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a b s t r a c t

This paper focuses on the Cramér Rao bound (CRB) of the azimuth, elevation and range
with planar arrays for narrowband near-field source localization, using the exact
expression of the time delay. Specifically, the aim of this paper is twofold. First, we derive
explicit non-matrix closed-form expressions of approximations of these three CRBs.
Second, we use these expressions to optimize near-field source localization. For deriving
these expressions, we introduce conditions on the array geometry that allow us to
decouple the azimuth, elevation and range parameters to a certain order in λ=r (in which λ

and r denote the wavelength and the range, respectively). A particular attention is given to
the popular array configurations which are the concentric uniform circular-based arrays,
cross and square-based centro-symmetric arrays which satisfy these conditions. In order
to control directions of arrivals (DOA) ambiguity, we propose a new criterion, which
allows us to design non-uniform square [resp., cross]-based centro-symmetric array
configurations with improved near-field range estimation capabilities without deterior-
ating the DOA precisions w.r.t. uniform square [resp., cross]-based arrays. Finally, we
specify the accuracy of our proposed approximated CRBs'expressions and isotropy's
conditions w.r.t. the range and the number of sensors.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Sensor placement is known to have a significant impact on the source localization capabilities of the antenna array, and
the topic starts to attract an increasing research effort [1–5]. Performance analysis based on the CRB is generally preferred
because the latter is, at the same time, algorithm-independent and achievable by a number of popular algorithms.
Dependence of the CRB on the array configuration has, first, been studied in relation to DOA estimation of far-field sources
[6,7], assuming a planar wavefront is impinging on each sensor. The more challenging near-field case implies a curvature of
the waves and a more complicated time delay model parameterized by the source DOA and range too. In the litterature, one
can find a plethora of near-field performance analysis based on an approximate propagation model applicable to the so-
called Fresnel zone [8,9,10]. Only lately has the exact time delay formula been used for deriving more accurate closed-form
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expressions of the CRB. This approach, applied to uniform linear arrays (ULA) [11], arbitrary linear arrays [12] and uniform
circular arrays (UCA) [13], is extended for the first time, here, to planar antenna arrays.

The aim of this paper is twofold: first, we tackle the problem of the derivation of explicit non-matrix closed-form
expressions of approximate CRB of the azimuth, elevation and range with for narrowband near-field source localization by
means of planar arrays. Those derivations are based on the exact expression of the time delay parameter which is very
challenging due to the non-linearity of the exact propagation model. Concentrated on the azimuth, elevation and range
parameters ðθ;ϕ; rÞ, the stochastic and deterministic CRBs, that are proportional (one to the other), are given by the inverse
of a Fisher-like information matrix, whose terms are nonlinear expressions of θ, ϕ, r, and the coordinates of the sensors. To
obtain simple and interpretable expressions of the CRBs on θ, ϕ and r, we first specify conditions on the coordinates of the
sensors that allow us to decouple θ, ϕ and r to a certain order in 1=r for near-field sources. Using Taylor expansions, we
explicit the expressions of the CRBs for three classes of planar arrays that satisfy these conditions: the concentric uniform
circular based-arrays, the square-based and cross-based centro-symmetric arrays. In particular, we study decoupling in
relationship with isotropy which is the array ability to exhibit the same accuracy in all azimuth look directions. In the far-
field, estimation is decoupled if and only if it is isotropic. In contrast, we prove that, in the array near-field, the condition that
ensures decoupling does not assure exact isotropy.

Second, we focus on the class of square and cross-based centro-symmetric arrays and highlight some of their attractive
features. In particular, we identify key geometric parameters that control the near-field array performance. Opportunisti-
cally, these geometric parameters are used to design non-uniform square and cross-based centro-symmetric arrays that
achieve better near-field localization accuracy. More precisely, this design reduces (by as much as 60%) the CRB of the range
parameter, with identical azumuth's and elevation's CRB as their corresponding uniform square and cross-based arrays.
Finally, it should be noted that the proposed CRB-minimizing criterion incorporates some geometric constrains to account
for the array ambiguity problem.

The paper is organized as follows. Section 2 specifies the data model, formulates the problem and gives the general
expression of the CRB. In Section 3, we use Taylor expansions to derive the CRB for planar arrays. We focus on the following
three classes which happen to exhibit decoupled estimation of the source parameters: the concentric uniform circular
based-arrays, the square-based and cross-based centro-symmetric arrays. An analysis of these CRBs is presented in Section 4
while paying attention to isotropy and its dependency on the source range and the number of sensors. We also design
original non-uniform square and cross-based centro-symmetric arrays with improved near-field angle and range estimation
capabilities w.r.t. their uniform counter-parts. The paper is concluded in Section 5. Note that the part dedicated to the UCA
with a single circle has been partially presented in [13].
2. Data model and general expression of the CRB

2.1. Data model

A planar antenna array is made of P omni-directional sensors ðCpÞp ¼ 1;…;P placed in the ½O; x; yÞ plane, at coordinates
ðxp; ypÞp ¼ 1;…;P . Without loss of generality, we assume the array centroid to be at the origin O of this plane. A source S located
in the antenna array near-field has its position characterized by an azimuth angle θA ½0;2π�, an elevation angle ϕA ½0; π=2�
and a range r (grouped in the vector α¼ ½θ;ϕ; r�T ), as illustrated in Fig. 1 for the concentric uniform circular based-arrays. The
source is radiating a narrow-band signal, with wavelength λ, in the presence of an additive noise with complex envelope nk.
The complex envelope xk of the signal collected by this array of sensors is modeled as

xk ¼ skaðαÞþnk; k¼ 1;…;K;

where sk is the source signal measured at the origin and aðαÞ ¼ ½eiτ1ðαÞ;…; eiτpðαÞ;…; eiτP ðαÞ�T is the so-called steering vector,
where τpðαÞ is defined as τpðαÞ ¼ 2πðSO�SCpÞ=λ with SO¼r and ½SCp�2 ¼ ðxp�r sin ϕ cos θÞ2þðyp�r sin ϕ sin θÞ2
þr2 cos 2ϕ (see Fig. 1 dedicated to the concentric uniform array) can be rewritten as

τp αð Þ ¼ 2π
r
λ

1�
ffiffiffiffiffi
βp

q� �
ð1Þ

with

βp ¼def1�2 sin ϕ
xp
r

cos θþyp
r

sin θ

� �
þx2pþy2p

r2
: ð2Þ

Based on K snapshots ðxkÞk ¼ 1;…;K , estimates of ðθ;ϕ; rÞ are obtained using a variety of algorithms, among which a few are
capable of achieving asymptotically the stochastic CRB [14] that we adopt as our performance measure of the array accuracy.

2.2. General expression of the CRB

Expressions of the CRB are available under the usual statistical properties about sk and nk: (i) sk and nk are independent,
(ii) ðnkÞk ¼ 1;…;K are independent, zero-mean circular Gaussian distributed with covariance σ2nIP , (iii) ðskÞk ¼ 1;…;K are assumed



Fig. 1. Concentric uniform circular-based array and source parameters.
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to be either deterministic unknown parameters (the so-called conditional or deterministic model), or independent zero-
mean circular Gaussian distributed with variance σs

2
(the so-called unconditional or stochastic model). The associated

deterministic and stochastic CRBs (denoted by CRBdetðαÞ and CRBstoðαÞ) are, in fact, proportional one to the other [12] fol-
lowing

CRBsto αð Þ ¼ 1þ σ2n
JaðαÞJ2σ2s

 !
CRBdet αð Þ ð3Þ

where σs
2
is to be redefined as 1

K

Pk
k ¼ 1 skj2

�� in the deterministic model. We define FðαÞ ¼def ½CRBstoðαÞ��1 proved to be equal to

FðαÞ ¼ cσ Re JaðαÞJ2DHðαÞDðαÞ�DHðαÞaðαÞaHðαÞDðαÞ
h i

; ð4Þ

with1 D αð Þ ¼def ∂aðαÞ
∂θ ; ∂aðαÞ∂ϕ ; ∂aðαÞ∂r

h i
and cσ ¼def 2Kσ4s

σ2nðσ2n þPσ2s Þ
, which is independent of the source and sensor positions. Throughout this

paper, we only consider the stochastic source model, thanks to (3). After some algebraic manipulations, FðαÞ is more
compactly given (element-wise) by the following expression [12]:

½FðαÞ�i;j
cσ

¼ P
XP
p ¼ 1

τ0p;iτ
0
p;j�

XP
p ¼ 1

τ0p;i

 ! XP
p ¼ 1

τ0p;j

 !
; ð5Þ

where τ0p;1 ¼
def ∂τpðαÞ

∂θ , τ0p;2 ¼
def ∂τpðαÞ

∂ϕ and τ0p;3 ¼
def ∂τpðαÞ

∂r .
3. CRB derivation for planar arrays

3.1. Arbitrary planar arrays

We perform Taylor expansions of (5) and prove in Appendix A that ð½F�1;1, ½F�1;2, ½F�2;2), (½F�1;3, ½F�2;3Þ and ½F�3;3 are

structured as sums of terms of the form r2

λ2

Pk

ℓ ¼ 0
gℓ;kðθ;ϕÞSℓ;k� ℓ

rk

� 	
, r

λ2

Pk

ℓ ¼ 0
gℓ;kðθ;ϕÞSℓ;k� ℓ

rk

� 	
and 1

λ2

Pk

ℓ ¼ 0
gℓ;kðθ;ϕÞSℓ;k� ℓ

rk

� 	
, respectively,

where

Si;j ¼def
XP
p ¼ 1

xipy
j
p

are purely geometric parameters and gℓ;kðθ;ϕÞ are trigonometric polynomials in θ and ϕ. Consequently, the matrix FðαÞ
depends on the array geometry through the terms Si;j only (among which S1;0 ¼ S0;1 ¼ 0). This contrasts with the far-field
case in which ½F�1;1, ½F�1;2 and ½F�2;2 depend only on S1;1, S1;2 and S2;2 (see e.g. [7]).

Derivation of the CRB on the azimuth, elevation and range alone by inversion of FðαÞ results into very intricate closed-
form expressions, in general. Consequently, we are led to focus on cases where CRB expressions are simple and inter-
pretable. In particular, decoupled estimation, of θ, ϕ and r in FðαÞ, is of primary importance. Unlike the far-field case where θ

and ϕ can be decoupled, strict decoupling is not possible in the near-field, and is achieved only to a certain order of ϵ¼ λ
r. We

need, first, to express FðαÞ as a function of ϵ by conducting a Taylor expansion with respect to ϵ by expanding each term of
1 Note this matrix FðαÞ is not a Fisher information matrix concentrated on ðθ;ϕ; rÞ because the geometric parameter ðθ;ϕ; rÞ is not totally decoupled
from the other parameters of the Gaussian parametrization in the deterministic and stochastic modeling.
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FðαÞ as a weighted sum of unit-less terms

Sl;k� l

rk
¼ Sl;k� l

λk
λ

r

� �k

¼
PP

p ¼ 1 x
l
py

k� l
p

λk

 !
ϵk;

in which ðxp; ypÞp ¼ 1;…;P and λ are fixed, but r can vary. For example, the unit-less term ½F�1;1 is structured asP2
ℓ ¼ 0 gℓ;2ðθ;ϕÞSℓ;2�ℓ

λ2

 !
þ

P3
ℓ ¼ 0 gℓ;3ðθ;ϕÞSℓ;3�ℓ

λ3

 !
ϵþ

P4
ℓ ¼ 0 gℓ;4ðθ;ϕÞSℓ;4�ℓ

λ4

 !
ϵ2þo ϵ2


 �
;

where oðϵ2Þ gathers all the remaining term of ½F�1;1 with limϵ-0oðϵÞ=ϵ¼ 0. Focusing on the r dependence, ½F�1;1 is thus
structured as b1;10 þb1;11 ϵþb1;12 ϵ2þoðϵ2Þ. Applying this same expansion methodology to all the terms of FðαÞ ultimately, leads
to the expression

FðαÞ ¼
b1;10 þb1;11 ϵþb1;12 ϵ2þoðϵ2Þ b1;20 þb1;21 ϵþb1;22 ϵ2þoðϵ2Þ b1;32 ϵ2þb1;33 ϵ3þoðϵ3Þ
b1;20 þb1;21 ϵþb1;22 ϵ2þoðϵ2Þ b2;20 þb2;21 ϵþb2;22 ϵ2þoðϵ2Þ b2;32 ϵ2þb2;33 ϵ3þoðϵ3Þ

b1;32 ϵ2þb1;33 ϵ3þoðϵ3Þ b2;32 ϵ2þb2;33 ϵ3þoðϵ3Þ ϵ4ðb3;34 þb3;35 ϵþb3;36 ϵ2þoðϵ2ÞÞ

2
664

3
775: ð6Þ

We first calculate off-diagonal terms in order to identify decoupling conditions. After tedious algebraic manipulations,
they are found to be given by

c
r2 sin ϕ cos ϕ

½F�1;2 ¼ P
S0;2�S2;0

r2
sin θ cos θþS1;1

r2
cos 2θ

� �
þo ϵ2

 � ð7Þ

2c
r sin ϕ

½F�1;3 ¼ P
S0;3
r3

cos θ 1� sin 2ϕ sin 2θ
� �

�S3;0
r3

sin θ 1� sin 2ϕ cos 2θ
� ��

þS2;1
r3

cos θ 1� sin 2ϕ cos 2θþ2 sin 2ϕ sin 2θ
� �

�S1;2
r3

sin θ 1� sin 2ϕ sin 2θþ2 sin 2ϕ cos 2θ
� ��

þo ϵ3

 �

ð8Þ

2c
r cos ϕ

½F�2;3 ¼ P
S0;3
r3

sin θ 1� sin 2ϕ sin 2θ
� �

þS3;0
r3

cos θ 1� sin 2ϕ cos 2θ
� ��

þS2;1
r3

sin θ 1�3 sin 2ϕ cos 2θ
� �

þS1;2
r3

cos θ 1�3 sin 2ϕ sin 2θ
� ��

þo ϵ3

 �

; ð9Þ

where c¼def λ2

4π2cσ
.

Second, we seek to decouple θ and ϕ to the zero order in ϵ (i.e., by imposing b1;20 ¼ 0) and to decouple ðθ;ϕÞ and r to the
second order in ϵ (i.e., by imposing b1;32 ¼ b2;32 ¼ 0). Equalizing b1;20 to zero, i.e., the term S0;2 � S2;0

r2 sin θ cos θþS1;1
r2 cos 2θ

� �
of

(7) implies

S1;1 ¼ 0 and S2;0 ¼ S0;2; ð10Þ
which concurs with far-field conditions given in [7,16] for which θ and ϕ estimations are both decoupled and isotropic (w.r.t.
the azimuth θ).

In the same way, both b1;32 of (8) and b2;32 of (9) are zero if S0;3 ¼ S1;2 ¼ S2;1 ¼ S3;0 ¼ 0. Careful examination of FðαÞ terms
shows that these latter conditions also imply b1;11 ¼ b2;21 ¼ b1;21 ¼ 0. Ultimately, to ease the inversion of FðαÞ, we need b3;35 ¼ 0.
The latter is satisfied under the additional conditions S0;5 ¼ S1;4 ¼ S2;3 ¼ S3;2 ¼ S4;1 ¼ 0. All these conditions are simulta-
neously expressed by the following:

S1;1 ¼ 0; S0;2 ¼ S2;0 and Si;j ¼ 0 for iþ j¼ 3;5: ð11Þ
We note that these conditions (11) which include the far-field conditions (10) are much more severe. For example the V-
shaped antenna array highlighted in [7] satisfies (10) but no longer satisfies (11).

Under the conditions (11), (6) simplifies to

FðαÞ ¼
b1;10 þb1;12 ϵ2þoðϵ2Þ b1;22 ϵ2þoðϵ2Þ b1;33 ϵ3þoðϵ3Þ

b1;22 ϵ2þoðϵ2Þ b2;20 þb2;22 ϵ2þoðϵ2Þ b2;33 ϵ3þoðϵ3Þ
b1;33 ϵ3þoðϵ3Þ b2;33 ϵ3þoðϵ3Þ ϵ4ðb3;34 þb3;36 ϵ2þoðϵ2ÞÞ

2
664

3
775 ð12Þ

making it possible to obtain, after straightforward algebraic manipulations, the following expressions of the CRBs:

CRB θð Þ ¼ 1

b1;10

1�ϵ2
b1;12

b1;10

� ðb1;33 Þ2
b1;10 b3;34

 ! !
þo ϵ2

 � ð13Þ

CRB ϕð Þ ¼ 1

b2;20

1�ϵ2
b2;22

b2;20

� ðb2;33 Þ2
b2;20 b3;34

 ! !
þo ϵ2

 � ð14Þ
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CRB rð Þ ¼ 1

b3;34 ϵ4
1�ϵ2

b3;36

b3;34

� ðb1;33 Þ2
b1;10 b3;34

� ðb2;33 Þ2
b2;20 b3;34

 !
þo ϵ2

 � !

: ð15Þ

The fact that

lim
r-1

CRB θð Þ ¼ CRBFF θð Þ ¼ 1

b1;10

and lim
r-1

CRB ϕð Þ ¼ CRBFF ϕð Þ ¼ 1

b2;20

; ð16Þ

where CRBFFðθÞ and CRBFFðϕÞ denote the far-field CRBs, means that arrays satisfying conditions (11) do achieve the far-field
CRBs when the source-to-array distance r tends to infinity. In contrast, arrays that do not satisfy conditions (11) do not
necessary satisfy (16) (see an example for linear arrays in [12]), an unexpected behavior due to a possible coupling (b1;32 a0,
b2;32 a0) between ðθ;ϕÞ and r in FðαÞ to the second-order in ϵ. Finally, for a source in the plane (x,y), (15) reduces to

CRB rð Þ ¼ 1

b3;34 ϵ4
1�ϵ2

b3;36

b3;34

� ðb1;33 Þ2
b1;10 b3;34

 !
þo ϵ2

 � !

ϕ ¼ π=2

: ð17Þ

3.2. Special classes of arrays: expressions of FðαÞ

Conditions (11) are satisfied by many structured planar arrays. We study in details the following three classes of planar
arrays for which the expression of FðαÞ are derived, as well as expressions (13)–(15) of the CRBs.

3.2.1. Concentric uniform circular-based arrays
The P sensors are divided into I groups of respective sizes P1;…; PI where

PI
i ¼ 1 Pi ¼ P. The i-th group of sensors is placed

uniformly along a circle of radius ri so that sensor pi, pi ¼ 1;…; Pi forms an angle θpi ;i ¼
def

θiþθ�2πðpi �1Þ
Pi

with ½O; xÞ, θi being an
arbitrarily selected offset angle.2 Parameter βp of the phase τp given in (1) can be expressed as

βp ¼ 1�2ri
r

cos θpi ;i sin ϕþr2i
r2

ð18Þ

associated with a sensor on a circle of radius ri. Using the identity

XPi

pi ¼ 1

eikθpi ;i ¼ Pieikθ if k=PiAN

0 k otherwise

(
; ð19Þ

we easily prove that conditions (11) are satisfied if each circle include more than 5 (Pi45, for all i) sensors.
By using the sensors polar coordinates ðri; θpi ;iÞ, the following Taylor expansions of the terms of the matrix FðαÞ are proved

in Appendix B.1 for PiZ6:

2c

r2 sin 2ϕ
½F�1;1 ¼ P

XI
i ¼ 1

Pi
r2i
r2
�r4i
r4

cos 2ϕ

� �
þo ϵ4

 � ð20Þ

2c
r2 cos 2ϕ

½F�2;2 ¼ P
XI
i ¼ 1

Pi
r2i
r2
�r4i
r4

1�3 sin 2ϕ
� �� �

�
XI
i ¼ 1

P2
i

2
r4i
r4

sin 2ϕ�
X
ia j

PiPj
r2i r

2
j

r4
sin 2ϕþo ϵ4


 � ð21Þ

c

r2 sin 3ϕ cos ϕ
½F�1;2 ¼ o ϵ4


 � ð22Þ

c

r sin 4ϕ
½F�1;3 ¼ o ϵ4


 � ð23Þ

c
r cos ϕ

½F�2;3 ¼ P
XI
i ¼ 1

Pi

4
r4i
r4

3�9
4
sin 2ϕ

� �
sin ϕ�

XI
i ¼ 1

P2
i

4
r4i
r4

1þ1
2
sin 2ϕ

� �
sin ϕ�1

4

X
ia j

Pj

r2i r
2
j

r4
Pj�

Pi

2
sin 2ϕ

� �
þo ϵ4

 � ð24Þ

c½F�3;3 ¼ P
XI
i ¼ 1

Pi
r4i
r4
g1 sin 2ϕ
� �

�
XI
i ¼ 1

P2
i
r4i
r4
g2 sin 2ϕ
� �

þP
XI
i ¼ 1

Pi
r6i
r6
g3 sin 2ϕ
� �

�
XI
i ¼ 1

P2
i
r6i
r6
g4 sin 2ϕ
� �

�
X
ia j

PiPj
r2i r

4
j

r6
g4 sin 2ϕ
� �

þo ϵ4

 �

; ð25Þ

where ϵ¼defmaxiðriÞ
r . Exact expressions of polynomials g1, g2, g3 and g4 are given in Appendix B.1.1.
2 These arrays are centro-symmetric, only if ðPiÞi ¼ 1,.., I are all even. They include as particular case, the so-called uniform concentric circular arrays [15]
where θi ¼ 0 and the number Pi of sensors on each circle Ci is constant.
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3.2.2. Cross-based and square-based centro-symmetric arrays
For cross-based centro-symmetric arrays, as shown in Fig. 2, sensors are placed along the x-axis and the y-axis, sym-

metrically around the origin, i.e., at coordinates ð7aq;0Þ and ð0; 7aqÞ, resulting in a total number of sensors P ¼ 2Q�1 or
P ¼ 2Q depending on whether a sensor is placed at the origin or not, where Q is the number of sensors on each axis. We
have Si;j ¼ 0 for arbitrary ia0 and ja0, hence satisfying conditions (11). Non-zero geometric parameters Si;j arePQ

q ¼ 1 a
2
q ¼ S2;0 ¼ S0;2 ¼defΣ2,

PQ
q ¼ 1 a

4
q ¼ S4;0 ¼ S0;4 ¼defΣ4 and

PQ
q ¼ 1 a

6
q ¼ S6;0 ¼ S0;6 ¼defΣ6.

Square-based centro-symmetric arrays shown in Fig. 3 are made of P ¼Q2 sensors at positions ðaq; aq0 Þq ¼ 1;…;Q ;q0 ¼ 1;…;Q

such that if a sensor is placed at some position ðxp; ypÞ, another one is placed in the coordinate ð�xp; �ypÞ. Si;j are found to

satisfy conditions (11). Non-zero ones reduce to S2;0 ¼ S0;2 ¼defQΣ2, S4;0 ¼ S0;4 ¼defQΣ4, S6;0 ¼ S0;6 ¼defQΣ6, S2;2 ¼ Σ2
2, and

S4;2 ¼ S2;4 ¼ Σ2Σ4, where Σ2, Σ4 and Σ6 have the same definition as for the cross-based arrays.
For these two (cross and square based) classes of centro-symmetric arrays, we reach the following unified expression3 of

the Taylor expansion of the matrix FðαÞ, proved in Appendix C:

c

r2 sin 2ϕ
½F�1;1 ¼

a1;12 Σ2

r2
þ
a1;14 ðθ;ϕÞQΣ4þa1;1

22 ðθ;ϕÞΣ2
2

r4
þo ϵ4

 � ð26Þ

c
r2 cos 2ϕ

½F�2;2 ¼
a2;22 Σ2

r2
þ
a2;24 ðθ;ϕÞQΣ4þa2;2

22 ðθ;ϕÞΣ2
2

r4
þo ϵ4

 � ð27Þ

c

r2 sin 3ϕ cos ϕ
½F�1;2 ¼

a1;24 ðθ;ϕÞQΣ4þa1;2
22

ðθ;ϕÞΣ2
2

r4
þo ϵ4

 � ð28Þ

c

r sin 4ϕ
½F�1;3 ¼

a1;34 ðθ;ϕÞQΣ4þa1;3
22 ðθ;ϕÞΣ2

2

r4
þo ϵ4

 � ð29Þ

c
r sin ϕ cos ϕ

½F�2;3 ¼
a2;34 ðθ;ϕÞQΣ4þa2;3

22
ðθ;ϕÞΣ2

2

r4
þo ϵ4

 � ð30Þ

c½F�3;3 ¼
a3;34 ðθ;ϕÞQΣ4þa3;3

22 ðθ;ϕÞΣ2
2

r4
þ
a3;36 ðθ;ϕÞQ2Σ6þa3;32;4ðθ;ϕÞQΣ2Σ4þa3;3

23 ðθ;ϕÞΣ3
2

r6
þo ϵ6

 �

; ð31Þ

where a1;12 ¼ a2;22 ¼ P [resp., PQ] for the cross-based [resp., square-based] centro-symmetric arrays. Expressions of ai;jk ðθ;ϕÞ,
given in Appendix C, are functions of the number of sensors and ðθ;ϕÞ. Also, a1;1

22
ðθ;ϕÞ ¼ a1;2

22
ðθ;ϕÞ ¼ a1;3

22 ðθ;ϕÞ ¼ a3;3
23 ðθ;ϕÞ ¼ 0 for

the cross-based centro-symmetric arrays.

3.3. Special classes of arrays: Expressions of the CRBs

3.3.1. Concentric uniform circular-based arrays
Using (13) and the values of the parameters bi;jk of the matrix FðαÞ of (12) derived by identification with the expansion

(20)–(25), we deduce the following closed-form expression of the CRB on the azimuth:

CRBðθÞ ¼ CRBFF θð Þ 1þ
PI

i ¼ 1 Pir4i cos 2ϕ

r2
PI

i ¼ 1 Pir2i
þo ϵ2

 � !

; ð32Þ

where we obtain the following original expression of the CRB on the azimuth under the far-field conditions:

CRBFF θð Þ ¼ 2c

sin 2ϕ

1

P
PI

i ¼ 1 Pir2i
: ð33Þ

For a single-ring UCA of radius r1, Eq. (32) simplifies to

CRB θð Þ ¼ CRBFF θð Þ 1þr21
r2

cos 2ϕþo
r21
r2

� �� �
ð34Þ

with CRBFF θð Þ ¼ 2c
sin 2ϕ

1
P2r21

.
Expressions of the CRB on the elevation and range deduced from (14) and (15) are much more intricate. Consequently, we

concentrate on the single-ring UCA for which we obtain the following closed-form expressions:

CRB ϕð Þ ¼ CRBFF ϕð Þ 1þr21
r2
h2 sin 2ϕ
� �

þo
r21
r2

� �� 	
ð35Þ
3 Note that the number Q introduced in some terms will allow us to obtain the common expressions of the CRB (42), (43) and (44).
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Fig. 2. Cross-based centro-symmetric array.
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CRB rð Þ ¼ 32c

sin 4ϕ

r4

r41
1þr21

r2
h3 sin 2ϕ
� �

þo
r21
r2

� �� 	
; ð36Þ

with CRBFF ϕð Þ ¼ 2c
cos 2ϕ

1
P2r21

and

h2 sin 2ϕ
� �

¼def 16

sin 2ϕ
þ39

4
sin 2ϕ�27 and h3 sin 2ϕ

� �
¼def5�21

4
sin 2ϕ:

Further simplification are obtained for a single-ring UCA made of P48 sensors, for which (20), (22) and (23) become:

2c

r2 sin 2ϕ
½F�1;1 ¼ P2 r21

r2
�r41
r4

cos 2ϕþr41
r4
g5 sin 2ϕ
� �

þr61
r6
g6 sin 2ϕ
� �� �

þo
r71
r7

� �
ð37Þ

c
r2 sin ϕ cos ϕ

½F�1;2 ¼ o
r71
r7

� �
ð38Þ

c
r sin ϕ

½F�1;3 ¼ o
r71
r7

� �
; ð39Þ

with

g5ð sin 2ϕÞ ¼def1�3 sin 2ϕþ2 sin 4ϕ and g6ð sin 2ϕÞ ¼def �1þ6 sin 2ϕ�10 sin 4ϕþ5 sin 6ϕ:

This allows us to further develop the Taylor expansion in (34) to obtain the following more accurate closed-form expression:

CRB θð Þ ¼ CRBFF θð Þ 1þr21
r2

cos 2ϕþr41
r4

sin 2ϕ cos 2ϕþr61
r6
h1 sin 2ϕ
� �

þo
r71
r7

� �� 	
; ð40Þ

with h1ð sin 2ϕÞ ¼def � sin 2ϕþ3 sin 4ϕ�2 sin 6ϕ. Interestingly, for a source in the (x,y) plane (i.e., ϕ¼ π=2), we deduce from the
matrix FðαÞ that (40) and (17) give

CRB θð Þ ¼ CRBFF θð Þ 1þo
r71
r7

� �� 	

CRB rð Þ ¼ 32c

sin 4ϕ

r4

r41
1� r21

2r2
þo

r21
r2

� �� 	
:

The validity of some approximate closed-form expressions of the CRB is illustrated for a source located with an azimuth θ¼ 701
and elevation ϕ¼ 701. Figs. 4 and 5 compare the approximate ratios CRBðθÞ=CRBFFðθÞ and CRBðϕÞ=CRBFFðϕÞ given by (40) and (35)
to the exact ones (i.e., derived from the numerical inversion of the matrix FðαÞ built on the exact model of the time delay 1). These
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figures naturally show that CRB(θ) and CRB(ϕ) tend to CRBFFðθÞ and CRBFFðϕÞ, respectively, when the range increases. In addition, we
can notice that the far-field state is reached from the ratio r=r1 ¼ 10. We also see that the near-field CRB on the azimuth and
elevation are smaller than the associated far-field CRB. We also consider Fig. 6 that compares the approximate CRBðrÞ (36) to the
exact one as a function of r=r1. Figs. 4 and 6 show that the approximate values of CRB on the azimuth and range are very close to the
exact ones for 10 sensors from r=r1 ¼ 2. This contrasts with elevation for which the approximate values of the CRB are close to the
exact one only from r=r1 ¼ 4. For 7 sensors, we note that our proposed approximations of all CRBs are still accurate from r=r1 ¼ 4.

3.3.2. Cross-based and square-based centro-symmetric arrays
For such arrays, (13)–(15) give very intricate expressions. But hopefully, we can identify two geometric parameters κ and

η that determine the near-field accuracy of the antenna array. They are defined by the following two unit-less array geo-
metric expressions:

κ¼def Σ2
2

QΣ4
and η¼def Σ3

2

Q2Σ6
: ð41Þ

We note that they verify 0oηrκr1 [12], and remain unchanged if a sensor is added/removed at/from the origin and if
sensor coordinates are scaled by some arbitrary constant. The interest of these two parameters is that they complement the
geometric parameter Σ2 to characterize the behavior of the three CRBs in the near-field condition, allowing us to derive
some optimizations. This contrasts with the far-field conditions for which Σ2 characterizes the behavior of the CRB on the
azimuth and elevation in the near-field condition (see (41)).

After tedious algebraic manipulations, CRBs (13)–(15) can be rewritten in terms of these parameters, to obtain the fol-
lowing expressions:

CRB θð Þ ¼ CRBFF θð Þ 1þaðθ;ϕ; κÞΣ2

r2
þo ϵ2

 �� �

ð42Þ

CRB ϕð Þ ¼ CRBFF ϕð Þ 1þbðθ;ϕ; κÞΣ2

r2
þo ϵ2

 �� �

ð43Þ

CRB rð Þ ¼ r4

dðθ;ϕ; κÞΣ2
2

1þeðθ;ϕ; κ; ηÞΣ2

r2
þo ϵ2

 �� �

; ð44Þ

where the far-field CRB on θ and ϕ are given, respectively, by

CRBFF θð Þ ¼ c

a1;12 Σ2 sin 2ϕ
and CRBFF ϕð Þ ¼ c

a2;22 Σ2 cos 2ϕ
; ð45Þ

in which a1;12 ¼ a2;22 ¼ P [resp., PQ] for the cross-based centro-symmetric arrays [resp., square-based centro-symmetric
arrays] and

a θ;ϕ; κð Þ ¼
a1;34 ðθ;ϕÞþκa1;3

22 ðθ;ϕÞ
� �2

sin 6ϕ� a1;14 ðθ;ϕÞþκa1;1
22 ðθ;ϕÞ

� �
a3;34 ðθ;ϕÞþκa3;3

22 ðθ;ϕÞ
� �

κa1;12 a3;34 ðθ;ϕÞþκa3;3
22 ðθ;ϕÞ

� �

b θ;ϕ; κð Þ ¼
a2;34 ðθ;ϕÞþκa2;3

22
ðθ;ϕÞ

� �2
sin 2ϕ� a2;24 ðθ;ϕÞþκa2;2

22
ðθ;ϕÞ

� �
a3;34 ðθ;ϕÞþκa3;3

22
ðθ;ϕÞ

� �
κa2;22 a3;34 ðθ;ϕÞþκa3;3

22
ðθ;ϕÞ

� �
d θ;ϕ; κð Þ ¼ 1

c
1
κ
a3;34 θ;ϕð Þþa3;3

22
θ;ϕð Þ

� �

e θ;ϕ; κ; νð Þ ¼
a1;34 ðθ;ϕÞþκa1;3

22
ðθ;ϕÞ

� �2
sin 6ϕ

κa1;12 a3;34 ðθ;ϕÞþκa3;3
22

ðθ;ϕÞ
� �

þ
a2;34 ðθ;ϕÞþκa2;3

22 ðθ;ϕÞ
� �2

sin 2ϕ

κa2;22 a3;34 ðθ;ϕÞþκa3;3
22

ðθ;ϕÞ
� � �

η�1a3;36 ðθ;ϕÞþκ�1a3;32;4ðθ;ϕÞþa3;3
23 ðθ;ϕÞ

κ�1a3;34 ðθ;ϕÞþa3;3
22

ðθ;ϕÞ
; ð46Þ

where the terms ai;jk ðθ;ϕÞ come from (26)–(31).
The validity of some approximate closed-form expressions of the CRB for the square-based centro-symmetric arrays4 is

illustrated for a source located with an azimuth θ¼ 601 and elevation ϕ¼ 401 for the specific case of uniform square-based
arrays with half-wavelength inter-sensors spacing. As in the UCA case, Figs. 7 and 8 compare the approximate ratios
CRBðθÞ=CRBFFðθÞ and CRBðϕÞ=CRBFFðϕÞ given by (42) and (43) to the exact ones. Fig. 9 compares the approximate CRBðrÞ, given
4 The same behavior is noticed for the cross-based centro-symmetric arrays.
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by (44), to the exact one as a function of r=r0 where r0 is the half aperture Q �1
2

λ
2 (similarly as r=r1 for the UCA). The above

figures confirm the validity of the proposed approximations for a large enough Q and/or a large enough ratio r=r0.
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4. Analysis of the derived CRBs

4.1. Isotropy under the near-field

An antenna array appears to be isotropic to a source located in its far-field when sensors placed such that

S1;1 ¼ 0 and S0;2 ¼ S2;0:

This condition is weaker than conditions (11). Consequently, the isotropy property deteriorates if the source tends to be in
the antenna near-field. For example, for cross-based and square-based centro-symmetric arrays, the CRBs on azimuth (42)
and elevation (43) depend on the azimuth angle to the second-order in ϵ, whereas for the CRB on the range (44), the
dominant term is dependent on the azimuth. Furthermore, from expressions of ai;jk ðθ;ϕÞ in Appendix C, azimuth, elevation
and range CRBs appear to be periodic in θ of period π=2, as one may expect. Due to the intricate expressions of these CRBs, it
is difficult to learn more about the deterioration of isotropy when the source range r decreases or when the number of
sensors P decreases.

However, more can be learnt about single-ring UCA. First, thanks to (19), CRBs are periodic in θ of period 2π=P, as one
may predict. Also if we denote the radius by r1 and θp;1 by θp, Taylor expansion of the elements of FðαÞ w.r.t. ϵ (5), where only
the θ dependence is retained, yields to

½F�i;j ¼
X1
k ¼ 0

XP
p ¼ 1

gði;jÞk ð cos θp; sin θpÞ
 !

ϵk; ð47Þ

where gði;jÞk is a polynomial expression of cos θp and sin θp of degree kþ2, kþ1 or k for ði; j¼ 1;2Þ, ði¼ 1;2; j¼ 3Þ or
ði¼ j¼ 3Þ, respectively. By linearizing this polynomial, we have for example for i,j¼1,2:

gð1;2Þk ð cos θp; sin θpÞ ¼
Xkþ2

ℓ ¼ 0

cð1;2Þℓ;k cos ðℓθpÞþ
Xkþ2

ℓ ¼ 1

sð1;2Þℓ;k sin ðℓθpÞ

where cð1;2Þ0;k ¼ 0 for odd degrees of gð1;2Þk . Then, using (19), focusing on θ and carefully studying the first terms of the Taylor
expansion (47) in ϵ, we obtain

½F�i;j ¼
XðP�3Þ=2b c

k ¼ 0

bi;j2kϵ
2kþ

X1
k ¼ P�2

bi;jk ðθÞϵk ð48Þ

½F�i;j ¼
X1

k ¼ P�2

bi;jk ðθÞϵk ð49Þ

½F�2;3 ¼
XP�1

k ¼ 3

bi;jk ϵ
kþ

X1
k ¼ P

bi;jk ðθÞϵk ð50Þ

½F�3;3 ¼
XðP�1Þ=2b c

k ¼ 2

bi;j2kϵ
2kþ

X1
k ¼ P

bi;jk ðθÞϵk; ð51Þ

for PZ4 and i¼ j¼ 1 or i¼ j¼ 2 (48), i¼ 1; j¼ 2;3 (49), where bi;jk and bi;j2k do not depend on θ. For example, 2c½F�1;1
r20 sin

2ϕ
is given in

Table 1 for P ¼ 3;4;5;6.
The following can be concluded about a single ring UCA of a fixed number P of sensors: From (48)–(51), matrix FðαÞ does

not depend on the azimuth up to the order P�3 in r1=r, and, from (49), θ and ðϕ; rÞ are decoupled up to the order P�1 in
r1=r. Consequently, the azimuth's CRB does not depend on the azimuth up to the order P�1 in r1=r, in contrast to the
elevation's and range's CRB for which this order is smaller or equal to P�3. Consequently, for fixed r (resp. P), isotropy
increases when P (resp. r) increases. Also, azimuth's CRB is much less sensitive to the azimuth angle than elevation and
range CRBs.

We introduce the following non-isotropy measurement, in which CRBðθÞ denotes the mean of CRBðθÞ w.r.t. θ,

ρ¼ sup
θ

jCRBðθÞ�CRBðθÞj
CRBðθÞ

illustrated in Figs. 10 and 11 for single-ring UCAs and uniform square based arrays with half-wavelength inter-sensors
spacing, respectively. Fig. 10 shows that the isotropy is much more sensitive to P than to r, which increases very rapidly with
r and P in contrast to Fig. 11 where the isotropy is less sensitive to Q and increases much less rapidly with r and Q. In other
words, the UCAs are much more isotropic than the uniform square-based arrays for given half aperture and range, under the
near-field conditions.



Table 1

Second-order expansion of 2c½F�1;1
r20 sin 2ϕ

for P ¼ 3;4;5;6.

P

3 1�ϵ2 sin ϕ cos 3θþoðϵ2Þ
4 1�ϵ2ð cos 2ϕ� sin 2ϕ sin 4θÞþoðϵ2Þ
5 1�ϵ2 cos 2ϕ�ϵ3 sin 3ϕ cos 5θþoðϵ3Þ
6 1�ϵ2 cos 2ϕ�ϵ4ð1�3 sin 2ϕþ2 sin 4ϕ� sin 4ϕ cos 6θÞþoðϵ4Þ
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Fig. 10. Non-isotropy criterion ρ w.r.t. r=r1 and P for UCAs.
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4.2. Optimization of cross-based and square-based centro-symmetric arrays

4.2.1. Optimization criterion
Far-field (azimuth and elevation) performance is fully determined by the geometric parameter Σ2 and the number P of

sensors as expressed in (45), while near-field performance depends on geometric parameters κ and η for DOA and range
estimation. In particular,the most significant term of the range CRB, as expressed in (44) and (46), is controlled by κ through
the term5

r4

dðθ;ϕ; κÞΣ2
2

¼ cr4

Σ2
2

1
κ
a3;34 θ;ϕð Þþa3;3

22
θ;ϕð Þ

� 	�1

;

which is an increasing function of κ as a3;34 ðθ;ϕÞ40 for arbitrary θ and ϕ.
5 Here a3;34 ðθ;ϕÞ and a3;3
22 ðθ;ϕÞ are defined in (31).
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Our array geometry optimization approach is inspired by the following rationale. For those arrays with predetermined
values of Σ2 and P (and so, ones with similar far-field performance), near-field range estimation depends mainly on Σ2 and κ.
For comparison purposes, we refer to uniform cross (UCrA) and square-based (USA) arrays, for which κ is denoted κu. We
seek array geometries of nonuniform cross and square-based arrays, for which the κ-dependent criterion below is lower
than one6:

RP κð Þ ¼ lim
r-1

CRBðrÞjnu
CRBðrÞju

¼
1
κu
a3;34 θ;ϕð Þþa3;3

22 θ;ϕð Þ
1
κa

3;3
4 θ;ϕð Þþa3;3

22 θ;ϕð Þ
: ð52Þ

While spanning 2
Q;1
h i

, extreme values of κ are to be avoided in order to preserve the DOA non-ambiguity of the cross-

based and square-based centro-symmetric arrays. More specifically, on the one hand, κ� 2
Q corresponds to co-located

sensors at the centroid O, (except 4 sensors at ðxp; ypÞ ¼ ð7a;0Þ; ð0; 7aÞ for cross-based centro-symmetric arrays [resp.,
ðxp; ypÞ ¼ ð7a; 7aÞ for square-based centro-symmetric arrays]). On the other hand, κ� 1 corresponds to aq � 7a (all
sensors concentrated to the previous four positions). Consequently, we only seek values of κ in [0.3–0.7].

The ratio (52) illustrated in Fig. 12 shows that there exist non-uniform square or cross-based centro-symmetric arrays
with RPðκÞ significantly lower than 1, suggesting that there is an opportunity to achieve a great deal of improvement. This is,
actually true regardless of the source DOA as confirmed by Fig. 13. This figure shows that RPðκÞ depends very loosely on θ

and ϕ. More precisely, it is not sensitive to θ due to the isotropy property, but little sensitive to ϕ. Furthermore the per-
formance advantage increases for weak values of ϕ. The same behavior has been observed for cross-based centro-symmetric
arrays.
6 Here CRBðrÞju and CRBðrÞjnu denote the CRB on r for, respectively, uniform and nonuniform cross and square-based arrays.



Table 3
Values of κ, RPðκÞ, sensor positions, rCrCSPSL and rSCSPSL for Q¼7.

κ RPðκÞ Sensor positions rCrCSPSL rSCSPSL
Criterion

0.5714 1 0; 70:1890; 70:3780; 70:5669 3.3400 16.6945 (54)
0.5000 0.7571 0; 70:1674; 70:3348; 70:5999 2.6274 10.7527 (54)
0.4500 0.6228 0; 70:1500; 70:3001; 70:6225 2.3674 6.7340 (54)
0.4000 0.5098 0; 70:1288; 70:2577; 70:6458 2.5001 4.6751 (54)
0.4000 0.5098 0; 70:1876; 70:2150; 70:6469 2.7278 (53)
0.4000 0.5098 0; 70:1036; 70:2705; 70:6450 8.1699 (53)
0.3500 0.4133 0; 70:1001; 70:2003; 70:6707 1.7784 3.4868 (54)
0.3500 0.4133 0; 70:1278; 70:1828; 70:6709 1.8255 (53)
0.3500 0.4133 0; 70:1376; 70:1753; 70:6710 3.7298 (53)

Table 2
Values of κ, RP ðκÞ, sensor positions, rCrCSPSL and rSCSPSL for Q¼6.

κ RP ðκÞ Sensor positions rCrCSPSL rSCSPSL
Criterion

0.5776 1 70:1195; 70:3586; 70:5976 2.9087 17.3310 (54)
0.5000 0.7392 70:1012; 70:3036; 70:6305 2.8441 6.6667 (54)
0.4500 0.6080 70:0866; 70:2599; 70:6519 2.3719 4.1762 (54)
0.4000 0.4978 70:0674; 70:2022; 70:6742 1.7310 3.7037 (54)
0.4000 0.4978 70:1335; 70:1640; 70:6748 1.8115 (53)
0.4000 0.4978 70:0823; 70:1961; 70:6744 3.8124 (53)
0.3500 0.4036 70:0349; 70:1047; 70:6984 1.1689 1.3889 (54)
0.3500 0.4036 70:0332; 70:1052; 70:6984 1.1698 (53)
0.3500 0.4036 70:0701; 70:0849; 70:6984 1.3952 (53)
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4.2.2. Sensors placement

Having fixed Σ2, P and κA 2
Q; κu
� �

, based on desired near-field and far-field performance, there are ðQ=2Þ�2 for Q even,

[resp., ððQ�1Þ=2Þ�2 for Q odd] degrees of freedom for arbitrary cross or square-based centro-symmetric arrays to set
positions a1;…aQ of the sensors.7 They are used to tackle the array ambiguity problem, a crucial one for the nonuniform
array configurations.

Ambiguities occur when two steering vectors happen to be (very) close, despite referring to well-separated look
directions [17]. One way to minimize ambiguities is to minimize the so-called relative peak sidelobe level (PSL) ratio [5]
derived from the conventional array beampattern [18]; if

½aFFðθ;ϕÞ�p ¼def limr-1
½aðαÞ�p ¼ e

i2π
λ sin ϕ xp cos θþyp sin θð Þð Þ;

then

rPSL ¼def max
ðu;vÞ outside the mainlobe region

jaHFFðu; vÞaFFðθ;ϕÞj2=P2:

Since

min
a1 ;…aQ

rPSL ; ð53Þ

under the constraints
PQ

q ¼ 1 a
2
q ¼ Σ2,

PQ
q ¼ 1 a

4
q ¼ Σ4 [with Σ4 ¼ Σ2

2=Qκ from (41)] and symmetric aq is a nonconvex mini-
mization problem,8 we propose the following ad hoc criterion that ought to avoid concentrations of sensors in the
neighborhood of the origin for weak values of κ:

max
a1 ;…aQ

min
1rqaq0 rQ

jaq�aq0 j
� 	

; ð54Þ

under the same constraints. Results of the exhaustive search, reported in Tables 2 and 3, for Q¼6 and 7, show that the
proposed criterion (54) delivers very close values to those of the minimization (53).

To handle the max–min problem defined by (54) under the previous constraints, we introduce a new decision variable,
denoted by z, in order to transform the aforementioned constrained optimization into a global polynomial maximization
under, both, polynomial equalities and inequalities. This can be expressed as follows:

max z under the following constraints ð55Þ
7 Except for Q¼4 and 5, for which there remains no degree of freedom.
8 Including for Q¼6 and 7, for which there is a single degree of freedom, but with several local minimum.



Table 4
Values of κ, RP ðκÞ, sensor positions, rCrCSPSL and rSCSPSL for Q¼8.

κ RPðκÞ Sensor positions rCrCSPSL rSCSPSL

0.5676 1 70:0772; 70:2315; 70:3858; 70:5401 3.0202 18.1818
0.5000 0.7685 70:0699; 70:2098; 70:3497; 70:5734 2.3964 12.5000
0.4500 0.6325 70:0641; 70:1922; 70:3203; 70:5969 2.1739 7.1429
0.4000 0.5176 70:0572; 70:1715; 70:2858; 70:6210 2.2727 6.2893
0.3500 0.4197 70:0484; 70:1452; 70:2421; 70:6465 2.1186 5.8824
0.3000 0.3352 70:0358; 70:1074; 70:1790; 70:6747 1.5362 2.5707
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Table 5
Values of κ, RP ðκÞ, sensor positions, rCrCSPSL and rSCSPSL for Q¼9.

κ RPðκÞ Sensor positions rCrCSPSL rSCSPSL

0.5650 1 0; 70:1291; 70:2582; 70:3873; 70:5164 3.3344 19.4553
0.5000 0.7767 0; 70:1187; 70:2374; 70:3561; 70:5502 2.8571 10.9649
0.4500 0.6387 0; 70:1101; 70:2202; 70:3304; 70:5747 2.4190 9.4787
0.4000 0.5228 0; 70:1003; 70:2006; 70:3009; 70:5993 2.3759 8.5911
0.3500 0.4240 0; 70:0883; 70:1766; 70:2649; 70:6252 2.6247 6.2112
0.3000 0.3386 0; 70:0721; 70:1442; 70:2163; 70:6536 1.9231 4.4248
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Fig. 14. Azimuth, elevation and range CRBs of a square-based centro-symmetric arrays with κnu ¼ 0:4000 normalized to that of the equivalent USA
(κu ¼ 0:5776). Both arrays are made of P ¼Q2 ¼ 36 sensors.
zr2a1; zraqþ1�aq; q¼ 1; €;Q=2;
XQ=2

q ¼ 1

a2q ¼
Σ2

2
;

XQ=2

q ¼ 1

a4q ¼
Σ4

2
and centro� symmetric aq for Q even

zra1; zraqþ1�aq; q¼ 1; €;⌊Q=2c;
X⌊Q=2c

q ¼ 1

a2q ¼
Σ2

2
;

X⌊Q=2c

q ¼ 1

a4q ¼
Σ4

2
and centro� symmetric aq for Q odd:

This is a constrained non-convex but polynomial optimization problem. Following [19], it can be solved by a sequence of
semidefinite positive (SDP) relaxations. The result comes with global convergence guarantees and often at finite relaxation
order. This method can be implemented using the matlab GloptiPoly utility [20]. By judiciously choosing the relaxation
orders, we have solved our optimization problem with small relaxation order for Q ¼ 6;7;8 and 9 sensors.

Tables 2–5 assume a normalized Σ2 ¼ 1 and report for different values of κ the associatedRPðκÞ, optimal sensors positions
and the relative PSL for both cross-based (CrCS) and square-based (SCS) centro-symmetric arrays (denoted by rCrCSPSL and rSCSPSL ,
respectively), for different values of the number Q of sensors, θ¼ 601 and ϕ¼ 301.

As seen in these tables, our objective of reducing the near-field range's CRB is achieved (up to 60%), while maintaining
no-ambiguity of the cross-based and square-based centro-symmetric arrays. The reduction of the CRB increases with the
number of sensors and robustness to ambiguity is much more better for square than for cross-based centro-symmetric
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arrays due to a larger number of sensors for a given Q. A tradeoff should be sought between performance improvement and
the robustness to ambiguity.

We need to make sure that sensor positions that reduce the near-field range's CRB do not deteriorate the near-field DOA's
CRBs, comparatively to the UCrA or a USA. This is the case, as verified by extended numerical experiments, and illustrated in
Fig. 14 exhibiting the three ratios CRBðθÞjnu=CRBðθÞju, CRBðϕÞjnu=CRBðϕÞju and CRBðrÞjnu=CRBðrÞju for the square-based centro-
symmetric array with sensors of P ¼Q2 ¼ 36 sensors placed at 70:0674, 70:2022 and 70:6742 with Σ2 ¼ 1, associated
with κ¼ 0:4000 for θ¼ 601 and ϕ¼ 301. This figure shows that the near-field range's CRB is reduced by a much as 50%
without deteriorating the near-field DOA's CRB w.r.t. those of the USA.
5. Conclusion

This paper has been dedicated to derivations and analysis of the azimuth, elevation and range CRBs for narrowband near-
field source localization by means of planar arrays, where we have assumed the exact expression of the time delay para-
meter. Conditions on the array geometry that allow us to decouple the azimuth, elevation and range to a certain order in 1=r
have been highlighted, using Taylor expansions w.r.t. 1=r. These conditions complement those found for a near-field source
that ensure the azimuth and elevation estimations are both exactly decoupled and isotropic. Explicit non-matrix closed-
form expressions of these CRBs are derived for concentric uniform circular-based arrays, cross-based and square-based
centro-symmetric arrays that satisfy these conditions. Using a new criterion that controls the direction of arrival (DOA)
ambiguity, non-uniform square or cross-based centro-symmetric arrays are characterized with significantly lower range's
CRB (by as much as 60%) without deteriorating the DOA precisions w.r.t. uniform square or cross-based arrays.
Appendix A. Taylor expressions of the terms of FðαÞ

From (5) with τ0p;1 ¼ 2πrλ
sin ϕ � xp

r sin θþ yp
r cos θ


 �ffiffiffiffi
βp

p , τ0p;2 ¼ 2πrλ
cos ϕ

xp
r cos θþ yp
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 �ffiffiffiffi

βp
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we obtain
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ð58Þ

Then we use the Taylor series expansions:

1=βp ¼
Xþ1

k ¼ 0

ð�1Þkγkp and 1=
ffiffiffiffiffi
βp

q
¼ 1þ

Xþ1

k ¼ 1

ð�1Þk1� 3�⋯ð2k�1Þγkp
2kk!

where γp ¼ �2 sin ϕ xp
r cos θþyp

r sin θ
� �

þx2p þy2p
r2 from the value of βp (2) in the expressions (56) and (57). This allows us to obtain

Taylor series expansions of ½F�1;1, ½F�1;3 and ½F�3;3 w.r.t. xp=r and yp=r. And thus, we can deduce the following structured Taylor

series expansions: ½F�1;1 ¼ r2

λ2

P1
k ¼ 1

Pk

ℓ ¼ 0
g1;1
ℓ;k

ðθ;ϕÞSi;k� i

rk

� 	
, ½F�1;3 ¼ r

λ2

P1
k ¼ 1

Pk

ℓ ¼ 0
g1;3
ℓ;k

ðθ;ϕÞSi;k� i

rk

� 	
and ½F�3;3 ¼ 1

λ2

P1
k ¼ 1

Pk

ℓ ¼ 0
g3;3
ℓ;k

ðθ;ϕÞSi;k� i

rk

� 	
, where

Si;j ¼def
PP

p ¼ 1 x
i
py

j
p are purely geometric parameters and gi;jℓ;kðθ;ϕÞ are trigonometric polynomial in θ and ϕ. ½F�1;2 and ½F�2;2 are

structured as ½F�1;1 and ½F�2;3 as ½F�1;3.
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Appendix B. Concentric uniform circular-based arrays

B.1. Proof of (20)

From (5) and τ0p;1 ¼ �2πriλ
sin θp;i sin ϕffiffiffiffi

βp
p for a sensor Ci on the circle of radius ri, we obtain

1
cσ
½F�1;1 ¼ P

XI
i ¼ 1

2π
ri
λ

� �2
sin 2ϕ

X
pACi

sin 2θp;i
βp

 !
�

XI
i ¼ 1

2π
ri
λ
sin ϕ

X
pACi

sin θp;iffiffiffiffiffi
βp

p
 ! !2

: ð59Þ

Taylor series expansion of 1=βp and 1=
ffiffiffiffiffi
βp

p
w.r.t. ri=r, where βp is given by (18), followed by elementary trigonometric

relations, show that ½F�1;1 depend on the azimuth θ only through the sums
PPi

pi ¼ 1 cos kθp;i and
PPi

pi ¼ 1 sin kθp;i for k integer
which can be easily simplified thanks to (19). This allows us to deduce (20) from (59) for Pi45 after cumbersome but simple
algebraic manipulations. The relations (21)–(25) are proved similarly.

B.1.1. Expressions of gið sin 2ϕÞ polynomials
The polynomials gið sin 2ϕÞ; i¼ 1;2;3 and 4 are deduced from the Taylor expansion of ½F�3;3 after simple but cumbersome

derivations.

g1 sin 2ϕ
� �

¼ 1
4 �1

4 sin 2ϕþ 3
32 sin 4ϕ

g2 sin 2ϕ
� �

¼ 1
2 �1

4 sin 2ϕ
� �2

g3;i sin 2ϕ
� �

¼ �3
8 þ29

16 sin 2ϕ�147
64 sin 4ϕþ115

128 sin 6ϕ 1þ 1
10 1Pi ¼ 6 cos 6θÞ


g4 sin 2ϕ
� �

¼ 1�1
2 sin 2ϕ

� �
�3

8 þ9
8 sin 2ϕ�45

64 sin 4ϕ
� �

;

where 1Pi ¼ 6 ¼def1 if Pi¼6 and 0 otherwise.
Appendix C. Cross-based and square-based centro-symmetric arrays

Consider the term ½F�1;1 given by (56). Using the expansions

1=βp ¼ 1�γpþγ2p�γ3pþγ4pþo γ4p
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;

we obtain after simple algebraic manipulations:

c

r2 sin 2ϕ
½F�1;1 ¼

PS2
r2

þ
P S4ð2 sin 2ϕ sin 22θ�1ÞþS2;2ð4 sin 2ϕ sin 4θþ cos 4θ� sin 22θ

� �
�1Þ

� �
r4

þo ϵ4

 �

;

where Si ¼defSi;0 ¼ S0;i for i¼2,4 and c¼def λ2

4π2cσ
. Consequently, we derive the common expression for the cross and square-based

centro-symmetric arrays:

c

r2 sin 2ϕ
½F�1;1 ¼

a1;12 Σ2

r2
þ
a1;14 ðθ;ϕÞQΣ4þa1;1

22
ðθ;ϕÞΣ2

2
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þo ϵ4
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;

where a1;12 ¼ P, a1;14 θ;ϕð Þ ¼ P
Q 2 sin 2ϕ sin 22θ�1
� �

and a1;1
22

ðθ;ϕÞ ¼ 0 for the cross-based centro-symmetric arrays, and

a1;12 ¼ PQ , a1;14 ðθ;ϕÞ ¼ Pð2 sin 2ϕ sin 22θ�1Þ and a1;1
22 ðθ;ϕÞ ¼ P 4 sin 2ϕ sin 4θþ cos 4θ� sin 22θ

� �
�1

� �
for the square-based

centro-symmetric arrays.
The other terms of the matrix FðαÞ are derived similarly. We obtain:
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These expressions allow us to prove the structured expressions (26)– (31).
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