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a b s t r a c t 

This paper focuses on a theoretical performance analysis of subspace-based algorithms for the localization 

of spatially correlated rectilinear sources embedded in circular complex elliptically symmetric (C-CES) 

distributed noise model and also when the observations are non-circular CES (NC-CES) distributed with 

dependent scatter matrices on the direction of arrival (DOA) parameters. A perturbation analysis has been 

performed to derive closed-form expressions for the asymptotic covariance matrices of DOA estimates 

for non-circular subspace-based algorithms in two CES data models. Robustness of subspace-based algo- 

rithms is theoretical evaluated using robust covariance matrix estimators (instead of the sample covari- 

ance matrix (SCM)). We prove, for the first time, interpretable closed-form expressions of the asymptotic 

variance of the estimated DOA of two equi-power correlated sources, which allows us to derive a number 

of properties describing the DOA variance’s dependence on signals parameters and non-Gaussian distri- 

bution of the noise. Different robustness properties are theoretically analyzed. In particular, we prove in 

the framework of NC-CES distributed observations, that Tyler’s M -estimator enhances the performance 

for heavy-tailed distributions w.r.t. the SCM, with negligible loss in performance for circular Gaussian 

distributed observations. Finally, some Monte Carlo illustrations are given for quantifying this robustness 

and specifying the domain of validity of our theoretical asymptotic results. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Far and near-field narrowband source localization have received

onsiderable attention over the last two decades (see e.g., [1,2] ).

ost of the existing algorithms concentrate on the second-order

tatistics of the observations. Originally these algorithms were de-

igned to process complex circular signals, but then they became

nterested in mobile communications systems for which the mod-

lated signals can be complex non-circular (NC). In this case, these

lgorithms were based not only on the sample covariance ma-

rix but also on the complementary (or unconjugated) sample co-

ariance matrix. The most popular among these algorithms are

he subspace-based algorithms which exploit the orthogonality be-

ween a sample subspace derived from these sample covariance

atrices and a parameter-dependent subspace. However, it has

een proved in [3] that the gain in performance of the subspace-

ased algorithms build from these two covariance matrices was

ignificant only in the particular case of rectilinear (called also
∗ Corresponding author. 
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trictly non-circular or with a non-circularity rate equal to 1) sig-

als, such as binary phase shift keying (BPSK) and de-rotated offset

uadrature phase shift keying (OKPSK) modulations. 

Many studies of subspace-based algorithms have focused on

arrowband NC signal sources in the presence of spatially white

ircular complex Gaussian (C-CG) noise. In particular, NC MUSIC

4] , and NC Root-MUSIC [5] algorithms have been proposed for

he DOA estimation problem. A NC standard ESPRIT algorithm has

lso been proposed in [6] for shift-invariant arrays, where the DOA

stimates are directly given instead of being found with search

ver the DOA space. Then a NC unitary ESPRIT algorithm that

oes not require a centro-symmetric array structure, but only the

hift-invariance property with reduced computational complexity 

as been introduced in [7] . A performance analysis of different

C MUSIC-like algorithms in terms of variance and resolution has

een presented in [8,9] under the assumption of stochastic sources.

he NC ESPRIT-like algorithms were also the subject of a perfor-

ance analysis but under the assumption of deterministic sources.

n particular, a gain calculation provided by the NC standard ES-

RIT, compared to the standard ESPRIT has been developed in

10] for two uncorrelated sources with maximum phase separa-

ion. A comparison between NC standard and unitary ESPRIT al-

orithms has been investigated in [11] , proving that these two al-

https://doi.org/10.1016/j.sigpro.2020.107799
http://www.ScienceDirect.com
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2 The extension to several parameters as DOAs (azimuth, elevation), range or po- 

larization is straightforward. 
gorithms have the same asymptotic performance when the signal-

to-noise ratio (SNR) tends to infinite. A MUSIC-like and an ESPRIT-

like algorithms under the co-existence of both circular and non-

circular sources were presented in [12] and [13] , respectively. To

process temporally and spatially correlated rectilinear sources, a

signal subspace fitting method has been proposed in [14] . In [15] ,

a sparse representation technique has been introduced to estimate

the DOA of NC signals. Note that the aforementioned papers re-

late to NC far-field signals, and some research works have been

recently devoted to the localization estimation of near-field [16,17] ,

and mixed far-field and near-field [18,19] uncorrelated NC signals. 

All of the localization estimation algorithms mentioned above

are based on the SCM, and have been studied in C-CG noise envi-

ronment and mainly for uncorrelated sources. But sometimes, this

Gaussian assumption presents a poor approximation of underlying

physics for which noise can be spiky and impulsive i.e., have heav-

ier tails than the Gaussian distribution. In this context, the C-CES

distributions and the subclass of the circular complex compound

Gaussian (C-CCG) distributions (also referred to as spherically in-

variant random vector (SIRV)) (see e.g., [20] ) are widely used in

the engineering literature. Similarly, the assumption of uncorrela-

tion of the rectilinear sources is not realistic in the presence of

multipaths. In a non-Gaussian noise environment, these algorithms

may perform poorly, resulting in unreliable DOA estimates. Robust

subspace-based DOA estimation algorithms based on M -estimates

of the covariance matrix rather than based on the SCM have been

introduced (see e.g., [21–23] ) to compensate for these poor per-

formances. But these performances have been assessed only by

Monte-Carlo experiments. It is the same for the algorithm [24] in

which the SCM is replaced by a normalized SCM. 

The aim of this paper is twofold. First, it is to show that all

the NC subspace-based algorithms built from the SCM designed for

uncorrelated rectilinear sources embedded in spatially white C-CG

noise can be also applied for correlated rectilinear sources in the

contexts of SCM estimate with C-CES noise and M -estimate with

NC-CES observations. Second, it is to extend the asymptotic per-

formance analysis of NC [resp., circular] MUSIC-like DOA estima-

tion algorithms given in [8] for SCM estimate with Gaussian noise

[resp., given in [26] for SCM and M -estimates with circular signals],

to the contexts of SCM estimates with NC deterministic or stochas-

tic sources embedded in C-CES noise and M -estimates with NC-

CES observations. More precisely, closed-form expressions of the

covariance of the asymptotic distribution of the estimated DOA for

different data models are given. This allows us, in particular, to

give for the first time an interpretable closed-form expression of

the asymptotic variance of the estimated DOA of two equi-power

correlated sources to assess the impact of the correlation of the

sources and the non-Gaussian distribution of the noise. 

This paper is organized as follows. Section 2 specifies the gen-

eral array data model with correlated rectilinear sources and spa-

tially white noise and describes the two statistical models with

C-CES distributed noise and NC-CES distributed observations. It

ends with a brief review of different NC MUSIC-like algorithms.

Section 3 presents a theoretical asymptotic performance analysis of

these algorithms under the two statistical models. Section 4 gives

interpretable closed-form expressions of the asymptotic variance of

the estimated DOA of two equi-power correlated sources, which

have never been reported in the literature including for circular

sources. Then, some remarks and properties are derived from these

expressions. Numerical illustrations of the performance of these al-

gorithms with Monte-Carlo simulations are given in Section 5 . Fi-

nally, the paper is concluded in Section 6 . 

The following notations are used throughout the paper. Ma-

trices and vectors are represented by bold upper case and bold

lower case characters, respectively. Vectors are in column orien-

tation, while T, H and 

∗ stand for transpose, conjugate transpose
nd conjugate, respectively. E(.), Det(.), Tr(.), (.) # are the expecta-

ion, determinant, trace and Moore-Penrose inverse, respectively.

ec( · ) is the vectorization operator that turns a matrix into a

ector by stacking the columns of the matrix one below another

hich is used in conjunction with the Kronecker product A �B as

he block matrix whose ( i, j ) block element is a i,j B and with the

ec-permutation matrix K which transforms vec( C ) to vec( C 

T ) for

ny square matrix C . The matrix J is the exchange matrix ( 0 I 

I 0 
) and

denotes the element by element matrix product. 

. Data model and problem formulation 

.1. Data model 

Consider K zero-mean narrowband signals (x t,k ) k =1 , ... ,K imping-

ng on an arbitrary array of N sensors. These signals are supposed

ectilinear (also called strictly second-order non-circular), i.e., de-

cribed by the following model: 

 t,k = s t,k e 
iφk with s t,k real-valued , (1)

here the phases φk associated with different propagation delays

re assumed fixed, but unknown during the array observation. The

rray output at time t is modeled as 

 t = A θ�φs t + n t , t = 1 , . . . , T , (2)

here A θ
def = [ a 1 , . . . , a K ] denotes the steering matrix, where each

ector a k is parameterized in a simplified case 2 by a single real

calar parameter θ k (with ‖ a k ‖ not depending on θ k ) and �φ
def= 

iag (e iφ1 , . . . , e iφK ) . s t 
def = (s t, 1 , . . . , s t,K ) 

T where (s t,k ) k =1 , ... ,K,t=1 ,.T 

re either real-valued deterministic unknown parameters (in the

o-called conditional or deterministic model), with sample covari-

nce matrix R s,T = 

1 
T 

∑ T 
t=1 s t s 

T 
t (where lim T →∞ 

R s,T 
def = R s exists) or

ero-mean real-valued with finite fourth-order moments of ar-

itrary distribution and with covariance E(s t s 
T 
t ) = R s (in the so-

alled unconditional or stochastic model). Unlike previous works,

e assume here that R s is unknown non-singular. (y t ) t=1 , ... ,T are

ndependent and (n t ) t=1 , ... ,T is the additive noise, which is uncor-

elated with (s t,k ) t=1 ,.,T,k =1 ,.,K and assumed zero-mean C-CES or C-

CG distributed with finite fourth-order moments, spatially uncor-

elated with E(n t n 

H 
t ) = � = σ 2 

n I . Using the stochastic representa-

ion theorem of these distributions (see e.g., [20, th.3 and def.3] ),

 t is distributed as 
 

Q t �
1 / 2 

u t for C-CES distributions , 
 

τt �
1 / 2 

w t for C-CCG distributions , (3)

here Q t and τ t are non-negative real random variables, u t and

 t are respectively uniformly distributed on the unit complex

 -sphere and zero-mean C-CG distributed with covariance I , Q t 

resp., τ t ] and u t [resp., w t ] are independent and � is the scat-

er matrix of the distribution of n t . It is proved in [26] that the

ourth-order moments of n t are characterized by the parameter η
efined by 

= 

E(Q 

2 
t ) 

N(N + 1) 
[ resp., η = E(τ 2 

t )] for C-CES [resp., C-CCG] distributions , 

(4)

or which η = 1 for C-CG distribution of n t . We note that E(Q t ) =
, E(τt ) = 1 and the Cauchy-Schwarz inequality implies: 

≥ N 

N + 1 

[ resp., η ≥ 1] for C-CES [resp., C-CCG] distributions .

(5)
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To derive subspace-based algorithms exploiting the prior

nowledge of rectilinear sources, the model (2) can be rewritten

ccording to the following equivalent extended model: 

 

 t 
def = 

[
y t 
y ∗t 

]
= ̃

 A s t + ̃

 n t , t = 1 , . . . , T , (6)

here ˜ A 

def = [ A θ �φ
A ∗

θ
�∗

φ
] = [ ̃  a 1 , . . . , ̃  a K ] with 

˜ a k 
def = [ a T 

k 
e iφk , a H 

k 
e −iφk ] T and

 

 t 
def = (n 

T 
t , n 

H 
t ) 

T . Consequently the covariance matrix of the ex-

ended signal ̃  y t is given by: 

 ˜ y 
def = E( ̃  y t ̃  y H t ) = ̃

 A R s ̃
 A 

H + σ 2 
n I 

def = ̃

 S + σ 2 
n I , (7)

ssuming that the 2 N × K (with K < 2 N ) matrix ˜ A is of full col-

mn rank, whose subspace generated by its columns characterizes

he DOAs (θ1 , . . . , θK ) . This condition applies to many array struc-

ures including some sparse linear arrays (see e.g., [27 , 28] ). Conse-

uently, all the NC subspace-based algorithms proposed in the lit-

rature in the specific case of uncorrelated rectilinear sources (e.g.,

C MUSIC-like algorithms [8] and NC ESPRIT-like algorithms [6 , 7] ),

lso apply to arbitrary noncoherent rectilinear sources. In particu-

ar the NC MUSIC-like algorithms can be considered as the follow-

ng mapping derived from the extended SCM: 

 ˜ y ,T = 

1 

T 

T ∑ 

t=1 ̃

 y t ̃  y H t � −→ � ˜ y ,T 

alg � −→ ̂

 θT = ( ̂  θ1 ,T , . . . , ̂
 θK,T ) 

T , (8)

here � ˜ y ,T denotes the orthogonal projection matrix associated

ith the so-called noise subspace of R ˜ y ,T (built from the SVD of

 ˜ y ,T ). The functional dependence ̂  θT = alg ( � ˜ y ,T ) constitutes an ex-

ension of the mapping � ˜ y = I − ˜ A ( ̃  A ̃

 A 

H ) −1 ˜ A 

alg � −→ θ in the neigh-

orhood of � ˜ y . Each extension alg specifies a particular subspace

lgorithm. 

.2. Robust distribution model 

To mitigate the loss of performance of subspace-based algo-

ithms for heavy-tailed C-CES distributed noise, the extended SCM

an be replaced by the ML estimate of R ˜ y . However, this estimate

annot be obtained for arbitrary distributed s t and arbitrary C-CES

istributed n t in (2) . To overcome this difficulty, we consider here

n alternative model where the observations y t in (2) are indepen-

ent zero-mean NC-CES [25] identically distributed, with extended

catter matrix � ˜ y whose p.d.f. is 3 : 

p(y t ) = | � ˜ y | −1 / 2 g 

(
1 

2 

˜ y H t �
−1 
˜ y ˜ y t 

)
, (9)

here the function g (.): R 

+ �→ R 

+ satisfies δN,g 
def = 

∫ ∞ 

0 t N−1 g(t) dt <

 . The r.v. y t admits the following stochastic representation [29] :

 t = d 

√ 

Q t [ I , 0 ] �1 / 2 
˜ y 

˜ u t , (10)

here ˜ u t 
def = (u 

T 
t , u 

H 
t ) 

T , Q t and u t are independent, u t is uniformly

istributed on the unit complex N -sphere and Q t has the p.d.f. 

p(Q t ) = δ−1 
N,g Q 

N−1 
t g(Q t ) . (11)

urthermore, to remove the so-called scale ambiguity, the density

enerator g is here constrained such that δN+1 ,g /δN,g = N, or equiv-

lently E(Q t ) = N given the 2nd-oder moments exist [20] to ensure

hat the extended scatter matrix � ˜ y is equal to the structured ex-

ended covariance matrix R ˜ y in (7) . 
3 This expression given in [29] is consistent with the one given in [25] , because 

he normalizing constant is included in the function g . 

fi  

m

θ  
The ML estimate of R ˜ y in this model is solution of the implicit

quation: 

˜ y ,T = 

1 

T 

T ∑ 

t=1 

ψ 

(
1 

2 

˜ y H t �
−1 
˜ y ,T ̃  y t 

)
˜ y t ̃  y H t , (12) 

here 

(t) 
def = − 1 

g(t) 

dg(t) 

dt 
(13) 

nd it is proved in [26] that the solution � ˜ y ,T of (12) converges in

robability to R ˜ y and can be derived from the fix point algorithm,

iven any positive definite Hermitian matrix � ˜ y , 0 and mild regular-

ty conditions on (y 1 , . . . , y T ) similarly as for the RES distribution

30] . 

When the density generator g (.) is unknown, M -estimators have

een proposed to estimate R ˜ y which are also solutions of the im-

licit Eq. (12) , where ψ(.) in (12) is replaced by a real-valued non-

egative weight function u (.) which is not related to a particu-

ar NC-CES distribution. Tyler’s and Huber’s M -estimators are ex-

mples of such estimators (see e.g., [20, sec.V.C] ). Existence and

niqueness of the solution �u 
˜ y ,T of (12) (where ψ(.) is replaced by

 (.)) have been proved for RES distributions, provided that u (.) sat-

sfies a set of general conditions (called Maronna conditions) stated

y Maronna in [31] . These conditions have been extended to C-CES

istributions in [22] and [20] . Under these conditions, it has been

lso proved for RES distributions, that the solution of (12) can be

erived by an iterative fix point algorithm [30] and converges in

robability to a matrix proportional to the scatter matrix. Using an

quivalence between RES and NC-CES distributions, theses proper-

ies have been extended to NC-CES distributions [29] . The sequence
u 
˜ y ,T of solutions of (12) converges in probability to �u 

˜ y proportional

o R ˜ y [20, (45)] : 

u 
˜ y = σu R ˜ y = σu � ˜ y , (14) 

here σ u depending on u (.) and the NC-CES distribution of y t ,

29] is solution of 

[ u (Q t /σu ) Q t /σu ] = N. (15)

Note that Tyler’s M -estimator is also solution of (12) with

eight u (t) = 

N 
t , does not satisfy Maronna conditions [31] . It is a

istribution-free estimator within the family of CES distributions.

owever, it has been proved for RES distributions in [32] and for

-CES distributions in [33] , then extended to NC-CES distributions

n [29] , that after normalizing, the solution �u 
˜ y ,T of (12) converges

n probability to �u 
˜ y = R ˜ y , i.e., satisfies (14) with σu = 1 . 

With this new model, all the subspace-based (MUSIC or ESPRIT)

lgorithms proposed in the literature in the specific case of uncor-

elated rectilinear or deterministic rectilinear sources, also apply

o arbitrary noncoherent rectilinear sources by replacing in (8) the

CM matrix R ˜ y ,T by �u 
˜ y ,T . 

.3. Subspace-based estimation 

We specify some examples of such NC MUSIC-like algorithms

uilt from � ˜ y ,T which is structured [8] as: 

˜ y ,T = 

(
�1 ,T �2 ,T 

�∗
2 ,T �∗

1 ,T 

)
, (16) 

here �1, T and �2, T are Hermitian and complex symmetric ma-

rices, respectively. The following three NC MUSIC-like algorithms

ntroduced firstly in [4 , 8] and [5] for uncorrelated sources, respec-

ively, can fully apply without any changes to the models presented

bove. Specifically, the estimated DOA ( ̂  θk,T ) k =1 , ... ,K given by the

rst two algorithms are obtained as the locations the K smallest

inima of localization functions: ̂ 

alg 1 
k,T 

= arg min 

θ
a H (θ ) �1 ,T a (θ ) − | a T (θ ) �∗

2 ,T a (θ ) | , (17)
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(

[

̂ θ alg 2 
k,T 

= arg min 
θ

(
a H (θ ) �1 ,T a (θ ) 

)
2 −

(
a T (θ ) �∗

2 ,T a (θ ) 
)(

a H (θ ) �2 ,T a 
∗(θ ) 

)
, 

(18)

where a ( θ ) denotes the parametrized steering vector. For the third

algorithm introduced in [5] , the estimated DOAs are given by the

arguments of the roots of a polynomial: 

̂ θ alg 3 
k,T 

= arg (z k ) with z k K roots | z| < 1 of (19)

(
a T (z −1 ) �1 ,T a (z) 

)
2 −

(
a T (z) �∗

2 ,T a (z) 
)(

a T (z −1 ) �2 ,T a (z −1 ) 
)

closest to the unit circle , (20)

with a (z) 
def = (1 , z, . . . , z N−1 ) T , in the particular case of uniform lin-

ear arrays of generic steering vectors a (θ ) = (1 , e iθ , . . . , e i (N−1) θ ) T 

with θ = π sin ω, where ω is the DOA relative to the normal of

array broadside. Note that this NC root MUSIC algorithm also ap-

plies to nonuniform linear arrays whose sensors are located on a

uniform grid with missing sensors such that there is no ambigu-

ity, for which a (z) 
def = (1 , z c 1 , . . . , z c N−1 ) T where c 1 , . . . , c N−1 are in-

tegers, associated with a (θ ) = (1 , e ic 1 θ , . . . , e ic N−1 θ ) T . Also note that

the NC root MUSIC algorithm would apply for example to nested

and coprime arrays for the case where the number of rectilinear

sources is strictly less than 2 N whether the sources are correlated

or not. 

3. Statistical performance of non-circular MUSIC-like 

algorithms 

3.1. Asymptotic distribution of DOA estimates for C-CES distributed 

noise 

This subsection is devoted to the theoretical studies of the

asymptotic performance of NC MUSIC-like DOA estimation algo-

rithms presented in Subsection 2.3 for C-CES distributed noise

model given in (3) . Following a similar approach to those pre-

sented in [8] and [26] , the following result is proved in Appendix: 

Result 1. In the stochastic and deterministic models presented

in Subsection 2.1 , the sequences 
√ 

T ( ̂  θT − θ) , where ̂ θT are the

DOA estimates given by the three NC MUSIC-like algorithms (17),

(18) and (19) , converge in distribution to the same zero-mean

Gaussian distribution with covariance matrix: 

R NG (θ ) = ̃

 H � ( ̃  A 

H ˜ U ̃

 A ) ︸ ︷︷ ︸ 
R G (θ ) 

+(η − 1)[ ̃  H � ( ̃  A 

H ˜ U 

′ ˜ A )] , (21)

where R G ( θ ) is the asymptotic covariance matrix of DOA estimates

for C-CG distributed noise and η is a fourth-order noise parame-

ter defined by (4) which takes the unit value for C-CG distributed

noise. ˜ U 

def = σ 2 
n ̃

 S # + σ 4 
n ( ̃

 S # ) 2 , ˜ U 

′ def = σ 4 
n ( ̃

 S # ) 2 and 

˜ H is a purely geo-

metric and phase matrix such that: 

[ ̃  H ] k,l = 

2 

˜ γk ̃  γl 

(
˜ α(k,k ) 
φ,φ

˜ α(k,l

θ,θ

with ˜ α(k,l) 
i, j 

def = 2 ̃  a ′ H i,k � ˜ y ̃  a ′ 
j,l 

, i, j = θ, φ where ˜ a ′ 
θ,k 

def = 

d ̃ a k 
dθk 

, ˜ a ′ 
φ,k 

def = 

d ̃ a k 
dφk 

and ˜ γk 
def = ˜ α(k,k ) 

θ,θ
˜ α(k,k ) 
φ,φ

− ( ̃  α(k,k ) 
θ,φ

) 2 . It follows from (21) that the diag-

onals of R NG ( θ ) give the asymptotic variances: 

[ R NG (θ )] k,k = 

2 ̃  α(k,k ) 
φ,φ

˜ γk 

˜ a H k ̃
 U ̃

 a k ︸ ︷︷ ︸ 
R G (θ )] k,k 

+(η−1) 
2 ̃  α(k,k ) 

φ,φ

˜ γk 

˜ a H k ̃
 U 

′ ˜ a k , k = 1 , . . . , K. 

(23)

 

 ) − ˜ α(k,k ) 
φ,φ

˜ α(k,l) 
θ,φ

˜ α(l ;l ) 
θ,φ

− ˜ α(k,k ) 
θ,φ

˜ α(k,l) 
φ,θ

˜ α(l ,l ) 
φ,φ

+ ˜ α(k,k ) 
θ,φ

˜ α(k,l) 
φ,φ

˜ α(l ,l ) 
θ,φ

)
, (22)

where ˜ α(k,k ) 
φ,φ

def = 2 ̃  a ′ H φ,k � ˜ y ̃  a ′ 
φ,l 

> 0 and ˜ γk =
et [ ̃  D 

H (θk , φk )) � ˜ y ̃
 D (θk , φk )] > 0 with 

˜ D (θk , φk ) 
def = [ ̃ a ′ 

θ,k 
, ̃  a ′ 

φ,k 
] . 

According to (21) , the subspace-based algorithms are robust to

he distribution of the sources, as the performance depends only

n their second-order statistics, whereas the distribution of the

oise can impact the performance because the non-Gaussian ad-

itive term in (23) is positive for all C-CCG noise distributions

rom (5) . This includes in particular the circular complex Student t

nd generalized Gaussian distributions [20] for which η − 1 is very

arge for heavy-tailed distributions. Furthermore this additive term,

hich is inversely proportional to the square of the SNR, affects

ainly the performance given in the Gaussian scenario at low SNR

alues, as it is illustrated in Section 5 . 

For a single rectilinear source, ˜ S # = 

1 

σ 2 
1 

˜ a 1 ̃  a H 
1 

4 ‖ a 1 ‖ 2 and 

˜ U and 

˜ U 

′ 

traightforwardly follow and (23) reduces to the interpretable ex-

ression: 

 NG (θ1 ) = 

1 

α1 , 1 

[
1 

r 1 
+ 

1 

2 ‖ a 1 ‖ 

2 

1 

r 2 
1 

]
︸ ︷︷ ︸ 

R G (θ1 ) 

+(η − 1) 
1 

α1 , 1 

1 

2 ‖ a 1 ‖ 

2 

1 

r 2 
1 

, (24)

here R G ( θ1 ) is the asymptotic variance of a single rectilinear

ource derived in [8] for C-CG distributed noise, where r 1 = 

σ 2 
1 

σ 2 
n 

with σ 2 
1 

is the power of the source) is the SNR and α1,1 is the

urely geometric factor 2 a ′ 
1 

H 
�y a 

′ 
1 

with a ′ 
1 

def = 

da 1 
dθ1 

and �y is the

oise subspace associated with y t . 

It is important to quantify the performance gain provided by

xtended subspace-based algorithms that exploit noncircularity

ompared to conventional algorithms. This is why we consider in

he following the conventional MUSIC algorithm based on y t only

or which from (2) : 

 y 
def = E(y t y 

H 
t ) = A θ ( �φR s �

H 
φ ) A 

H 
θ + σ 2 

n I 
def = A θ R x A 

H 
θ + σ 2 

n I 
def = S + σ 2 

n I . (25)

lease put eq (25) on a single line to ease the readabilityIt is worth

oting that this conventional MUSIC algorithm, does not use the

articular structure of the positive definite Hermitian matrix R x ,

o its asymptotic performance are those of the MUSIC algorithm

pplied to circular complex correlated sources, for which the fol-

owing result has been proved in [26] : 

esult 2. In the stochastic and deterministic models presented in

ubsection 2.1 , the sequence 
√ 

T ( ̂  θT − θ) , where ̂ θT are the DOA

stimates given by the conventional MUSIC algorithm applied to

orrelated rectilinear or circular complex sources converges in dis-

ribution to the zero-mean Gaussian distribution with the same co-

ariance matrix: 

 NG (θ ) = Re [ H � (A 

H 
θ UA θ )] ︸ ︷︷ ︸ 

R G (θ ) 

+(η − 1) Re [ H � (A 

H 
θ U 

′ A θ )] , (26)

with R G ( θ ) is the asymptotic covariance matrix of DOA esti-

ate for C-CG distributed noise, where U 

def = σ 2 
n S 

# + σ 4 
n (S # ) 2 , U 

′ def= 

4 
n (S # ) 2 and H is a purely geometric matrix such that [ H ] k,l =
α∗

k,l 
αk,k αl,l 

with αk,l 
def = 2 a ′ 

k 

H 
�y a 

′ 
l 

and a ′ 
k 

def = 

da k 
dθk 

. It follows further from

26) the asymptotic variances: 

 R NG (θ )] k,k = 

1 

αk,k 

a H k Ua k ︸ ︷︷ ︸ 
R G (θ )] k,k 

+(η − 1) 
1 

αk,k 

a H k U 

′ a k , k = 1 , . . . , K. 

(27)
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Furthermore, for a single source, (27) reduces to 

 NG (θ1 ) = 

1 

α1 , 1 

[
1 

r 1 
+ 

1 

‖ a 1 ‖ 

2 

1 

r 2 
1 

]
︸ ︷︷ ︸ 

R G (θ1 ) 

+(η − 1) 
1 

α1 , 1 

1 

‖ a 1 ‖ 

2 

1 

r 2 
1 

, (28) 

.2. Asymptotic distribution of DOA estimates for NC-CES distributed 

bservations 

This subsection investigates the asymptotic performance

f NC MUSIC-like DOA estimation algorithms presented in

ubsection 2.3 for NC-CES distributed observations model pre-

ented in Subsection 2.2 . Following a similar approach to those

resented in [8] and [26] , the following result is proved in

ppendix: 

esult 3. For NC-CES distributed observations, the sequences
 

T ( ̂  θT − θ) , where ̂ θT are the DOA estimates given by the three

C MUSIC-like algorithms (17), (18) and (19) built from the M -

stimate � ˜ y ,T , converge in distribution to the same zero-mean

aussian distribution with covariance matrix: 

 NC −CES (θ ) = 

ϑ 1 

σ 2 
u 

[ ̃  H � ( ̃  A 

H ˜ U ̃

 A )] , (29) 

here σ u is solution of (15) and ϑ1 is given by 

 1 = 

E[ u 

2 (Q t /σu ) Q 

2 
t ] 

N(N + 1)(1 + [ N(N + 1)] −1 c u ) 2 
with 

 u 
def = E[ u 

′ (Q t /σu ) Q 

2 
t /σ

2 
u ] (30) 

or the M -estimates satisfying Maronna conditions [31] , which re-

uces, respectively, for ML M -estimates and extended SCM esti-

ate to 

 1 , ML = 

N(N + 1) 

E[ ψ 

2 (Q t ) Q 

2 
t ] 

(31) 

nd 

 1 , SCM 

= η, (32) 

nd to [33] 

 1 , Tyler = 

N + 1 

N 

, (33) 

or Tyler’s M -estimate associated with u (t) = 

N 
t . 

Furthermore, specializing the M -estimates in Result 3 and its

ependent parameters ϑ1 , the following result is proved in Ap-

endix: 

esult 4. The NC-CES ML M -estimator dependent asymptotic co-

ariance parameter ϑ1,ML (31) is upper bounded by the ones asso-

iated with Tyler’s M -estimator (33) and with the extended SCM

stimator (32) as 

 1 , ML ≤ ϑ 1 , SCM 

, (34) 

 1 , ML ≤ ϑ 1 , Tyler , (35) 

[ R NG (θ )] k,k = [ R G (θ )] k,k

[ R G (θ )] k,k = 

2 ̃  α(
φ

˜ γk
nd because σu = 1 for these three M -estimators, (29) gives 

 

ML 
NC −CES (θ ) ≤ R 

SCM 

NC −CES (θ ) and R 

ML 
NC −CES (θ ) ≤ R 

Tyler 
NC −CES 

(θ ) . (36) 

For example, for the NC complex Student t -distribution of

degree of freedom (0 < ν < ∞ ) which has finite second and

ourth-order moments, respectively, for ν > 2 and ν > 4 (see e.g.,

20, sec. IVA] ), ϑ 1 ,ML = 

N+ ν/ 2+1 
N+ ν/ 2 and ϑ 1 , SCM 

= η = 

ν−2 
ν−4 [26] , and

hus ϑ 1 , ML /ϑ 1 , SCM 

= 1 − 2(N+2) 
(N+ ν/ 2)(ν−2) 

< 1 and ϑ 1 , ML /ϑ 1 , Tyler = 1 −
ν/ 2 

(N+ ν/ 2)(N+1) 
< 1 . We see that ϑ1,ML / ϑ1,SCM 

≈ 1 for ν → ∞ (i.e.,

he observations tend to be NC Gaussian distributed) but

1,ML / ϑ1,SCM 

� 1 when ν approaches 4. This confirms that ex-

ended SCM has poor performance for heavy-tailed distribu-

ions. In contrast, for Tyler’s M -estimator of the extended covari-

nce matrix, ϑ1,ML / ϑ1,Tyler ≈ 1 for N  1 and arbitrary ν . Thus the

C subspace-based algorithms derived from Tyler’s M -estimator

re robust to heavy-tailed distributions. For example, for N = 5 ,

 1 , ML /ϑ 1 , SCM 

= 0 . 058 and ϑ 1 , ML /ϑ 1 , Tyler = 0 . 952 for the NC com-

lex Student t -distribution with ν = 4 . 1 , whereas ϑ 1 , ML /ϑ 1 , SCM 

= 1

nd ϑ 1 , ML /ϑ 1 , Tyler = 0 . 833 for the NC Gaussian distribution. 

Note that the asymptotic performance of the NC subspace-

ased DOA estimation algorithms (17), (18) and (19) built from

he ML M -estimator and the extended SCM estimator are NC-CES

ependent through the parameters ϑ1 and η, respectively. This is

n contrast to Tyler’s distribution-free M -estimator and to an arbi-

rary M -estimator satisfying Maronna’s conditions [31] for which

he performances depend both on the weighting function u ( t ) and

he parameter-dependent NC-CES distribution ϑ 1 /σ
2 
u . 

. Asymptotic variance of DOA estimates for two equi-powered 

orrelated sources 

To derive interpretable expressions from (23), (27) and (29) for

everal sources, we consider in this section the particular case of

wo equi-power correlated sources, for which interpretable closed-

orm expressions for the asymptotic covariance matrices of DOA

stimates are given for both C-CES distributed noise model and

C-CES distributed observations model. 

.1. C-CES Distributed noise model 

For the C-CES distributed noise model of Subsection 2.1 , the fol-

owing result is proved in Appendix: 

esult 5. For two equi-power correlated rectilinear sources of cor-

elation ρ ∈ (−1 , 1) of power σ 2 
s for which R s = σ 2 

s ( 
1 ρ
ρ 1 

) and SNR

 = 

σ 2 
s 

σ 2 
n 

, (23) reduces to the following interpretable expression: 

− 1) 
2 ̃  α(k,k ) 

φ,φ

˜ γk 

[(
1 + ρ2 + 2 ̃

 βρ

(1 − ˜ β2 )(1 − ρ2 ) 2 

)
1 

2 ‖ a k ‖ 

2 

1 

r 2 

]
, k = 1 , 2 , (37) 

here 

1 

1 − ρ2 

)
1 

r 
+ 

(
1 + ρ2 + 2 ̃

 βρ

( 1 − ˜ β2 )(1 − ρ2 ) 2 

)
1 

2 ‖ a k ‖ 

2 

1 

r 2 

]
, k = 1 , 2 , (38) 

s the asymptotic covariance matrix of DOA estimate of two equi-

ower correlated rectilinear sources for C-CG distributed noise,

here ˜ β
def = 

˜ a H 
1 ̃

 a 2 
‖ ̃ a 1 ‖‖ ̃ a 2 ‖ ∈ (−1 , 1) is a geometric and phase factor. 

To the best of our knowledge, it is interesting to note that

or correlated circular complex sources, despite many experimental

tudies (see e.g., [34–36] ) showing the degradation of performance

f the conventional MUSIC algorithm with the correlation of the
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Fig. 1. Asymptotic variances var( θ1, T ) given by (37) - (38) and (39) - (40) and its associated MSEs versus SNR (and versus DOA separation �θ = | θ2 − θ1 | ) for C-CG and circular 

complex Student t -distributed noise models with ν = 4 . 1 , fixed DOAs and phases with �φ
def = | φ2 − φ1 | = 0 . 1 rd and ρ = | ρ ′ | = 0 . 5 . 
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sources, no interpretable closed-form expressions of the asymp-

totic variances has been given up to now. This is due to the dif-

ficulty to obtain a simple interpretable closed-form expression of

the Moore Penrose inverse of S 
def = A θ R x A 

H 
θ

in (27) . But similarly to

Result 5 deduced from Result 1 , the following result concerning

the conventional MUSIC algorithm is proved in Appendix: 

Result 6. For two equi-power correlated sources of power σ 2 
s 

and SNR r , rectilinear of correlation ρ ∈ (−1 , 1) for which R x =
σ 2 

s ( 
1 ρ′ 

ρ′∗ 1 
) with ρ′ def = ρe i (φ1 −φ2 ) in (25) , or circular of correlation

ρ′ ∈ C (with | ρ′ | < 1) for which also R x = σ 2 
s ( 

1 ρ′ 
ρ′∗ 1 

) , (27) reduces

to the following interpretable expression: 

[ R NG (θ )] k,k = [ R G (θ )] k,k + (η − 1) 
1 

αk,k 

[(
1 + | ρ ′ | 2 + 2 Re (β∗ρ ′ ) 
(1 − | β| 2 )(1 − | ρ ′ | 2 ) 2 

)
1 

‖ a k ‖ 2 
1 

r 2 

]
, 

k = 1 , 2 , (39)

where 

[ R G (θ )] k,k 

= 

1 

αk,k 

[(
1 

1 − | ρ ′ | 2 
)

1 

r 
+ 

(
1 + | ρ ′ | 2 + 2 Re (β∗ρ ′ ) 
(1 − | β| 2 )(1 − | ρ ′ | 2 ) 2 

)
1 

‖ a k ‖ 

2 

1 

r 2 

]
, 

k = 1 , 2 , (40)

is the asymptotic covariance matrix of DOA estimates of two equi-

power correlated rectilinear or circular complex sources for C-CG

distributed noise, where β
def = 

a H 
1 

a 2 
‖ a 1 ‖‖ a 2 ‖ ∈ C is a purely geometric

factor 4 

4.2. NC-CES Distributed observations model 

For NC-CES distributed observations model, we have

R NC −CES (θ ) = 

ϑ 1 
σ 2 

u 
R G (θ ) from (21) and (29) , and therefore, the

following result is deduced from (38) . 
4 Note that for centro-symmetric arrays (e.g., uniform linear arrays, uniform cir- 

cular arrays, cross-based centro-symmetric arrays, square-based centro-symmetric 

array [38] ), for which the array centroid is chosen as the reference of the phases, β

is real-valued and thus Re( β∗ρ ′ ) in (39) and (40) reduces to βRe( ρ ′ ). 

e  

p  

w

 

(  
esult 7. For NC-CES observations with two equi-power correlated

ectilinear sources of correlation ρ of SNR r , (29) reduces to the

ollowing interpretable expression: 

 R NC −CES (θ )] k,k = 

ϑ 1 
σ 2 

u 

2 ̃ α(k,k ) 
φ,φ

˜ γk 

[(
1 

1 − ρ2 

)
1 

r 
+ 

(
1 + ρ2 + 2 ̃  βρ

( 1 − ˜ β2 )(1 − ρ2 ) 2 

)
1 

2 ‖ a k ‖ 2 
1 

r 2 

]
,

 = 1 , 2 . (41)

.3. General comments 

This section presents some properties of the asymptotic vari-

nces on DOA estimation in (37) - (41) . It explains how asymptotic

ariances change as a function of different arrays, signal sources

nd noise parameters. 

roperty 1. Naturally, all the performance degrades dramatically for

trongly correlated sources ( i.e., | ρ| ≈ 1) , because in this case, the sig-

al subspace is close to being one-dimensional for coherent sources.

lso, from (39) - (40) , it follows that the performance of the conven-

ional MUSIC algorithm strongly degrades for close steering vectors a 1 
nd a 2 (i.e., | β| ≈ 1 for closely-spaced sources). In contrast, for the NC

ubspace-based algorithms (17) , (18) and (19) , the performance does

ot necessarily collapse because 

˜ = | β| cos (φ2 − φ1 + ∠ β) (42)

n (37) , (38) and (41) which is equal to 1 if both | β| = 1 and φ2 −
1 + ∠ β = 2 kπ, k ∈ Z . Phase differences can then compensate for the

loseness of the source’s DOAs because increasing the degree of free-

om generally improves the source resolution. 

roperty 2. For orthogonal steering vectors or phases in quadrature,

e have ˜ β = 0 in (37) , (38) using (42) , and similarly, orthogonal steer-

ng vectors yields β = 0 in (39) - (40) . Thus it follows that, in both

ases, the asymptotic variances on DOA estimation associated with

C subspace-based algorithms ( (17) , (18) and (19) ) and conventional

USIC algorithm monotonously increase with | ρ| from ρ = 0 (uncor-

elated sources) to | ρ| ≈ 1 (strongly correlated sources). But when the

xtended steering vectors and steering vectors are not orthogonal, the

revious asymptotic variances not necessarily increase monotonously

ith | ρ| . A figure illustrating this situation is given in Section 5 . 

Regarding the dependence of algorithms performance on array SNR

i.e., ‖ a k ‖ 2 r), we observe that for large array SNR, the term 

1 
1 −| ρ| 2 is
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Fig. 2. Ratio between (37) and (38) (denoted by r NC 
def = R NC 

G (θ1 ) /R NC 
NG (θ1 ) ) as a function of ρ for different values of SNR, �θ , �φ and ν . 
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ominant in all dependent asymptotic variances expressions (37) - (41)

nd thus the asymptotic variances of DOA estimation monotonously

ncrease with | ρ| for arbitrary ˜ β or β . In contrast, for weak array SNR

 ‖ a k ‖ 2 r � 1 ), the terms ( 1+ ρ2 +2 ̃ βρ

(1 − ˜ β2 )(1 −ρ2 ) 2 
) 1 

2 ‖ a k ‖ 2 r in (37) - (38) , (41) and

( 1+ | ρ| 2 +2 Re (β∗ρ) 

(1 −| β| 2 )(1 −| ρ| 2 ) 2 ) 
1 

‖ a k ‖ 2 r in (39) - (40) are dominant in (37) - (41) w.r.t.

he term 

1 
1 −| ρ| 2 and thus the purely geometric parameter β and sta-

istical ρ are coupled in the expressions of the asymptotic variances

hich do not necessarily increase with both ˜ β or β and | ρ| . 

roperty 3. For both orthogonal extended steering vectors [resp., or-

hogonal steering vectors] and uncorrelated sources, the asymptotic

ariances of DOA estimation (37) - (38) and (41) [resp., (39) - (40)] are

qual to the asymptotic variance (24) [resp., (28)] given for a sin-

le source, up to a multiplicative geometric and phase-dependent

actor [resp., purely geometric factor]. This factor is proved to be

trictly larger than 1 for the conventional MUSIC algorithm because
2 orthogonal sources 
1 , 1 

= α1 source 
1 , 1 

− 2 | a H 2 a 
′ 
1 | 2 / ‖ a 1 ‖ 2 < α1 source 

1 , 1 
. For the

C MUSIC-like algorithms, many numerical experiments for different
rrays of sensors have shown that this factor is also strictly larger

han 1, except for some specific phases for which it is equal to 1. 

roperty 4. Finally, note that the phase of the correlation fac-

or ρ′ , which corresponds to �φ = φ1 − φ2 for rectilinear sources,

an strongly impact the performance, through the term Re (β∗ρ′ ) =
|| ρ′ | cos (∠ ρ′ − ∠ β) for the conventional MUSIC algorithm in

39) and (40) and through the terms ˜ β and 
˜ α(k,k ) 
φ,φ

˜ γk 
for the NC MU-

IC algorithm in (37) , (38) and (41) . We can clearly see that the

symptotic variances given for the conventional MUSIC algorithm

n (39) and (40) are maximal [resp. minimal] for ∠ ρ ′ = ∠ β [resp.

 ρ′ = ±π + ∠ β] with the associated largest and smallest asymptotic

ariances are obtained by replacing Re( β∗ρ′ ) in (39) and (40) by

e (β∗ρ′ ) = | β|| ρ′ | and Re (β∗ρ′ ) = −| β|| ρ′ | , respectively. In con-

rast the impact of the correlation phase �φ is more difficult to ana-

yze for the NC MUSIC algorithm due to the complicated expression of

he phase and array geometry-dependent term 

˜ α(k,k ) 
φ,φ

˜ γk 
in (37) , (38) and

41) . 
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Fig. 3. Asymptotic variances var( θ1, T ) associated with conventional MUSIC [resp., 

NC MUSIC] algorithm given by (40) [resp., by (38) ] for C-CG noise model, and by 

(39) [resp., (37) ] for circular complex Student t -distributed noise model with ν = 

4 . 1 and SNR = 20 dB . 

Fig. 4. Asymptotic variance var( θ1, T ) associated with the conventional MUSIC algo- 

rithm given by (40) for C-CG distributed observations, compared to the stochastic 

CRB, for different values of �θ with | ρ ′ | = 0 . 95 , SNR = 20 dB and T = 20 0 0 . 
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5 except in Fig. 4 in which N is variable. 
Note that this sensitivity on the phase of the correlation seems

to have been overlooked by the numerous performance analysis of

subspace-based DOA estimation techniques such as conventional MU-

SIC algorithm for which this phase has always been assumed zero

or 180 ◦ (e.g., in [36] ). Whereas, it is known [37] that the correla-

tion phase has a strong effect on the associated Stochastic Cramér-Rao

bound under certain conditions (small aperture arrays, large correla-

tion magnitude and closely-spaced sources). 

This phase assumed to be fixed during the array observation is

a highly variable and unpredictable parameter in a multipath envi-

ronment for which it is very sensitive to the difference between the

propagation delays in the direct and secondary paths. Consequently

the asymptotic variances may vary significantly from time to time

and thus the performances are rather given by the mean of these

asymptotic variances. For the conventional MUSIC algorithm (39) and

(40) give: 

[ R NG (θ )] k,k = [ R G (θ )] k,k + (η − 1) 
1 

αk,k 

[(
1 + | ρ ′ | 2 

(1 − | β| 2 )(1 − | ρ ′ | 2 ) 2 
)

1 

‖ a k ‖ 2 
1 

r 2 

]
,

k = 1 , 2 , (43)
here 

 R G (θ )] k,k = 

1 

αk,k 

[(
1 

1 − | ρ ′ | 2 
)

1 

r 
+ 

(
1 + | ρ ′ | 2 

(1 − | β| 2 )(1 − | ρ ′ | 2 ) 2 
)

1 

‖ a k ‖ 2 
1 

r 2 

]
, 

 = 1 , 2 , (44)

hich now clearly monotonously increases with | ρ ′ | . For the NC MU-

IC algorithm, no closed-form expressions is attainable because of the

omplicated expression of 
˜ α(k,k ) 
φ,φ

˜ γk 
. 

. Numerical illustrations 

This section illustrates the dependence of the provided asymp-

otic performance results in Subsection 4 on geometric, phase

nd magnitude of sources correlation parameters and on the non-

aussian distribution of the noise or of the observation by con-

idering two illustration parts. Let us assume that K = 2 narrow-

and equal-power rectilinear correlated signal sources with power
2 impinge on a uniform linear array of N = 6 sensors 5 separated

y a half-wavelength for which the steering vectors are a (θk ) =
(1 , e iθk , . . . , e i (N−1) θk ) T where θk = π sin (ω k ) , k = 1 , 2 , with ω k is

he DOAs relative to the normal of array broadside. The phases

k , k = 1 , 2 associated with different propagation delays are as-

umed fixed, but unknown during the array observation and the

erformance depends only on �φ
def = | φ2 − φ1 | . The SNR is de-

ned as 10 log 10 (σ
2 
s /σ

2 
n ) dB. 10 0 0 independent Monte Carlo runs

ave been performed where the number of snapshots is fixed at

 = 500 to obtain estimations of the mean squared error (MSE)

( ̂  θ1 − θ1 ) 
2 . 

In the first experiment, the noise n t is either circular complex

tudent t -distributed with parameter ν > 4 to have finite fourth-

rder moment for which η = 

ν−2 
ν−4 or C-CG distributed (obtained

lso for ν → ∞ ). We suppose the sources in model (1) consist of

wo multipaths issued from two independent BPSK modulated sig-

als e t ,1 and e t ,2 , for which we have s t, 1 = e t, 1 and s t, 2 = ρe t, 1 +
 

1 − ρ2 e t, 2 . The two sources s t ,1 and s t ,2 are thus equal-powered

ith correlation ρ . 

Fig. 1 compares the theoretical asymptotic variances of DOA es-

imates given by (37) , (38) and (39) , (40) associated respectively

ith SCM-based NC MUSIC algorithm (17) and SCM-based conven-

ional MUSIC algorithm [26] , and the corresponding MSEs for the

wo previously described noise models. It can be seen from this

gure that the C-CES distributed noise model causes a deeper loss

f performance of the SCM-based MUSIC algorithms for weak SNR

nd DOA separation. It may be observed, on the other hand, that

he NC MUSIC SCM-based algorithms outperform the conventional

USIC SCM-based algorithm in particular for low DOA separation

s already shown in [8] for C-CG distributed noise. It can be seen

lso that the asymptotic variances for the C-CES noise model co-

ncide with the one for the C-CG noise model for sufficiently large

alues of SNR as predicted by Property 2 . On the other hand, these

gures confirm the agreement between the asymptotic variance

nd its corresponding MSE associated with both MUSIC SCM-based

lgorithms in a large domain of SNR and DOA separation, with a

arger domain for the NC MUSIC SCM-based algorithm. 

Fig. 2 illustrates the behavior of the ratio between the asymp-

otic variances (37) and (38) respectively given for C-CG distributed

oise and circular complex Student t -distributed noise as a func-

ion of SNR, correlation factor ρ , phase separation, and DOA sepa-

ation and Student t -distribution noise parameter ν . From Fig. 2 (a)-

b), it can be seen that the asymptotic variances are approximately

qual for sufficiently high SNR, whereas the performance losses of

CM-based NC MUSIC algorithms become very prominent when
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Fig. 5. Ratios r 0 = ϑ 1 , SCM /ϑ 1 , ML , r 1 = ϑ 1 , Tyler /ϑ 1 , ML and r 2 = ϑ 1 , SCM /ϑ 1 , Tyler versus NC complex Student t -distribution parameter ν (first column) and versus NC complex 

generalized Gaussian distribution parameter ζ (second column) for different values of N . 

S  

e  

a  

s  

s  

ν  

c  

ν

a  
NR and DOA separation decrease and that ρ increases. Fig. 2 (c)

xhibits the dependence of asymptotic variances on the phase sep-

ration �φ. It can be observed that the performance is very sen-

itive to �φ for strongly correlated sources (i.e., ρ ≈ 1). Fig. 2 (d)

hows that performance degradation is severe for small parameter
( ν → 4), i.e., for heavy-tailed noise distributions and for strongly

orrelated sources (i.e., ρ ≈ 1). Obviously, this ratio tends to 1 for

→ ∞ (C-CG noise model). 

Fig. 3 illustrates Property 2 which shows that for �θ = 0 . 002 rd

nd �φ = 0 . 02 rd associated with 

˜ β = 0 . 9997 and β = 1 . 0 0 0 0 +
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Fig. 6. Circular and NC stochastic CRBs, asymptotic variances given by (29) and 

[26, Eq. (34)] and associated MSEs versus SNR for NC complex generalized Gaus- 

sian distributed observations with exponent ζ = 0 . 2 , fixed DOAs and phases with 

�θ = 0 . 25(rd) and �φ = 0 . 2(rd) , and ρ = | ρ ′ | = 0 . 5 . 
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0 . 0049 i, the asymptotic variances are not necessarily increasing

functions of | ρ|. 

Finally, Fig. 4 examines the strong dependence of the per-

formance of the conventional MUSIC algorithm on the phase of

the correlation, by plotting the corresponding asymptotic variance

given by (40) for C-CG distributed observations as a function of

� ρ′ for different values of �θ with | ρ′ | = 0 . 95 . To better un-

derstand the effect of � ρ′ , we also plot the associated stochas-

tic Cramér-Rao bound (CRB) derived in [35] for C-CG distributed

observations. It can be clearly seen, as predicted by Property 4 ,

that the asymptotic variance of the conventional MUSIC algorithm

which depends on the geometric phase term ∠ β = (N − 1)�θ/ 2

is maximal [resp., minimal] for ∠ ρ ′ = ∠ β [resp., ∠ ρ′ = ∠ β + π ]

and consequently the curses are shifted to the right when �θ in-

creases. Furthermore, we note that the corresponding largest and

smallest asymptotic variances respectively remain closer to the

CRB. Under these conditions, the conventional MUSIC algorithm is

asymptotically efficient despite a very strong correlation, whereas

this algorithm has always been considered inefficient for strongly

correlated sources and a low number of sensors (see e.g., [35] ). The

corresponding asymptotic variance of MUSIC and CRB obviously

increase when �θ decreases and note that the correlation phase

strongly affects the CRB compared to the impact on the corre-

sponding asymptotic variance of MUSIC algorithm which is lower. 

In this second experiment, we assume that the observations

y t follow either a NC complex Student t -distribution with param-

eter ν > 4, which has heavier tails than the Gaussian, or a NC

complex generalized Gaussian distribution with exponent ζ > 0 for

which ϑ 1 , ML = 

N+1 
N+ ζ and ϑ 1 , SCM 

= η = 

N 
N+1 

�(N/ζ )�((N+2) /ζ ) 

�((N+1) /ζ ) 2 
[26] with

ζ = 1 , ζ < 1 and ζ > 1 referring respectively to the NC-CG distri-

bution, to NC super-Gaussian and NC sub-Gaussian distributions.

These distributions have a structured extended covariance ma-

trix R ˜ y given by (7) , for which the robustness of the non-circular

subspace-based DOA estimation algorithms using robust covariance

matrix estimators is evaluated. 

To supplement our discussion below Result 4, Fig. 5 il-

lustrates the robustness of NC MUSIC DOA estimation al-

gorithms based on the ML M−estimator with respect to

the ones based on Tyler’s M−estimator and SCM estima-

tor, by plotting the ratios r 0 
def = [ R 

SCM 

NC −CES 
(θ )] 1 , 1 / [ R 

ML 
NC −CES 

(θ )] 1 , 1 =
ϑ 1 , SCM 

/ϑ 1 , ML , r 1 
def = [ R 

Tyler 
NC −CES 

(θ )] 1 , 1 / [ R 

ML 
NC −CES 

(θ )] 1 , 1 = ϑ 1 , Tyler /ϑ 1 , ML 

and r 2 
def = [ R 

SCM 

NC −CES 
(θ )] 1 , 1 / [ R 

Tyler 
NC −CES 

(θ )] 1 , 1 = ϑ 1 , SCM 

/ϑ 1 , Tyler for dif-

ferent values of N , versus ν and ζ , respectively. From Fig. 5 (a)-
c) and (b)-(d), we observe that NC MUSIC DOA estimation al-

orithm based on ML M−estimator outperforms the ones based

n the SCM estimator and Tyler’s M−estimator as predicted by

esult 4 , but both ratios r 1 tend to 1 when N → ∞ and there-

ore, the NC MUSIC DOA estimation algorithms based on the ML

−estimator provided similar performance as the ones based on

yler’s M−estimator as N increases. For small values of N , both ra-

ios r 0 increase when the distribution moves away from the Gaus-

ian distribution, i.e., for ν decreasing and ζ moving away from 1.

s a result, the performance of the NC MUSIC DOA estimation al-

orithms based on the SCM degrade when the distributions move

way from the Gaussian distribution. By contrast, both ratios r 1 in-

rease when ν and ζ increase, being very large only for large ζ
i.e., for light-tailed distributions). From Fig. 5 (e) and (f), we see

hat the NC MUSIC DOA estimation algorithms based on Tyler’s

−estimator have much better performance than the ones based

n SCM for heavy-tailed distributions (i.e., for ν close to 4 and

mall values of ζ ), whereas the performance is poorly degraded

or the Gaussian distribution (i.e., for ν = ∞ , ζ = 1 ). But note that

he Tyler’s M−estimator significantly degrades the performance for

trongly light-tailed distributions (i.e., for ζ  1). Fig. 6 compares

he NC stochastic CRB derived in [25] and circular stochastic CRB

erived in [39] and [40] , to the asymptotic variances of DOA es-

imates (41) and [26, Eq.(34)] obtained, respectively, with the NC

USIC algorithm (17) and conventional MUSIC algorithm based

n SCM estimator (i.e., ϑ 1 = ϑ 1 , SCM 

= η) and ML M -estimator (i.e.,

 1 = ϑ 1 , ML ), and the corresponding MSEs. From this figure, we can

bserve the good agreement between the theoretical asymptotic

ariance associated with the NC MUSIC algorithm and its corre-

ponding MSE for a wide range of SNR values, whereas the the-

retical asymptotic variance associated with conventional MUSIC

lgorithm and its corresponding MSE are in good agreement only

t high SNR. Here again, it can be noted that the performance of

he NC MUSIC algorithms exploiting the non-circularity property

f the observations outperforms those of the conventional MUSIC

lgorithm build only from a SCM of (25) . It can also be observed

hat the NC MUSIC algorithms based on M -estimate are asymptoti-

ally efficient compared to the CRB for a wide range of SNR values,

hich is not the case for the conventional MUSIC algorithm which

s asymptotically efficient at high SNR. 

. Conclusion 

This paper has shown that all the NC subspace-based algo-

ithms built from the SCM designed for uncorrelated rectilinear

ources embedded in spatially white C-CG noise can be also ap-

lied for correlated rectilinear sources in the contexts of SCM esti-

ate with C-CES noise and M -estimate with NC-CES observations.

 perturbation analysis has been performed to derive closed-form

xpressions for the asymptotic covariance matrices of DOA esti-

ates for three NC MUSIC-like algorithms in two CES data models.

nterpretable closed-form expressions of the asymptotic variance of

he estimated DOA of two equi-power correlated sources has been

erived for the first time. A number of properties that highlight

ow the asymptotic variances of NC MUSIC-like DOA estimation al-

orithms depend on key parameters such as SNR, DOA, phase and

agnitude of the correlation and C-CES noise parameters were de-

ived. These results were compared with those of the conventional

USIC DOA estimation algorithm, and a significant gain was quan-

ified for relatively small DOA separation when using non-circular

ignals. Analytical robustness results were illustrated via several

umerical examples using robust covariance matrix estimators in-

tead of the SCM, proving that the use of robust M -estimators en-

ances the robustness of the subspace-based DOA estimation algo-

ithms against heavy-tailed NC-CES observations model deviations,

ith negligible loss in performance for NC-CG distributed observa-
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ions. Finally, we note that the presented methodology also applies

o the asymptotic performance analysis of the NC ESPRIT-like algo-

ithms in the contexts of SCM estimates with NC deterministic or

tochastic sources embedded in C-CES noise and M -estimates with

C-CES observations. 
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ppendix A 

roof of Result 1. Using the central limit theorem applied to the

ndependent identically distributed complex r.v. vec ( ̃ y t ̃  y H t ) = 

˜ y ∗t �
˜ 
 t , the sequence 

√ 

T ( vec 
(
R ˜ y ,T ) − vec (R ˜ y ) 

)
is asymptotically zero-

ean Gaussian distributed with covariance R r ˜ y 
and complemen-

ary covariance C r ˜ y 
= R r ˜ y 

K . Thanks to simple algebraic manipula-

ions, we obtain 

 r ˜ y 
= ( ̃  A 

∗
� ˜ A ) R r s ( ̃

 A 

T 
� ˜ A 

H ) + ( ̃  A 

∗R s ̃
 A 

T ) � R ˜ n + R 

∗
˜ n � ( ̃  A R s ̃

 A 

H ) 

+ K [( ̃  A R s ̃
 A 

T ) � (JR ˜ n ) + (JR 

∗
˜ n ) � ( ̃  A 

∗R s ̃
 A 

H )] + R r ˜ n 
, (A.45) 

here R ˜ n = σ 2 
n I , R r s is the covariance of s t �s t (which is zero in the

eterministic model) and R r ˜ n 
is the covariance of ˜ n 

∗
t � ˜ n t , which

s simplified for both C-CES or C-CCG distributed n t (3) through

imple algebraic manipulations as: 

 r ˜ n = σ 4 
n { (I � I ) + K (J � J ) + (η − 1)[(I � I ) + K (J � J ) + vec (I ) vec T (I )] } . 

(A.46) 

lease put eq (A46) on a single line to ease the readabilityUsing

he standard theorem of continuity (see e.g., [41, p.122] ) on regular

unctions of asymptotically Gaussian statistics applied to the map-

ing R ˜ y ,T � −→ � ˜ y ,T , we obtain similarly to [8, Th.3] , that the se-

uence 
√ 

T 
(
vec ( � ˜ y ,T ) − vec ( � ˜ y ) 

)
converges to a zero-mean Gaus- 

ian distribution with covariance R π ˜ y 
and complementary covari-

nce C π ˜ y 
= R π ˜ y 

K given by 

 π ˜ y 
= (I + K (J � J ))[( ̃  U 

T 
� � ˜ y ) + ( �T 

˜ y �
˜ U ) 

+(η − 1)(I + K (J � J ))[( ̃  U 

′ T 
� � ˜ y ) + ( �T 

˜ y �
˜ U 

′ ) . (A.47) 

hen applying again the standard theorem of continuity to the

apping (8) � ˜ y ,T 
alg � −→ ̂

 θT , we obtain similarly to [8, Th.5] , that

he sequence of the DOA estimates 
√ 

T ( ̂  θT − θ) asymptotically con-

erges to a zero-mean Gaussian distribution, whose covariance is

educed and Result 1 is proved thanks to algebraic manipulations

imilar to those developped in [8] and [26] . �

roof of Result 3. The proof is based on the asymptotic distri-

ution of vec ( � ˜ y ,T ) associated with the M -estimate �u 
˜ y ,T . In [29,

es.1] , it is proved that the sequence 
√ 

T 
(
vec ( � ˜ y ,T ) − vec ( � ˜ y ) 

)
is

symptotically zero-mean Gaussian distributed with covariance R r ˜ y 

nd complementary covariance C r ˜ y 
= R r ˜ y 

K given by 

 π ˜ y 
= 

ϑ 1 

σ 2 
u 

(I + K (J � J ))[( ̃  U 

T 
� � ˜ y ) + ( �T 

˜ y �
˜ U )] , (A.48) 

here ϑ1 is given by (30) and σ u is solution of (15) . Applying again

he standard theorem of continuity to the mapping (8) , � ˜ y ,T 
alg � −→

 

T , the first part of Result 3 is proved. 

For the ML M -estimates E[ ψ(Q t ) Q t ] = N from (13) and (11) and

hus σu = 1 from (15) . Consequently, (30) reduces to 

 1 = 

N(N + 1)E[ ψ 

2 (Q t ) Q 

2 
t ] 

(N(N + 1) + E[ ψ 

′ (Q t ) Q 

2 ]) 2 
. (A.49) 
t a
sing the p.d.f. (9) of the r.v. Q t , we straightforwardly get: 

[ ψ 

2 (Q t ) Q 

2 
t ] − E[ ψ 

′ (Q t ) Q 

2 
t ] = 

∫ ∞ 

0 

δ−1 
N,g q 

N+1 d 
2 g(q ) 

dq 2 
dq, 

here 
 ∞ 

0 

δ−1 
N,g q 

N+1 d 
2 g(q ) 

dq 2 
dq = 

[
δ−1 

N,g q 
N+1 dg(q ) 

dq 

]∞ 

0 

− (N + 1) 

∫ ∞ 

0 

δ−1 
N,g q 

N dg(q ) 

dq 
dq. 

he second term can be simplified as follows 
 ∞ 

0 

δ−1 
N,g q 

N dg(q ) 

dq 
dq = [ δ−1 

N,g q 
N g(q )] ∞ 

0 − N 

∫ ∞ 

0 

δ−1 
N,g q 

N−1 g(q ) dq = −N

ecause lim q →∞ 

q N+1 dg(q ) 
dq 

= lim q →∞ 

q N g(q ) = 0 using the

act that the fourth-order moment of Q t is assumed fi-

ite and 

∫ ∞ 

0 δ−1 
N,g 

q N−1 g(q ) dq = 1 . Hence, E[ ψ 

2 (Q t ) Q 

2 
t ] =

(N + 1) + E[ ψ 

′ (Q t ) Q 

2 
t ] , and using (A.49), (31) is proved. 

Because the extended SCM is the M -estimate associated with

 (t) = 1 for which c u = 0 and σu = 1 , and thus ϑ 1 = η from

4) and (30) . �

roof of Result 4. First note that using the p.d.f. (11) of the r.v. Q t ,

e getPlease put eq above on two lines to ease the readability 

[ ψ(Q t ) Q 

2 
t ] = −

∫ ∞ 

0 

δ−1 
N,g q 

N+1 dg(q ) 

dq 
dq = −[ δ−1 

N,g q 
N+1 g(q )] ∞ 

0 

+ (N + 1) 

∫ ∞ 

0 

δ−1 
N,g q 

N g(q ) dq = (N + 1)E(Q t ) = N(N + 1) , 

ecause lim q →∞ 

q N+1 g(q ) = 0 using the fact that the fourth-order

oment of Q t is assumed finite and E(Q t ) = N. The Cauchy-

chwarz inequality yields 

 

2 (N + 1) 2 = (E[ ψ(Q t ) Q 

2 
t ]) 

2 ≤ E(Q 

2 
t )E[ ψ 

2 (Q t ) Q 

2 
t ] , 

nd thus 

 1 , ML = 

N(N + 1) 

E[ ψ 

2 (Q t ) Q 

2 
t ] 

≤ E(Q 

2 
t ) 

N(N + 1) 
= η. 

he proof of (35) follows immediately from the Cauchy-Schwarz

nequality which gives E[(ψ(Q t ) Q t ) 
2 ] ≥ (E[ ψ(Q t ) Q t ]) 

2 = N 

2 using

(ψ(Q t ) Q t ) = N from (15) . �

roof of Result 5. To give the expression of ˜ U and 

˜ U 

′ in (23) for

wo equi-powered sources, amounts to deriving the two non-

ero eigenvalues and the associated eigenvectors of the rank

wo matrix ˜ S = σ 2 
s ( ̃  a 1 , ̃  a 2 )( ̃

 a H 
1 

+ ρ˜ a H 
2 

ρ˜ a H 
1 

+ ̃ a H 
2 

) . The non-zero eigenvalues of

 

 are derived from the roots of the quadratic polynomial: λ2 −
r ( ̃  S ) λ + det [ σ 2 

s ( ̃
 a H 
1 

+ ρ˜ a H 
2 

ρ˜ a H 
1 

+ ̃ a H 
2 

)( ̃  a 1 , ̃  a 2 )] , which give the eigenvalues λ1 =
 ‖ a k ‖ 2 σ 2 

s (1 − β)(1 − ρ) and λ2 = 2 ‖ a k ‖ 2 σ 2 
s (1 + β)(1 + ρ) . Asso-

iated eigenvectors are v 1 = ̃

 a 1 −˜ a 2 and v 2 = ̃

 a 1 + ̃

 a 2 . This al-

ows us to deduce the expressions of ˜ U = ( 
σ 2 

n 
λ1 

+ 

σ 4 
n 

λ2 
1 

) 
v 1 v 

H 
1 

‖ v 1 ‖ 2 + ( 
σ 2 

n 
λ2 

+
σ 4 

n 

λ2 
2 

) 
v 2 v 

H 
2 

‖ v 2 ‖ 2 and 

˜ U 

′ = 

σ 4 
n 

λ2 
1 

v 1 v 
H 
1 

‖ v 1 ‖ 2 + 

σ 4 
n 

λ2 
2 

v 2 v 
H 
2 

‖ v 2 ‖ 2 and then of ˜ a H 
k ̃

 U ̃

 a k and

 

 

H 
k ̃

 U 

′ ˜ a k , w.r.t. the parameters σ 2 
s , σ

2 
n , ρ and β . Plugging these ex-

ressions into (23) proves Result 5 . �

roof of Result 6. The expression of U and U 

′ in (27) for

wo equi-powered sources are also derived from the two non-

ero eigenvalues and the associated eigenvectors of the rank

wo matrix S = σ 2 
s (a 1 , a 2 )( 

a H 
1 

+ ρ′ a H 
2 

ρ′∗a H 
1 

+ a H 
2 

) . The non-zero eigenvalues of

 are also the roots of the quadratic polynomial: λ2 − Tr (S ) λ +
et [ σ 2 

s ( 
a H 

1 
+ ρ′ a H 

2 

ρ′∗a H 
1 

+ a H 
2 

)(a 1 , a 2 )] which are λk = ‖ a k ‖ 2 σ 2 
s (α ±

√ 

α2 − γ ) ,

 = 1 , 2 , with α
def = 1 + Re (ρ′ β∗) and γ

def = (1 − | ρ′ | 2 )(1 − | β| 2 )
nd the associated eigenvectors v k = [ ‖ a k ‖ 2 σ 2 

s (1 + ρ′∗β) − λk ] a 1 −
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‖ a k ‖ 2 σ 2 
s (ρ

′∗ + β∗) a 2 . Plugging these eigenvalues and eigenvec-

tors in U = ( 
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‖ v 1 ‖ 2 + ( 
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‖ v 1 ‖ 2 +
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v 2 v 
H 
2 

‖ v 2 ‖ 2 and after cumbersome, but straightforward algebraic ma-

nipulations, expressions a H 
k 

Ua k and a H 
k 

U 

′ a k w.r.t. the parameters

σ 2 
s , σ

2 
n , ρ and β are deduced and Result 7 is proved. �
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