þcum0xffiffiffiffi
K
p
ðm̂x�0Þ-

L N C 0,2þ
cumx

s4
x

,
cum0x
s4

x

� �
: ð20Þ
10 N C ðm,R,CÞ denotes the complex Gaussian distribution with mean

m, and covariances R and C.



11 Where ðQ xÞiþðj�1ÞK ,kþðl�1ÞK ¼ cumðxk,i ,xk,j ,x
�
k,k ,x�k,lÞ and ðQ 0xÞiþðj�1Þ

K ,kþðl�1ÞK ¼ cumðxk,i ,xk,j ,xk,k ,xk,lÞ with xk ¼ ðxk,1 , . . . ,xk,N Þ
T .
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This complex Gaussian distribution becomes circular
(cum0x ¼ 0) for xk circular up to the fourth-order. With
ĝx ¼ jm̂xj, convergence in distribution (5) is proved. &

Proof of Result 2. From [16], the GCES distribution of xk

is defined in the scalar case from the distribution of the
real-valued bivariate RV ðRðxkÞ,IðxkÞÞ which is real ellip-
tical symmetric (RES) distributed. In the zero-mean case,
this RES distribution is defined as a linear transform in R2

of a spherically symmetric distribution [22]. Consequently
as a linear transform in R2 is equivalent to an R-linear
transform in C [23], xk is zero-mean GCES distributed, if
there exist complex valued scalars a and b such that
xk ¼ aukþbu�k where uk is an arbitrary complex circular
RV. Consequently the cumulants of xk satisfy the following
relations:

cumðxk,xk,x�k,x�kÞ ¼ ððjaj
2þjbj2Þ2þ2jaj2jbj2Þcumðuk,uk,u�k,u�kÞ,

cumðxk,xk,xk,xkÞ ¼ 6a2b2cumðuk,uk,u�k,u�kÞ,

cumðxk,xk,xk,x�kÞ ¼ 3abðjaj2þjbj2Þcumðuk,uk,u�k,u�kÞ:

Using

Ejxkj
2 ¼ ðjaj2þjbj2ÞEjukj

2 and Eðx2
k Þ ¼ 2abEjukj

2,

the normalized-like cumulants k0x and k00x become

k0x ¼ k
00

x ¼
3

2þg2
x

� �
kx:

Plugging these expressions in (7), gives expression (8) of
Result 3. &

Proof of Result 3. With ‘ðx,KÞ ¼ det½I�ðR̂
�1

x ĈxÞ
�R̂
�1

x Ĉx�,

from (1) where Ĉx ¼
def
ð1=KÞ

PK
k ¼ 1 xkxT

k , the proof of Result

2 follows the same steps that for Result 1.
Deriving the asymptotic distribution of ‘ðx,KÞ under H0

and H1 is based on the following mapping:

ðR̂x,ĈxÞ/M̂x ¼ R̂
�1

x Ĉx/Ŝx ¼ M̂
�

xM̂x/‘ðx,KÞ ¼ det½I�Ŝx�:

ð21Þ

Using the asymptotic Gaussian distribution of ðR̂x,ĈxÞ [3,11]
derived from the classical central limit theorem, the differ-
ential of the different sub-mappings of (21), the chain rule
and standard properties of the vec operator [24, Chapter
2.4], the standard theorem of continuity (see e.g., [17,
p. 122]) on regular functions of asymptotically Gaussian
statistics applies.

In particular under H0, where xk is circular up to the
fourth-order, the differential of Mx at (Rx,Cx)¼(Rx,0) is
similar as (19), given by

dMx ¼�R�1
x dRxR�1

x CxþR�1
x dCx ¼R�1

x dCx,

vecðdMxÞ ¼ ðI� R�1
x ÞvecðdCxÞ: ð22Þ

Consequently, (20) becomes hereffiffiffiffi
K
p
ðvecðM̂xÞ�0Þ-

L N Cð0,RM ,CMÞ

with

RM ¼ ðI� R�1
x ÞRCðI� R�1

x Þ and CM ¼ ðI� R�1
x ÞCCðI� R��x Þ,
where RC and CC are the covariance matrices of the
asymptotic distribution of Ĉx given [11] by11

RC ¼Rx � RxþKðRx � RxÞþQ x and

CC ¼ Cx � CxþKðCx � CxÞþQ 0x,

for which here CC¼0. Consequently CM¼0 as in the scalar
case, M̂x is still asymptotically circular Gaussian distrib-
uted under H0 for xk circular up to the fourth-order and
the differential of the mapping M̂x/Ŝx at Mx¼0 is still
zero. But in contrast to the scalar case, the derivation of
the asymptotic distribution of Ŝx needs the second
differential of this mapping, which is not accessible by
our first-order analysis.

Under H1, with the differential of the mapping ðR̂x,ĈxÞ/

M̂x at ðRx,CxÞ derived from (22)

dMx ¼�R�1
x dRxR�1

x CxþR�1
x dCx,

vecðdMÞ ¼�ðCxR�T
x Þ � R�1

x ÞvecðdRxÞþðI� R�1
x ÞvecðdCxÞ

¼
def

DM,R vecðdRxÞþDM,C vecðdCxÞ,

we obtain from the noncircular Gaussian asymptotic
distribution of ðR̂x,ĈxÞ

ffiffiffiffi
K
p
ðvecðR̂x,ĈxÞ�vecðRx,CxÞÞ-

L N C

0

0

� � RR RR,C

RH
R,C RC

 !
,

 

CR CR,C

CT
R,C CC

 !!
,

whose expressions of RR, RR,C, CR and CR,C are given in [11],
the following convergence in distribution by the standard
theorem of continuity (see e.g., [17, Theorem A, p. 122])ffiffiffiffi

K
p
ðvecðM̂Þ�vecðMÞÞ-

L N Cð0,RM ,CMÞ,

with

RM ¼ ðDM,R,DM,CÞ
RR RR,C

RH
R,C RC

 !
DH

M,R

DH
M,C

0
@

1
A,

CM ¼ ðDM,R,DM,CÞ
CR CR,C

CT
R,C CC

 !
DT

M,R

DT
M,C

0
@

1
A:

Then consider the differential of the mapping M̂x/Ŝx ¼

M̂
�

xM̂x at Mx

dSx ¼M�x dMxþdM�xMx,

vecðdSÞ ¼ ðI�M�xÞvecðdMxÞÞþðMx � IÞvecðdM�xÞ

¼
def

DS,MvecðdMxÞþDS,M�vecðdM�xÞ,

which gives the following asymptotic distribution:ffiffiffiffi
K
p
ðvecðŜxÞ�vecðSxÞÞ-

L N Cð0,RSx
,CSx
Þ,

with

RSx
¼ ðDS,M ,DS,M� Þ

RM CM

C�M R�M

 !
DH
S,M

DH
S,M�

0
@

1
A,
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CSx
¼ ðDS,M ,DS,M� Þ

CM RM

RT
M C�M

 !
DT
S,M

DT
S,M�

0
@

1
A:

Finally, considering the differential of the mapping
Ŝx/‘ðx,KÞ ¼ det½I�Ŝx� at Sx

d‘¼�det½I�Sx�Tr½ðI�SxÞ
�1dSx�

¼ �det½I�Sx�vecT ððI�ST
x Þ
�1
ÞvecðdSxÞ ¼

def
Dl,S vecðdSxÞ

from [24, Theorem 1, p. 149], the convergence in distribu-
tion (11) follows with s2

1 ¼Dl,SCSx
DT

l,S ¼Dl,SRSx
DH

l,S and
‘1 ¼ det½I�ðR�1

x CxÞ
�R�1

x Cx�o1 derived from (1). &

Proof of Result 4. To derive the asymptotic distribution
of the GLR and then to extend the results of Section 3.1,
we replace the classical central limit theorem with the
Lyapunov theorem (see e.g., [21, Theorem 2.7.1]) by
checking that the Lyapunov conditions (13) are satisfied
for the sequence of zero-mean RVs jx2

k j�rx,k and x2
k�cx,k. In

fact the Lyapunov theorem12 is valid for zero-mean real-
valued scalar RVs uk. To extend it to the zero-mean
complex-valued multidimensional RV ðjx2

k j�rx,k,x2
k�cx,kÞ,

we must elaborate a little bit. First, the extension of the
Lyapunov theorem to zero-mean real-valued multidimen-
sional RVs uk is straightforward by the application of the
Cramer–Wold theorem [21, Theorem 5.1.8] for which the
sequence R�1=2

u,K

PK
k ¼ 1 uk converges in distribution to a

zero-mean, Gaussian distribution N Rð0,IÞ where R1=2
u,K is an

arbitrary square root of Ru,K ¼
def PK

k ¼ 1 EðukuT
k Þ. Then the

Lyapunov theorem applies to the zero-mean complex-
valued multidimensional RV ðjx2

k j�rx,k,x2
k�cx,kÞ, due to

isomorphism between C and R2. Here, using [25,
Theorem 1], there exists a sequence of 2	2 matrices AK

such that

A�1
K

r̂x�rx,K

ĉx�cx,K

 !
-
L N Cð0,I,DÞ,

with D is diagonal such that

AK AH
K ¼

Ejr̂ x�rx,K j
2 Eðr̂ x�rx,K Þðĉx�cx,K Þ

�

Eðĉx�cx,K Þðr̂ x�rx,K Þ
� Ejĉx�cx,K j

2

 !
,

AKDAT
K ¼

Eðr̂ x�rx,K Þ
2 Eðr̂ x�rx,K Þðĉx�cx,K Þ

Eðĉx�cx,K Þðr̂ x�rx,K Þ Eðĉx�cx,K Þ
2

 !
,

where the terms of those two matrices are given by

Eðr̂ x�rx,K Þ
2
¼

1

K2

XK

k ¼ 1

ðcumx,kþjckj
2þr2

k Þ,

Ejĉ x�cx,K j
2 ¼

1

K2

XK

k ¼ 1

ðcumx,kþ2r2
k Þ,
12 That we restate for the ease of the reader. If uk is a sequence of

zero-mean scalar real-valued RVs that satisfies limK-1

PK
k ¼ 1 Ejukj

3=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k ¼ 1 Eðu2

k Þ

q� �3

¼ 0, the sequence
PK

k ¼ 1 uk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k ¼ 1 Eðu2
k Þ

q
converges

in distribution to a zero-mean, unit variance Gaussian distribution

N Rð0,1Þ.
Eðĉx�cx,K Þ
2
¼

1

K2

XK

k ¼ 1

ðcum0x,kþ2c2
k Þ,

Eðĉx�cx,K Þðr̂ x�rx,K Þ ¼
1

K2

XK

k ¼ 1

ðcum00x,kþ2ckrkÞ:

Under H0 where the moments of ðxkÞk ¼ 1,...,K are circular
up to the fourth-order, ck¼0, cum0x,k ¼ 0 and cum00x,k ¼ 0,
the delta method [21, Chapter 2] derived from the
standard theorem of continuity applied to the mapping
(18) with the associated differential dm¼�ðc=r2Þdrþ

ð1=rÞdc gives here dm¼ ð1=rÞdc and after straightforward
algebraic manipulationsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K

1

ðrx,K Þ
2

1

K
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k ¼ 1 r2

x,kþ
1

2
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� �
vuuut m̂x�

cx,K

rx,K

� �
-
L N Cð0,1,0Þ:

With gx,K ¼
def
jcx,K j=rx,K , which is the time-averaged circu-

larity coefficient, (14) is proved. &

In the same way, under H1, (15) is derived from the
steps of the Appendix of [11] from the delta method using
the two associated differentials

dm¼�
c

r2
drþ

1

r
dc and dg¼ 1

2g m�dmþmdm�
� 	

,
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Then (15) follows with sg,K is given by
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4g2
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