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Abstract

In this paper, we address an adaptive estimation method for eigenspaces of covariance matrices. We are interested in
a gradient procedure based on coupled maximizations or minimizations of Rayleigh quotients where the constraints are
replaced by a Givens parametrization. This enables us to provide a canonic orthonormal eigenbasis estimator. We study
the convergence of this algorithm with the help of the associated ordinary differential equation (ODE), and propose
a performance evaluation by computing the variances of the estimated eigenvectors and of the estimated projection
matrices on eigenspaces for fixed gain factors. In particular, we show that these misadjustments depend on whether the
successive analyzed vector signals are correlated or not, and thus greatly depend on the origin of the covariance matrices
of interest (spatial, temporal, spatio-temporal). More precisely, we show that these misadjustments can be smaller in the
case of correlated observations than in the case of independent observations. Finally, we show that performance can be
improved when the symmetric-centrosymmetric property of some of those covariance matrices is exploited. ( 1998
Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel wird eine adaptive Methode zur Schätzung von Eigenräumen von Kovarianzmatrizen behandelt.
Wir interessieren uns für ein Gradientenverfahren, welches auf gekoppelten Maximierungen oder Minimierungen von
Rayleigh-Quotienten beruht, wobei die Nebenbedingungen durch eine Givens-Parametrisierung ersetzt werden. Dies
ermöglicht es, einen kanonischen Schätzer für orthonormale Eigenbasen anzugeben. Wir studieren die Konvergenz
dieses Algorithmus mit Hilfe der zugehörigen gewöhnlichen Differentialgleichung. Zur Beurteilung der Leistungsfähigkeit
schlagen wir vor, die Varianzen der geschätzten Eigenvektoren und der geschätzten Eigenraum-Projektionsmatrizen bei
festen Verstärkungsfaktoren zu berechnen. Insbesondere zeigen wir, da{ diese Fehlanpassungen davon abhängen, ob die
nacheinander analysierten Vektorsignale korreliert sind, wodurch sich eine starke Abhängigkeit von der Herkunft der
Kovarianzmatrizen (räumlich, zeitlich, räumlich-zeitlich) ergibt. Wir zeigen konkret, da{ diese Fehlanpassungen im Fall
korrelierter Beobachtungen kleiner sein können als im Fall unabhängiger Beobachtungen. Schlie{lich zeigen wir, da{ die
Leistungsfähigkeit erhöht werden kann, wenn die Symmetrie-Zentrosymmetrie-Eigenschaft einiger dieser Kovarianz-
matrizen ausgenützt wird. ( 1998 Elsevier Science B.V. All rights reserved.
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Résumé

Nous considérons dans cet article une méthode d’estimation de sous espaces propes de matrices de covariance. Nous
nous intéressons à une méthode de gradient basée sur des minimisations ou des maximisations de quotients de Rayleigh
dans lesquelles les contraintes sont remplacées par une paramétrisation de Givens. Cela permet de fournir de facon
structurelle un estimateur orthonormé de bases orthonormées. Nous étudions la convergence de cet algorithme grâce
à l’étude de son équation différentielle associée (ODE), et nous proposons une évaluation des performances par le calcul
des variances des vecteurs propres et des matrices de projection associées estimées pour l’algorithme à pas fixe. Nous
montrons, en particulier, que les erreurs quadratiques moyennes sont très sensibles à la corrélation des observations
successives entre elles, donc dépendent fortement de l’origine des signaux observés (cas spatial, temporel ou spatio-
temporel). De fac7 on plus précise, nous montrons que ses erreurs quadratiques moyennes peuvent être plus petites dans le
cas d’observations corrélées que dans le cas d’observations indépendantes. Nous montrons finalement que les performances
peuvent être améliorées quand la structure symétrique-centrosymétrique de certaines matrices de covariance est prise en
compte. ( 1998 Elsevier Science B.V. All rights reserved.

Keywords: Subspace tracking; Adaptive eigenspace; Canonic orthonormal eigenbasis estimator; Asymptotic distribution;
Asymptotic covariance of eigenvectors estimator; Associated projection matrix estimator

1. Introduction

Over the past decade, adaptive estimation of
subspaces of covariance matrices has been applied
successfully to both temporal and spatial domain
high-resolution spectral analysis. The interest for
these methods, as a tool of outstanding importance
in many fields of signal processing, has recently
been renewed by the subspace approach used in
blind identification of multi-channel finite impulse
response filters [14]. Numerous solutions have been
proposed to recursively update the eigendecom-
position of a covariance matrix. Most of them can
be gathered into five families. In the first one,
classical batch eigendecomposition or singular value
decomposition methods like the QR algorithms,
Jacobi rotation methods, power iteration methods
have been rendered adaptive. In the second family,
variations of Bunch’s rank-one updating method
[3] have been proposed. The third family considers
a first order perturbation analysis [5] and the fourth
family stems from stochastic approximations of
power method, (see [15] and the references therein).
Finally, the last family relies on either unconstrained
or constrained optimizations. In this last family
some algorithms are derived from unconstrained
optimizations of a specific cost function. In particu-
lar, a recursive least square algorithm [22] (respec-
tively a Newton-based adaptive algorithm [13])
enables one to estimate a dominant (respectively a
minorant eigendecomposition). As for the constrained

optimizations, they can be performed adaptively by
a stochastic gradient algorithm where the con-
straints are taken into account by a Gram—Schmidt
orthogonalization at each iteration [21]. To get rid
of these constraints, an alternate solution consists
in using an appropriate parametrization [18].

One can find in the literature many papers dealing
with convergence analyses, but comparatively few
papers concerning the performance analysis of adap-
tive eigenspace estimation are available by now.
Among them, Larimore and Calvert [11] present
a study of the convergence rate and the steady-state
variance of the Thompson algorithm. Then, Yang
and Kaveh made an analysis of the convergence
rate and stability of their constrained gradient
search procedure, under the classical independence
assumption. An analysis of the parametrized
stochastic gradient algorithm by Regalia [18] was
sketched out in [6] and [7]. Finally, a deflation
algorithm for tracking dominant or minorant eigen-
subspaces [19] and some algorithms tracking
dominant eigensubspaces from a least square-like
approach (see [23,24]) were presented and studied
by the same tools. The main aim of this paper is to
study the convergence and performances of a par-
ametrized adaptive algorithm that gives a canonic
orthonormal eigenbasis by introducing the neces-
sary methodology and exploiting some of the results
that can be derived therefrom.

This paper is organized as follows. After
introducing some notations and describing the
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parametrization of the orthonormal eigenvectors of
the covariance matrices in Section 2, we study the
convergence of the coupled stochastic gradient
algorithms with the help of the associated ODE in
Section 3. A methodology for evaluating the perfor-
mance by computing the variances of the estimated
eigenvectors and of the estimated projection matrices
on eigenspaces for fixed gain factors is given in
Section 4. We take into account the origin of the
covariance matrices, by studying the case where the
successive vector signals are independent (spatial case),
autoregressive or moving average processes of any
order (temporal case). In Section 5, we show that the
performance in terms of misadjustment and speed of
convergence, can be improved when the symmetric-
centrosymmetric property of some covariance matrices
is exploited. Finally, numerical results on the asymp-
totic performance of the algorithm such as mean
square errors of estimated eigenvectors and of
estimated projection matrices on an eigensubspace,
which are evaluated by using the analysis developed
in Section 4 are presented in Section 6.

The following notations are used in the paper.
Matrices and vectors are represented by bold upper
case and bold lower case character, respectively.
Vectors are by default in column orientation.
T stands transpose and I is the identity matrix.
E()), cov()), Tr()), E)E

F30"
denote the expectation, the

covariance, the trace operator and the Frobenuis
matrix norm, respectively. Vec()) is the ‘vectorization’
operator that turns a matrix into a vector consisting
of the columns of the matrix stacked one below
another. o means ‘orthogonal to’ and spM�

1
,2,�

k
N

denotes the vector space spanned by the vectors
�
1
,2,�

k
. AR(p), MA(q) and ARMA(p,q) denote

autoregressive, moving average and autoregressive
moving average processes of order p, q and p,q
respectively.

2. Parametrization of the problem

We tackle the problem of adaptively estimating
m normalized eigenvectors q

1
,2,q

m
corresponding

to the m largest [or smallest] distinct eigenvalues
(j

1
'j

2
'2'j

m
) [respectively j

n~m`1
'2

'j
n
] of an n]n covariance matrix C

x
"E[xxT] of a

Gaussian distributed, zero mean real random vector

x. To solve this problem, a method was proposed in
the real case in [18] and then extended to the complex
case in [6]1 where the constrained maximizations
[respectively minimizations] of Rayleigh quotients,

max
,

q
1,/1

qT
1
C
x

q
1

(1)

and
max

,
q
i,/1,qiM41Mq

1,2,qi~1
N

qT
i
C
x

q
i
, for i"22,m, (2)

or equivalently

max
Mq

1,2,qm035)0/03.!-N

m
+
i/1

qT
i
C
x

q
i

(3)

that are taken into account in [21] by
a Gram—Schmidt orthogonalization are replaced
by unconstrained maximizations [respectively min-
imizations] thanks to a Givens parametrization of
the different constraints. q

1
is the last column of

a orthogonal matrix Q
1
and the other vectors q

i
can

be written as

q
1
"Q

1C
0

1D , q
2
"Q

1 CQ
2C

0

1D
0 D ,2 ,

q
m
"Q

1CQ
2 C

Q
m

0

C

0

0

1D D D , (4)

where Q
i

is the following orthogonal matrix of
order n!i#1:

Q
i
"U

i,12
U

i,j2
U

i,n~i

with U
i,j

$%&"C
I
j~1

0 0 0

0 !sinh
i,j

cosh
i,j

0

0 cosh
i,j

sinh
i,j

0

0 0 0 I
n~i~j

D (5)

and h
i,j

belongs to ]!p/2,#p/2]. The existence of
such a parametrization for all orthonormal sets

1The complex Givens parametrization gives a very similar
algorithm, the convergence analysis of which can be studied by
the same arguments as in the real case; however, as we shall
show in Section 4, the performance analysis would unfortunately
lead to cumbersome calculus. For this reason we consider the
real parametrization only.
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Mq
1
,2,q

m
N is shown in [18]. It consists of

m(2n!m!1)/2 real parameters. Furthermore, this
parametrization is unique if we add some con-
straints. The first component distinct from zero of
the last vector of unit norm that appears in the

deflation procedure (4), Q
iC

0

1D for i"1,2,m of

Eq. (4), that is of q
1
, QT

1
q
2
, [QT

2
,0]QT

1
q
3
,2,[QT

m~1
,0]

2[QT
2
,0]QT

1
q
m

must be positive. We can derive
from the maximization (3) a stochastic gradient
algorithm. In order to simplify this algorithm,
a deflation procedure, inspired by the maximizations
(1) and (2) was proposed [18]. The maximization (1)
is performed with the help of the classical stochastic
gradient algorithm, in which the parameters are
h
1,1

,2,h
1,n~1

whereas the maximizations (2) are
realized thanks to stochastic gradient algorithms
with respect to the parameters h

i,1
,2,h

i,n~i
, in

which the preceding parameters h
l,1

(k),2,h
l,n~l

(k)
for l"1,2,i!1 are injected from the i!1 pre-
vious algorithms. The deflation procedure is
achieved by coupled stochastic gradient algorithms.
This rather intuitive part of the computational
process was confirmed by simulation results [18].
However a formal analysis of the convergence and
performances had not been performed yet, and this
indeed is the main problem addressed in this paper.

3. Convergence of the coupled algorithms

The main difficulty in studying the convergence
of the stochastic gradient algorithms derived from
this deflation approach comes from the existence of
coupled algorithms. In order to study their conver-
gence, these coupled stochastic gradient algorithms
need to be globally written as2

C
H

1
(k#1)
)

H
m
(k#1)D"C

H
1
(k)
)

H
m
(k)D#c

kC
u
1
(H

1
(k), x

k
)

)
u
m
(H

1
(k),2,H

m
(k), x

k
)D
(6)

2We can introduce a block-diagonal gain c
k
diag[diag(a

1
),2,

diag(a
m
)] in place of the scalar gain c

k
in order to take into

account a better tradeoff between the misadjustment and the
speed of convergence of each eigenvector q

i
. All the following

developments can be easily extended with this block-diagonal gain.

with H
i
$%&" [h

i,1
,2,h

i,n~i
]T and u

1
(H

1
, x) $%&"

1
2
£H

1
(qT

1
x)2,2,u

m
(H

1
,2,H

m
, x) $%&" 1

2
£H

m
(qT

m
x)2, or

more compactly:3

H(k#1)"H(k)#c
k
H[H(k), x

k
] (7)

with H $%&" [HT
1
,2,HT

m
]T and H $%&" [uT

1
,2,uT

m
]T.

The study of the convergence of the coupled stochas-
tic gradient algorithms (7) is intimately connected
to the stability properties of the associated ODE
introduced by Ljung [12]:

dH(t)

dt
"h[H(t)] (8)

where h(H) is the mean field, i.e. h(H) $%&"

E[H(H, x
k
)].

Stability of the ODE (8). We suppose that m"2, as
the extension to m'2 is straightforward. We note
that the solutions H(t) of Eq. (8) are coupled in
a ‘triangular form’. That is to say, H

j
is dependent

on H
i
for i(j but not on H

i
for i'j. Therefore

H
1

can be analyzed independently of the remaining
H

i
. Since u

1
(H

1
, x) is the derivative of a positive

field, the set of the stationary points of the part of
the Eq. (8) which is associated with H

1
, is globally

asymptotically stable for that equation. But, thanks
to the stationary property of the Rayleigh quotient
(1) and the parametrization (4), only the parameters
H

1
solutions of the maximization (1) are globally

asymptotically stable for that equation. According
to a classical result on the stability of the ODE [1],
if we linearize the part of Eq. (8) which is associated
with H

1
around a stable stationary point, the locally

linearized equation is stable. And as the stable
stationary points of a linear ODE are exponentially
stable, the kth component of dH

1
(t)/dt behaves as

tP#R as

C
dH

1
(t)

dt D
k

&a
k
exp(!k

k
t) with k

k
'0, (9)

3 In case of a minimization, u
1
(H

1
,x) $%&" !1

2
£H

1
(qT

1
x)2,2,

u
m
(H

1
,2,H

m
,x) $%&" !1

2
£H

m
(qT

m
x)2. We consider throughout

the paper the case of a maximization only, and the case of
a minimization can be studied similarly.
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meaning that the ratio between the left and right-
hand sides tends to 1. Consider the Lyapunov
function

¼(t) $%&" !E(qT
2
(t) x

t
)2*!j

1
,

and its time derivative

d¼(t)

dt
"!

dHT
1
(t)

dt
E[£H

1
(qT

2
(t) x

t
)2]

!

dHT
2
(t)

dt
E[£H

2
(qT

2
(t) x

t
)2].

By hypothesis we have

dHT
2
(t)

dt
E[£H

2
(qT

2
(t) x

t
)2]"EE[£H

2
(qT

2
(t) x

t
)2]E2,

and since q
2

and dq
2
/dH

1
are bounded,

E[£H
1
(qT

2
(t) x

t
)2] is also bounded. So, thanks to

Eq. (9), we have with a'0 and k'0:

K
dHT

1
(t)

dt
E[£H

1
(qT

2
(t) x

t
)2]K

)KK
dH

1
(t)

dt KKEE[£H
1
(qT

2
(t) x

t
)2]E)a exp(!kt).

Consequently,

d¼(t)

dt
)#a exp(!kt)!EE[£H

2
DqT

2
(t) x

t
D2]E2.

Then ¼(t)#(a/k) exp(!kt) is a decreasing function
of t, so lim

t?`=
¼(t) exists, which implies

lim
t?`=

(d¼(t)/dt)"0 and then

lim
t?`=

E[£H
2
(qT

2
(t) x

t
)2]"0.

Therefore the stationary points of the part of the
Eq. (8) associated to H

2
, are globally asymptotically

stable for that equation. And thanks to the station-
ary property of the Rayleigh quotient (2) and the
parametrization (4), only the parameters H

2
which

are the solutions of the maximization (2) are globally
asymptotically stable for that equation. So the
following result is established.

Result 1. The parameters H* that maximize (1) and
(2) are globally asymptotically stable for its asso-
ciated ODE (8).

Convergence of the stochastic gradient algorithm (7).
Although the stochastic gradient algorithm (8) can
be viewed as a discrete time approximation to its
associated ODE (8), the question of the connection
of their limiting behaviour is not straightforward
because the algorithm may have a much more
complex asymptotic behaviour than a given solution
of the ODE. To induce a connection, we are firstly
interested in the hypotheses of Benveniste et al. [2]
which specify conditions under which the stochastic
algorithm (7) converges almost surely to the asymp-
totically stable points of Eq. (8). Thus we suppose
that the gain sequence c

k
satisfies the conditions

+=
k/1

c
k
"#R and lim

k?`=
c
k
"0. The state

vector x
k

of the investigated algorithm (7) must
have a dynamic Markov representation
controlled by H. This signal model by Benveniste
et al. [2] is fulfilled in our case because we consider
that the observations x

k
are independent or

derived from the specific correlation model x
k
$%&"

[x
k
,x

k~1
,2,x

k~n`1
]T with x

k
a stationary ARMA

process. Thus x
k
"f (n

k
), where n

k
is a Markov

chain independent of H, n
k
$%&" x

k
in the independent

case and n
k
$%&" (w

k~n
,u

k
,u

k~1
,2,u

k~n`1
) is issued

from the state representation of an ARMA process,
viz.,

w
k
"Aw

k~1
#bu

k
, x

k
"cTw

k~1
#du

k
.

To apply the corollary 6 of [2] (p. 46), which
states that H(k) defined by Eq. (7) converges almost
surely to one of the asymptotically stable points H*,
we encounter two difficulties if we refer to the
original Kushner—Clark theorem. The equilibrium
points H* must be unique and the trajectory of H(k)
must intersect a compact subset infinitely often. In
our application, the equilibrium points H* are not
unique, and proving that the trajectory of H(k)
intersects a compact subset infinitely often is very
challenging, as many authors believe. To our best
knowledge, this condition has been proved only by
Oja and Karhunen [16], and under the hypothesis
that x

k
is uniformly bounded.

However, we must note at this point that
q
i
, i"1,2,m, H and h are 2p-periodic functions of
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each parameter h
i,j

. So, the set of the asymptotically
stable points is composed of isolated points that
remain ‘sparse’ near infinity.4 Furthermore, the
stability of the ODE (8) followed from the existence
of a very regular Lyapunov function. Using these
two particular properties, we can use a recent result
by Fort and Pagès (theorem 6 of [8]). This theorem
transfers the convergence of the solution of the
ODE to the algorithm when the ODE has
a Lyapunov function and when the equilibrium
points H* are isolated. Under these conditions, it
specifies that the stochastic algorithm converges
almost surely to one of the points H*.

Fixed gain c. Unfortunately, in nonstationary envi-
ronments the gain sequences c

k
needs to be reduced

to constant ‘small’ steps if we want our algorithm to
be able to track the slow variations of the para-
meters. The convergence results cannot be applied
in a strict sense. In this case, the algorithm no
longer converges almost surely. However, the weak
convergence approach developed by Kushner [10]
suggests that, for c ‘small enough’, the adaptive
algorithm will oscillate around the theoretical limit
of the decreasing step scheme.

4. Asymptotic performance analysis

Consider a globally asymptotically stable equi-
librium point H* of the ODE (8) which corresponds
to a limit to which the solution H

k
of Eq. (7)

converges in the decreasing gain case, we can get
the asymptotic distribution of H

k
for fixed gain

factors in stationary situations by using a general
result by Benveniste [2] (theorem 2, p. 108).5 Con-

4 In practical use, the parameters h
i,j

remain in [!p/2,#p/2]
when initialized at h

i,j
"0. A test is built into the algorithm to

ensure that Dh
i,j

D)p/2 at each iteration and if for some k, Dh
i,j

D
becomes greater than p/2, the update for that parameter is
bypassed, and only the remaining parameters are allowed to evolve.

5A thorough derivation of this result has been established
only under the necessary assumption that the global attractor is
unique. However, its practical use in more general situations is
usually justified by a general diffusion approximation result [2]
(theorem 1, p. 107). For instance in [24], this result was applied
to a situation where the globally asymptotically stable set is the
continuum M(�

1
,2,�

m
)3RnCmD(�

1
,2,�

m
)"(q

1
,2,q

m
)U with

UTU"I
m
N.

sider the continuous Lyapunov equation

G*CH#CHGT
*#R*"O, (10)

where G and R are respectively the derivative of the
mean field and the covariance of the field of the
algorithm (7),

G(H) $%&"

dh(H)

dH
, (11)

R(H) $%&"

=
+

k/~=

cov[H(H, x
k
),H(H, x

0
)], (12)

and where the subscript * stands for the value of the
functions calculated for the parameter H* that
maximizes the expressions (1) and (2). If all the
eigenvalues of the derivative of the mean field
G* have strictly negative real parts (condition proved
in Section 4.3), then when cP0 and t

k
P#R

with t
k
$%&" kc, 1/Jc[H(k)!H(t

k
)] converges in law

to a zero mean Gaussian random vector of
covariance matrix CH, where CH is the unique
symmetric solution of Eq. (10). Then, as H(t

k
) con-

verges almost surely to H*,

1

Jc
(H(k)!H*)

L

P N(0,CH). (13)

We now evaluate the derivative of the mean field
and the convariance of the field of algorithm (7).

4.1. Derivative of the mean field

We consider the case m"2. The case m"1 is
a byproduct of the case m"2, while the extension
to m'2 is straightforward but tedious. Thanks to
the property (obtained easily by a flowgraph, see
[6,18]), we have

dq
1
(H

1
)

dH
1

"Q@
1
(H

1
)D

1
(H

1
) (14)

and

Lq
2
(H

1
,H

1
)

LH
2

"Q@
1
(H

1
)Q@

2
(H

2
)D

2
(H

2
), (15)

with Q
1
(H

1
) $%&" [Q@

1
(H

1
),q

1
(H

1
)], Q

2
(H

2
) $%&" [Q@

2
(H

2
),

�(H
2
)] and with D

1
(H

1
), D

2
(H

2
) respectively an

n!1]n!1 and an n!2]n!2 diagonal
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matrix where D
1
(H

1
)
n~1,n~1

"D
2
(H

2
)
n~2,n~2

"1
and D

1
(H

1
)
k,k

"<n~1
l/k`1

cos(h
1,l

) for 1)k)n!
2, D

2
(H

2
)
k,k

"<n~2
l/k`1

cos(h
2,l

) for 1)k)n!3.
As such, the mean field h(H

1
,H

2
) of the algorithm

(7) can be partitioned as

C
h
1
(H

1
)

h
2
(H

1
,H

2
)D

"C
D

1
(H

1
)Q@T

1
(H

1
)C

x
q
1
(H

1
)

D
2
(H

2
)Q@T

2
(H

2
)Q@T

1
(H

1
)C

x
q
2
(H

1
,H

2
)D.

Consequently,

G*"C
G

11
O

G
21

G
22
D. (16)

It is shown in Appendix A that G
11

, G
22

and
G

21
are respectively given by

G
11
"D

1
(H

1*
)Q@T

1
(H

1*
)(C

x
!j

1
I
n
)Q@

1
(H

1*
)D

1
(H

1*
),

(17)

G
22
"D

2
(H

2*
)Q@T

2
(H
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)Q@T

1
(H

1*
)(C

x
!j

2
I
n
)

]Q@
1
(H

1*
)Q@

2
(H

2*
)D

2
(H

2*
), (18)

G
21
"D

2
(H

2*
)Q@T

2
(H

2*
)Q@T

1
(H

1*
)(C

x
!j

2
I
n
)

]Q
1,2

(H
1*

,H
2*

), (19)

where Q
1,2

(H
1
,H

2
) is defined in Appendix A.

Lastly, let us note that the performance analysis
could be extended to complex data if the relation
(14) could be easily extended. In fact Eq. (14) be-
comes in the complex case

dq
1
(H

1
)

dH
1

"[Q@
1
(H

1
)D

1
(H

1
),Q

1
(H

1
)K

1
(H

1
)], (20)

where now H
1

denotes the parameter (t
1,1

,2,
t
1,n~1

,2,/
1,1

,2,/
1,n~1

) of the complex parametr-
ization [6,7], D

1
(H

1
) is the n!1]n!1 diagonal

matrix with D
1
(H

1
)
n~1,n~1

"1 and D
1
(H

1
)
k,k

"

<n~1
l/k`1

cos(t
1,l

)exp(/
1,l

) for 1)k)n!2 and
K

1
an n]n non-diagonal matrix. Because the

relation (20) is much more complicated than the
relation (14), the performance analysis in the com-
plex case would be much more cumbersome.

4.2. Covariance of the field

4.2.1. Independent observations
For independent observations x

k
which generally

correspond to spatial situations, we also consider
the case m"2 for the same reason as for the
derivative. H(H

1
,H

2
, x

k
) can be partitioned as

C
H

1
(H

1
, x

k
)

H
2
(H

1
, H

2
, x

k
)D"C

$qT
1(H1)
$H

1
x
k
xT
k
q
1
(H

1
)

©qT
2(H1,H2)
©H2

x
k
xT
k
q
2
(H

1
,H

2
)D.

Because E[H
i
(H*,xk

)]"(LqT
i
(H)/LH)* C

x
q
i
(H*)"

1
2
j
i
(LEq

i
(H)E2/LH)*"0, for i"1,2 the expression

(12) becomes

R*"
`=
+

k/~=

E[H(H
1*,H2*,xk

)HT(H
1*,H2*, x0

)]

"E[H(H
1*,H2*,x0

)HT(H
1*,H2*, x0

)].

Therefore, R* can be partitioned as

R*"C
R

11
R
12

R
21

R
22
D, (21)

where

R
ij
"

LqT
i
(H)*

LH
i

E[x
0
xT
0
q
i
(H*)qT

j
(H*)x0

xT
0
]
Lq

j
(H)*

LH
j

. (22)

Is is shown in Appendix B that

R
21
"RT

12
"O, (23)

R
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"D

1
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1
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1*
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1
C
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Q@

1
(H

1*
)D

1
(H
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), (24)

R
22
"D

2
(H
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2
(H
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1
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1*
)j

2
C
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Q@

1
(H
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)
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2*
)D

2
(H

2*
). (25)

4.2.2. Correlated observations
We consider the specific correlation model

x
k
$%&" [x

k
,x

k~1
,2,x

k~n`1
]T with x

k
being an

MA(q), an AR(p) or an ARMA(p,q) stationary pro-
cess which in general corresponds to temporal
situations. In this case R

* is no longer block diag-
onal. It is shown in Appendix C that

R
11
"D

1
(H

1*
)Q@T

1
(H
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)(j

1
C
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11
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1
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), (26)
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2
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), (27)
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1
(H

1*
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21
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)D

1
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), (28)

where, for an MA(q) process, C
i,j

takes the value

C
i,j
"

q`n~1
+
k/1

C
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q
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qT
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C
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#CT

k
q
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CT
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i
CT
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q
j
)CT

k
, (29)

where C
k

denotes the cross-correlation matrix
E[x

k
xT
0
], and respectively for an AR(p) process

C
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+
k/1

C
k
q
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#CT
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CTok

q
j
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]. (30)

For an ARMA(p,q) process, it is shown that the
relation (30) also holds provided n is replaced by
n#Sup(0,q#1!p).

4.3. Exploitation of the Lyapunov equation (10)

As G
ii
"(LqT

i
/LH

i
) (C

x
!j

i
I) (Lq

i
/LH

i
), i"1,2,m,

and thanks to the orthogonal properties
of Mq

1
(H

1
),2, q

i
(H

1
,2,H

i
)N which implies

qT
j
(Lq

i
/LH

i
)"0T for j"1,2,i, the symmetric ma-

trices G
ii

are negative definite. The eigenvalues of
the block triangular matrix G thus have strictly
negative real parts. The condition required in Sec-
tion 4 is thus fulfilled. The Lyapunov equation (10)
cannot be solved in a closed form expression. But
since (10) is of triangular form, it can be solved
numerically step by step for successive values of m.

The application of a continuity theorem directly
adapted from the theorem 6.2a [17], (p. 387) to the
differentiable mapping HPQ"(q

1
,2,q

m
) gives the

asymptotic distribution of eigenvector estimators as

1

Jc
(Vec(Q(k))!Vec(Q*))

L

P N(0,C
Q
), (31)

where

C
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"

dVec(Q)
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,
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dTq
1

dH
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.

In particular,

1

Jc
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i
(k)!q

i*
) L
PN(0,C

qi
), (32)

where C
qi
"(dq

i
/dH) CH(dTq

i
/dH), i"1,2,m.

Then, applying a second time the same theorem
of continuity to the differentiable mapping
Q"(q

1
,2,q

m
)PP"+m

i/1
q
i
qT
i

gives the asymp-
totic distribution of subspace projector estimators
P(k):

1

Jc
(Vec(P(k))!Vec(P*))

L
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), (33)

where
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dVec
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1
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n
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n
).

Thanks to the hypothesis of boundedness of
the parameters H(k), the convergence in law

of (1/Jc)(H(k)!H*) (see Eq. (13)) implies the
convergence of the first two moments. So
EE(H(k))!H*E2

F30"
"o(c) and cov(H(k))&cCH

when cP0 and kP#R. Consequently, by ex-
panding Q and P around H*, we obtain the mean
square error of eigenvectors and subspace projection
matrix estimators:

EQ(k)!Q*E2F30&cTr(C
Q
)"cTrC

m
+
i/1

dq
i

dH
CH

dqT
i
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.

(34)

In particular,

Eq
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(35)
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and

EP(k)!P*E2F30&cTr(C
P
)

"2c(Tr(C
Q
)# +

1xi,jxm

qT
i*
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Q
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j,i

q
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qT
i C
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i

dHDq
jB*

. (36)

5. Special case of symmetric-centrosymmetric
covariance matrices

To improve the accuracy of the subspace estima-
tion, we can exploit the symmetric-centrosymmetric
or block-symmetric-centrosymmetric property of
some covariance matrices. This property occurs in
important applications: temporal covariance ma-
trices obtained from a temporal sampling of a sta-
tionary signal, and spatial covariance matrices
issued from uncorrelated and band-limited sources
observed on a symmetric-centrosymmetric sensor
array (for example on uniform linear arrays) [20]
are centro-symmetric; spatio-temporal covariance
matrices used in subspace methods for blind identi-
fication of multichannel FIR filters [14] are block-
symmetric-centrosymmetric.

In the real case, we use the property that an
orthonormal eigenbasis of a symmetric centro-sym-
metric matrix can be obtained from orthonormal
eigenbases of two half-size symmetric real matrices
[4]. For example if n is even, C can be partitioned
as follows:

C"C
C

1
CT
2

C
2

JC
1
JD, (37)

where J is an n/2]n/2 matrix with ones on its anti-
diagonal and zeroes elsewhere, and CT

1
"C

1
,

JC
2
"CT

2
J. Then we may determine n/2 sym-

metric [respectively n/2 skew symmetric] ortho-
normal eigenvectors q

i
of C and corresponding

eigenvalues j
i
from the n/2 orthonormal eigenvec-

tors u
i
of C
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2
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(38)

If we note that C
1
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i
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2
"1

2
E((x@

k
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i
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k
)]

(x@
k
#e

i
JxA

k
)T) with x $%&" [x@ xA]T, we can use the

Givens adaptive method described previously and
we can follow the same steps until an equation
similar to (10) is solved. As in Section 4, we only
consider the case m"2 for the same reason. The
eigenvectors q

1
and q

2
of C have the structure (38)

with the correct signs of e
1

and e
2
. If e

1
"e

2
$%&" e,

the formulas (16), (17), (18) and (19) for the derivative
of the mean field and Eqs. (21) and (22) for the
covariance of the field of the algorithm still hold,
provided q
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, q

2
and C

x
are replaced by u
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, u

2
and
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). But for e
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) is used for

computing q
2
, the analysis of Section 4 is no longer

valid. However, thanks to the parameterization of
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) and u
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) we have
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The matrix H of Eq. (7) becomes
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Eq. (16) becomes immediately
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with
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Fig. 1. Mean square errors of the first two eigenvectors and of the associated projection matrix (normalized by the gain factor c)
estimated from independent or correlated AR(1) observations, as a function of the AR parameter a.

and for independent observations x
k
, it is shown

after some manipulations of a relation similar to
the relation (48), reported in Appendix D, that

R*"C
R

11
R
12

R
21

R
22
D , (43)

with

R
21
"RT

12
"O, (44)
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ii
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i
D

1
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1
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)(C
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i
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)

]Q@
1
(H

i*
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1
(H
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), for i"1,2. (45)
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Fig. 2. Mean square errors of the first two eigenvectors and of the associated projection matrix (normalized by the gain factor c)
estimated from independent or correlated MA(1) observations, as a function of the MA parameter b.

By solving the block diagonal system of Eq. (10) and

obtain CH"C
CH

1
0

0 CH
2
D. The estimated parameter

H
1
(k) and H

2
(k) and thus the estimated eigenvectors

q
1
(k) and q

2
(k) are asymptotically uncorrelated.

From Eqs. (35) and (39), we can deduce the mean

square error of the estimated eigenvectors q
i
(k):

Eq
i
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F30

&cTrC
dq

i
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i

CH
i

dqT
i

dH
i
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i
dH

i

CH
i
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i
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i
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, for i"1,2, (46)
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Fig. 3. Learning curves of the mean square error EEq
1
(k)!q

1*E2
F30

and EEq
2
(k)!q

2*E2
F30

compared to cTrC
q1

and to cTrC
q2

averaging
400 independent runs for correlated or independent observations x

k
, the covariance matrix C

x
being issued from an AR(1) with

coefficient a"0.9 or a"0.3.

and the mean square error of the associated esti-
mated projection matrix deduced from Eqs. (36)
and (39) and the decorrelation of q

1
(k) and q

2
(k):

EP(k)!P*E2F30&2c
2
+
i/1

TrC
du

i
dH

i

CH
i

duT
i

dH
i
D*

. (47)

By taking into account the structure of the eigen-
vectors, we can expect a better trade-off between
the misadjustments and the speeds of convergence
because we increase the ratio of the successive
eigenvalues of the analyzed covariance matrices

C
1
#e

i
JC

2
and we decrease the number of para-

meters to update. The results and the simulations
presented in the following section confirm this
conjecture.

6. Results and simulations

We now examine two cases where we compare
the results given by numerical solutions of the
Lyapunov equation (10) with computer simulations
of the algorithm (7).
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Fig. 4. Learning curves of the parameters h
1,1

, h
1,2

and h
2,1

from the algorithm (7) for correlated or independent observations x
k
, the

covariance matrix C
x

being issued from an AR(1) with coefficient a"0.9 or a"0.3.

Firstly, let us present the case of a 3]3 covariance
matrix C

x
obtained from independent or correlated

observations x
k
. Fig. 1 shows the mean square er-

rors (35) of the first two estimated eigenvectors and
of the associated estimated projection matrix (36)
(both normalized by the gain factor c). In each of
these two figures, two distinct cases are considered:
the underlying covariance matrix C

x
is always that

of an AR(1) process of power unity of parameter a,
the estimates of the eigenvectors and of the asso-
ciated projection matrix are obtained either from
independent observations x

k
or from correlated

observations x
k
"[x

k
,2,x

k~n`1
]T with x

k
is an

AR(1) process. The same is performed for the case

of MA consecutive observations in Fig. 2 as a func-
tion of the parameter b of the MA model of order 1.

We observe that these errors are a function of the
eigenvalue spread. These misadjustments increase
when the eigenvalue spread decreases: for the AR(1)
model, these errors decrease when a increases, since
the eigenvalue spread increases; and for the MA(1)
model these errors are minimum when the eigen-
value spread (1#b2#bJ2)/(1#b2!bJ2)
is maximum, that is for b"1. The values of the
errors are between 10 dB and 20 dB worse for
independent observations, than for AR or MA
consecutive observations. For a given covariance
matrix C

x
, the results are thus very sensitive to the
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Fig. 5. Mean square error (normalized by the gain factor c) of the first two eigenvectors as a function of the parameter r for independent
observations, the 4]4 covariance C

x
matrix being issued from an AR(2), in two cases: the symmetric-centrosymmetric structure of C

x
is

taken into account, and is not.

independence or correlation property of the con-
secutive observations x

k
which gave rise to it. We

observe that this misadjustment increases very slow-
ly for the successive eigenvectors in case of indepen-
dent observations, whereas it decreases in case of
correlated observations.

A simulation of the algorithm (7) is presented
where c"0.004. Fig. 3 shows the learning curves
of the mean square error of the first two eigenvectors
for a"0.9 or a"0.3 and for correlated or inde-
pendent observations x

k
. It confirms the preceding

results, in particular, it perfectly agrees with the
theoretical values predicted by Fig. 1. The speed of
convergence of the vectors q

1
(h

1,1
,h

1,2
) and

q
2
(h

1,1
,h

1,2
,h

2,1
) can be explained by examining the

different speeds of convergence of the parameters
h
1,1

, h
1,2

and h
2,1

shown in Fig. 4. The parameters
h
1,1

and h
1,2

associated with q
1
(h

1,1
,h

1,2
) converge

faster with increasing a and the opposite happens
for h

2,1
associated with q

2
(h

1,1
,h

1,2
,h

2,1
). Because

j
1
!j

2
+0.46 and j

2
!j

3
+0.29 for a"0.3 [re-

spectively 2.55 and 0.13 for a"0.9], j
1
!j

2
in-

creases but j
2
!j

3
decreases when a increases from

0.3 to 0.9. Thus, as far as the speed of convergence is

concerned, the eigenvalue spread is too global
a parameter. The speed of convergence depends on
the gaps between successive eigenvalues. It increases
when the gaps between successive eigenvalues
increase. This result is intuitive: the larger the gap
between successive eigenvalues, the better the con-
ditioning of eigenvectors and the faster the conver-
gence. We note that, despite the different values of
misadjusment, the speed of convergence is not
affected by the origin of the covariance matrix. This
latter result is confirmed by the interpretation of
the associated ODE. Since the gain factor c is
‘small’, the algorithm (7) follows its ODE (8) from
the start, so that the transient regime is completely
described by its ODE which is invariant to the type
of correlation between successive observations. This
result is also in accordance with the study of the
convergence speed performed by Yang and Kaveh
[21] where they distinguish only the origin of the
covariance matrices by switches that are set in their
eigenspace-linear combiner to one position for
sensor array data (independent observations) and
to some other position for time series data (corre-
lated observations).
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Fig. 6. Learning curves of EEq
1
(k)!q

1*E2
F30

and EEq
2
(k)!q

2*E2
F30

(averaged on 400 runs) from the algorithm (7) with c"0.004 for
consecutive independent observations x

k
, the 4]4 covariance C

x
matrix being issued from an AR(2) parameterized by r"0.9 and

asymptotical mean square error when the symmetric-centrosymmetric structure of C
x

is taken into account or not.

Next, we present the case of a 4]4 covariance
matrix C

x
of an AR(2) processs. The AR model of

order 2 has two poles r exp(ib) and r exp(!ib) with
b"p/4. Fig. 5 shows the mean square error (nor-
malized by the gain factor c) of the first two eigen-

vectors, as a function of the parameter r, for inde-
pendent observations, when the symmetric-cen-
trosymmetric structure of C

x
is taken into account

or not. We notice that when the structure of C
x

is
not taken into account, the mean square error of
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Fig. 7. Learning curves of EEq
1
(k)!q

1*E2
F30

, EEq
2
(k)!q

2*E2
F30

and EEq
3
(k)!q

3*E2
F30

(averaged on 400 runs) from the algorithm (7) with
c"0.004 for consecutive independent observations x

k
, the 8]8 covariance C

x
matrix being issued from an AR(2) parameterized by

r"0.9 and asymptotical mean square error when the symmetric-centrosymmetric structure of C
x

is taken into account or not.

the first eigenvector is minimum for r+0.55, which
corresponds to the maximum of j

1
/j

2
, whereas that

of the second eigenvector is minimum for r+0.80,
which corresponds to a trade-off between the con-
tribution of H

1
and H

2
, the covariances of which

are related respectively to j
1
/j

2
and to j

2
/j

3
. And

when the structure of C
x
is taken into account, since

the eigenvalues of C
1
#JC

2
(respectively C

1
!JC

2
)

are j
1

and j
3

(respectively j
2

and j
4
), the mean

square errors of q
1

and q
2

are decreasing functions
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of the ratio j
1
/j

3
(respectively j

2
/j

4
). As these ratios

are an increasing function of the parameter r, these
errors are a decreasing function of r. We see that the
mean square errors are smaller in this latter case.
This advantage increases with r. This fact is ex-
plained by the substitution of the ratios j

1
/j

2
and

j
2
/j

3
by j

1
/j

3
and j

2
/j

4
, respectively, which deter-

mines the behavior of the covariances of H
1

and
H

2
, and by the reduction of the number of para-

meters H (here 2 versus 5). Fig. 6, obtained for the
same value of c"0.004, shows that the misadjust-
ments agree with the theoretical values predicted
by Fig. 5 and that the speed of convergence is
improved when we take into account the structure
of the eigenvectors induced by the symmetric-
centrosymmetric structure of the covariance matrix.
This advantage carries over to higher values of
n provided that the ratios of the successive eigen-
values of C

1
#JC

2
and of C

1
!JC

2
are larger than

the associated ratios of the successive eigenvalues
of C

x
. So Fig. 7 shows the learning curves of the

first three eigenvectors of the 8]8 covariance matrix
C
x

of the same AR(2) process for which the first
three eigenvectors of C

1
#JC

2
are 3.10 0.83 0.12)

and the first two eigenvectors of C
1
!JC

2
are

(3.39 0.45).
In conclusion of these simulations, we can draw

a contrast between the effect of eigenvalue spread
on the convergence of our stochastic gradient algo-
rithm against the stochastic gradient algorithm used
for estimating the linear prediction parameters. An
increasing of the gaps between successive eigen-
values improves both the mean square error and
the speed of convergence, while in the linear predic-
tion stochastic gradient algorithm, it has no direct
effect on the mean square error (which is ncp2/2
where p2 denotes the variance of the error predic-
tion) and worsens the speed of convergence.

7. Conclusion

In this paper, we presented a convergence study
of a Givens parametrized adaptive eigensubspace
algorithm, based on the stability of the associated
ODE. Using a convergence rate result of Benveniste
et al. and a continuity theorem, we gave the asymp-
totic distribution of the estimated eigenvectors and

projection matrices on eigenspaces and evaluated
their misadjustments. We analysed the effect of the
eigenvalue spread on the mean square error and on
convergence speed by simulations.

We showed that these misadjustments are sensi-
tive to the correlation between successive observa-
tions. In particular, we found that these are smaller
when the observations are correlated than when the
observations are uncorrelated for a covariance
matrix of an AR(1) or MA(1) stationary process.
We observed the same surprising result in block
estimation. Unfortunately, this result cannot be
extended to an arbitrary stationary process. On the
other hand, simulations showed that the conver-
gence speed is not affected by the correlation be-
tween successive observations.

Finally, we proposed to improve the tradeoff
between the misadjustment and the convergence
speed by exploiting the symmetric-centrosymmetric
property of some covariance matrices. These results
are confirmed by simulations.

Appendix A. Proof of the relation (17), (18) and (19)
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for respectively i, j"1,1, 2,2 and 2,1. Putting all the
pieces together, we get the expressions (17), (18) and
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pressed as a product of matrices.

Appendix B. Proof of the relation (23), (24) and (25)
We begin with the general Gaussian property
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applied with k"0 and i"1,2 and j"1,2. To
simplify notations, we denote q
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Therefore, thanks to the orthonormal properties of
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)"0 for i"1,2, the relations (22),

(14) and (15) gives the relations (23), (24) and (25).

Appendix C. Proof of the relations (29) and (30)

In the case of correlated observations x
k
, the

relations (12) and (21), (22) imply
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where from the Gaussian property (48) gives
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denotes the cross-correlation matrix
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This infinite sum reduces to the finite sum (29) for
an MA process, whereas for an AR process we use
the property that the correlation coefficients
c
i
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k
x
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) can be written as ([9] p. 88 (2.64))
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where o
1
,2,o

p
are the roots (we have supposed

that these roots are simple) of the characteristic
equation associated to the AR(p) process, and
a
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p
are constants determined by the values of
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, k"1,2,p denote the coefficients of

the AR(p) process). Since
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with Do
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denotes the n]n matrix, the
entries of which are (Col

)
i,j
"oj~i

l
, the term (50) also

reduces to the finite sum (30). As for an ARMA(p,q)
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process, the relation (51) still applies, but only
for DkD*Sup(0,q#1!p). Therefore the relation
(30) also holds, provided n is replaced by
n#Sup(0,q#1!p).

Appendix D. Proof of the relations (44) and (45)

For independent observations x
k
, we have
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. From the

Gaussian property (48), using the same development
of Appendix B there follows
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Therefore, thanks to the unit norm of u
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) and
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), the relations (44) and (45) are deduced.
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