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Complex-valued data in statistical signal processing applications have many advantages over their real-
valued counterparts. It allows us to use the complete statistical information of the signal thanks to its 
statistical property of non-circularity. This paper presents a general framework for developing asymptotic 
theoretical results on the distribution-free sample sign covariance matrix (SSCM) under circular complex-
valued elliptically symmetric (C-CES) and non-circular CES (NC-CES) multidimensional distributed data. It 
extends some partial asymptotic results on SSCM derived for real elliptically symmetric (RES) distributed 
data. In particular closed-form expressions of the first and second-order of the SSCM are derived for 
arbitrary spectra of eigenvalues for C-CES and NC-CES distributed data which facilitates the derivation of 
numerous statistical properties. Then, the asymptotic distributions of associated projectors are deduced, 
which are applied in the study of asymptotic performance analysis of SSCM-based subspace algorithms, 
followed by a comparison to the asymptotic results derived using Tyler’s M estimate. However, a more 
in-depth analytical analysis of the efficiency of the SSCM relative to Tyler’s M estimate is performed, 
yielding that the performances of the SSCM and Tyler’s M estimate are close for a high-dimensional data 
and not too small dimension of the principal component space. We conclude therefore that, although the 
SSCM is inefficient relative to Tyler’s M estimate, it is of great interest from the point of view of its lower 
computational complexity for high-dimensional data. Finally, numerical results illustrating the theoretical 
analysis are presented through the direction-of-arrival (DOA) estimation CES data models.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Covariance matrix (CM) estimation is a fundamental and long-standing problem facing the statistical signal processing community. 
Many algorithms for estimation and detection rely on accurate covariance estimators (see e.g., [1]). The problem is well solved under 
Gaussian distributed data for which the well-known sample covariance matrix (SCM) is the maximum likelihood ML CM estimator. It is, 
however, well known that the SCM estimator is non-robust, being highly sensitive to outliers and very inefficient for non-Gaussian heavy-
tailed distributed data. Therefore, several robust alternatives have been proposed in the literature for real elliptically symmetric (RES) 
and complex elliptically symmetric (CES) distributed data. Among those, the M-estimates [2], Tyler’s M-estimator [3,4] and its complex 
extension [5–7], Huber’s M-estimator [8] and its complex extension [5], and the sample sign covariance matrix (SSCM), to the best of our 
knowledge, was introduced by [9] under the name of normalized sample covariance matrix in the signal processing community and by 
[10] in the statistics community.

This latter estimate is easy to compute, and was studied by several authors under various names, such as sign covariance matrix [11]
and [12], spatial sign covariance matrix [13], [19], [20]. It was first studied in the RES framework in [11] with the sample spatial Kentall’s 
tau covariance matrix and then in [12], they proved in particular that the expectation of the SSCM and SCM share the same eigenvectors 
with different eigenvalues with a one-to-one but rather complicated correspondence. The asymptotic distribution of projector estimates 
based on the SSCM was studied in [19] and [20] paying particular attention to the asymptotic relative efficiency of the SSCM to Tyler’s M
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estimate. A one-dimensional integral representation of the eigenvalues of the expectation of the SSCM was provided in [21, Proposition 
3], but requiring numerical approximations.

Regarding C-CES distributed data [18], closed-form expressions of the first and second-order moments of the SSCM have been given in 
the particular case of different eigenvalues in [22], that were partially completed in the case of a single multiple eigenvalue in [23], [24]. 
Recently, an approximation of the one-dimensional integral representation [21, Proposition 3] for the eigenvalues of the expectation of the 
SSCM has been given in [25], making possible an approximate bias correction to its eigenvalues leading a robust regularized SSCM based 
estimator. Note that this SSCM was mainly used in DOA estimation with heavy-tailed noise [13] and in radar clutter modeling [9], [14–17]
in the framework of C-CES distributed data.

The focus of this paper is to refine and derive asymptotic normality and efficiency results of SSCM for underlying C-CES and NC-CES 
(also known as the generalized CES [26]) distributed data. In undertaking this, our main contribution is threefold: First, we present an 
asymptotic performance analysis of the SSCM by giving analytical closed-form expressions of the expectation and covariance of the SSCM 
by analytically solving one-dimensional integrals for arbitrary eigenvalue spectra of the associated SCM. Second, we deduce an asymptotic 
performance analysis of the associated projectors and then of subspace-based algorithms associated with the SSCM for arbitrary invariant 
subspace. And finally, this asymptotic performance based on SSCM is compared to that based on Tyler’s M estimate, where an analytical 
analysis of the efficiency of the SSCM relative to Tyler’s M estimate is studied. This allows us to conclude that although the SSCM 
is inefficient relative to Tyler’s M estimate, whose performances are particularly close for a high-dimensional data and not too small 
dimension of the principal component space and, therefore, deduce that the SSCM estimate is of great interest from the point of view of 
their lower computational complexity for high-dimensional data.

The paper is organized as follows. Section 2 describes the second-order C-CES and NC-CES distributions, specifies different robust 
estimators of their scatter and extended scatter matrices, and introduces the problem formulation. The asymptotic distribution of the 
SSCM with closed-form expressions of the first and second-order moments is derived in Section 3 for arbitrary eigenvalue spectra of 
the scatter and extended scatter matrices. Then the asymptotic distribution of associated projectors and subspace-based algorithms are 
deduced, in Section 4, which are compared to those of Tyler’s M estimate proving the efficiency of the SSCM relative to Tyler’s M estimate. 
These results are applied to the factor models in Section 5 with a detailed analysis of the inefficiency of the SSCM relative to Tyler’s M
estimate illustrated with subspace-based DOA estimation in C-CES and NC-CES data models. Finally, the paper is concluded in Section 6.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper case and bold lower 
case characters, respectively. Vectors are by default in column orientation, while T , H , ∗ and # stand for transpose, conjugate transpose, 
conjugate and Moore Penrose inverse, respectively. ek and ̃ek denote the k-unit vector of dimension N and 2N , respectively. (a)k and (A)k,�

denotes the k and (k, �)-th element of the vector a and the matrix A, respectively. E(.), |.|, Diag(.), Re(.) and Im(.) are the expectation, 
determinant, diagonal, real and imaginary part operators respectively. I is the identity matrix and J is the exchange matrix 

(
0 I
I 0

)
of 

appropriate dimensions. vec(·) is the “vectorization” operator that turns a matrix into a vector by stacking the columns of the matrix one 
below another which is used in conjunction with the Kronecker product A ⊗ B as the block matrix whose (i, j) block element is ai, jB
and with the commutation matrix K of appropriate dimension such that vec(CT ) = Kvec(C). Finally, 1 is the indicator function, �(x) is 
the Gamma function with �(k) = (k − 1)! for k ∈ N , B(k, �) is the Beta function with B(k, �) = �(k)�(�)

�(k+�)
and 2 F1(a, b, c, x) is the Gauss 

hypergeometric functions with 2 F1(a, b, c, x) = 1
B(b,c−b)

∫ 1
0 tb−1(1 − t)c−b−1(1 − tx)−adt for c > b > 0 and |x| < 1. x =d y means that the r.v. 

x and y have the same distribution.

2. Data model and problem formulation

2.1. C-CES and NC-CES distributions

Let (xt)t=1,..,T be a set of T independent and identically zero-mean with finite second-order moments N-dimensional C-CES or NC-
CES distributed data snapshots. Let us remind here that an N-dimensional complex r.v. xt has a CES distribution if and only if the 
2N-dimensional real r.v. x̄t

def= (ReT (xt), ImT (xt))
T is RES distributed. Depending on whether E(xt xT

t ) = 0 or E(xtxT
t ) �= 0, the associated 

complex distribution is said to be circular or non-circular. These associated p.d.f. are given by [18] and [26][27] for respectively C-CES and 
NC-CES distributions

p(xt) = cN,g |�x|−1 g(xH
t �−1

x xt), [resp., cN,g |�x̃|−1/2 g

(
1

2
x̃H

t �−1
x̃ x̃t

)
], (1)

where ̃xt
def= (xT

t , xH
t )T , �x and �x̃ are N × N [resp., 2N × 2N] Hermitian positive definite matrices respectively called scatter and extended 

scatter matrices. The density generator g(.): R+ �→ R+ which allows to describe heavier or lighter tailed distribution than the complex 
Gaussian distribution satisfies δN,g

def= ∫ ∞
0 tN−1 g(t)dt < ∞ to ensure the integrability of p(xt). cN,g is a normalizing constant given by 

cN,g
def= 2(sNδN,g)

−1 where sN
def= 2π N/�(N) is the surface area of the unit complex N-sphere. We note that the so-called scale ambi-

guity usually present in the p.d.f. of xt with the scatter and extended scatter matrices, is here removed thanks to the constraint on g: 
δN+1,g/δN,g = N [18] which ensures that the scatter matrices are equal to the covariance matrices.

The r.v. xt admits the following stochastic representation:

xt =d

√
Qt�

1/2
x ut, circular case [18] (2)

x̃t =d

√
Qt�

1/2
x̃ ũt, non-circular case [27], (3)

where ũt
def= (uT

t , uH
t )T , Qt and ut are independent, and ut is uniformly distributed on the unit complex N-sphere (denoted hereafter 

U (CS N )). Note that the CES distributions encompass the compound-Gaussian distributions whose r.v.s are also referred to as spherically 
invariant random vector (SIRP) in the engineering literature for modeling radar clutter (see e.g., [9]).
2
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2.2. Robust estimators of the scatter matrix

When the distribution of xt is known, the density generator g is fixed and the ML estimate of �x and �x̃ are solutions of the respective 
implicit equations:

�̂x,ML = 1

T

T∑
t=1

φ(xH
t �̂−1

x xt)xtxH
t and �̂x̃,ML = 1

T

T∑
t=1

φ(
1

2
x̃H

t �̂−1
x̃ x̃t )̃xt x̃H

t (4)

with φ(t) def= − 1
g(t)

dg(t)
dt for respectively C-CES [18] and NC-CES [27] distributions.

But when the distribution of xt is unknown, the simplest estimate of �x and �x̃ is the SCM given respectively by

�̂x,SCM
def= 1

T

T∑
t=1

xtxH
t and �̂x̃,SCM

def= 1

T

T∑
t=1

x̃t x̃H
t . (5)

Although ML estimate in the case of Gaussian distributions (solution of (4) for φ(t) = 1), this SCM is not robust and can perform poorly 
in comparison to M-estimators (solution of (4) where φ(t) may not be related to g(t)) in the CES framework or in the context of 
contaminated data. Despite this potential mismatch, M-estimators can ensure good performance accuracy on the whole CES family and can 
present robustness to contamination by outliers. Tyler’s and Hubert’s M-estimators are examples of such estimators. Tyler’s M-estimators 
for C-CES [18] and NC-CES [27] distributions are solutions of the following equation:

�̂x,Ty = N

T

T∑
t=1

xtxH
t

xH
t �̂−1

x,T y
xt

and �̂x̃,Ty = 2N

T

T∑
t=1

x̃t x̃H
t

x̃H
t �̂−1

x̃,Tỹxt
. (6)

In order to ensure the uniqueness of a consistent solution of (6), it suffices to impose the respective normalization conditions 
Tr(�−1

x �̂x,Ty) = N and Tr(�−1
x̃ �̂x̃,Ty) = 2N . Interestingly, the distribution of the Tyler’s M-estimator does not depend on the specific RES 

or CES distribution of the data. In the RES framework, this estimator is the ML for �x when the data comes from the angular central 
Gaussian distribution [28]. This property was extended to the complex circular [5], [29] and non-circular case [27].

In the context of unknown distribution of xt , unlike Tyler’s M-estimate, the SSCM are defined below by a closed-form expression 
simpler to calculate:

�̂x,SSCM
def= 1

T

T∑
t=1

s(xt)sH (xt) and �̂x̃,SSCM
def= 1

T

T∑
t=1

st (̃xt)sH
t (̃xt), (7)

where s(xt) 
def= xt‖xt‖ if xt �= 0 and s(xt) 

def= 0 if xt = 0, are another possible robust estimate of �x and �x̃ , respectively. Using the stochastic 
representations of the C-CES (2) and NC-CES (3) distributed data xt , we note that the distribution of s(xt) is invariant under the distribution 
of Qt . We thus have the liberty of choosing any specific spherical distribution in CN for wt

def= √
Qt ut . Consequently, these SSCM have the 

same distribution as, respectively:

�̂x,SSCM =d
1

T

T∑
t=1

�
1/2
x utuH

t �
1/2
x

uH
t �xut

=d
1

T

T∑
t=1

�
1/2
x wtwH

t �
1/2
x

wH
t �xwt

(8)

and

�̂x̃,SSCM =d
1

T

T∑
t=1

�
1/2
x̃ ũt ũH

t �
1/2
x̃

ũH
t �x̃ũt

=d
1

T

T∑
t=1

�
1/2
x̃ w̃tw̃H

t �
1/2
x̃

w̃H
t �x̃w̃t

, (9)

with w̃t
def= (wT

t , wH
t )T . We therefore see from (8) and (9) that the distribution of these SSCM does not depend on the CES distribution of 

the data, whereas this property was acquired by Tyler’s M-estimate only asymptotically.

2.3. Problem formulation

The spectral decomposition of the scatter matrix �x is given by �x = V�VH where � def= Diag(λ1, .., λN ), and V = (v1, ..., vN ) where 
(vk)k=1,..,N are unit-norm eigenvectors associated with the eigenvalues (λk)k=1,..,N . We assume here that λ1 ≥ ... ≥ λk ≥ ... ≥ λN > 0 with 
J distinct eigenvalues λ(1) > ... > λ( j) > ... > λ( J ) > 0 with the respective multiplicities being m1, ..., m j, ..., m J . We consider the eigen-
projectors associated with the eigenvalue λ( j) , i.e., the orthogonal projector �( j) = ∑

k∈s j
vkvH

k where s j denotes the set of eigenvalues λk

equal to λ( j) , and paying attention to the derivation of the asymptotic distribution of these eigenprojectors estimated from the SSCM, and 
then compared it to that of eigenprojectors estimated from the SCM and Tyler’s M-estimate.

Regarding the extended scatter matrix �x̃ , there also exists a spectral decomposition1 �x̃ = Ṽ�̃ṼH where �̃ def= Diag(̃λ1, .., ̃λ2N), in 
which there exist unit-norm eigenvectors (̃vk)k=1,...,2N associated with the eigenvalues (̃λk)k=1,..,2N that are structured in the form ṽk =
(vT

k , vH
k )T [30]. We assume that ̃λ1 ≥ ... ≥ λ̃k ≥ ... ≥ λ̃2N > 0. Similarly, we also consider the eigenprojectors �̃( j) = ∑

k∈s j
ṽk̃vH

k , j = 1, ..., J

1 This spectral decomposition is different from the one proposed in [31] for which ̃V is widely unitary and �̃ is diagonal block instead.
3
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and derive the asymptotic distribution of these eigenprojectors estimated from the SSCM which is compared to that of the eigenprojectors 
estimated from the SCM and Tyler’s M-estimate.

The case of eigenvalues λ1 > ... > λP > λP+1 = ... = λN > 0 associated with �x and λ̃1 > ... > λ̃P > λ̃P+1 = ... = λ̃2N > 0 associated 
with �x̃ are important particular cases will be also considered.

3. Asymptotic distribution of the SSCM

For C-CES distributed data, it has been proved in [22, Th. 1] that E(�̂x,SSCM) = V�VH where � = Diag(χ1, .., χN ) with entries, χk , 
k = 1, .., N , are given by rather complicated expressions for distinct eigenvalues λk , k = 1, .., N . A general expression of χk was directly 
derived in [25, Th. 1, eq. (6)] from an integral representation of E 

(
xt xH

t

xH
t Zxt

)
where Z is a positive definite N × N matrix for arbitrary 

eigenvalues. Here, we deduce the expressions of χk from those of RES distributed data given by [21, proposition 3] and extend them to 
NC-CES distributed data. Using the stochastic representations (8) and (9) of the SSCM, the following theorem is proved in Appendix A:

Theorem 1. The first-order moments of the SSCM associated with C-CES and NC-CES distributed data are, respectively, given by

E(�̂x,SSCM) = V�VH and E(�̂x̃,SSCM) = Ṽ�̃ṼH , (10)

where � = Diag(χ1, .., χN ) with χk = λkE 
( |(ut )k |2

uH
t �ut

)
, k = 1, ..., N, and �̃ = Diag(χ̃1, .., ̃χ2N ) with χ̃k = λ̃kE 

( |(ūt )k |2
ūT

t �̃ūt

)
, k = 1, ..., 2N, with ūt

def=
(ReT (ut), ImT (ut))

T , and χk and χ̃k have the same multiplicity order than the eigenvalues λk and ̃λk, respectively, with

χ( j) = λ( j)

∞∫
0

1

(1 + λ( j)x)m j+1 ∏
1≤k �= j≤ J (1 + λ(k)x)mk

dx, (11)

χ̃( j) = λ̃( j)

2

∞∫
0

1

(1 + λ̃( j)x)
m j
2 +1 ∏

1≤k �= j≤ J (1 + λ̃(k)x)
mk
2

dx. (12)

This theorem shows that E(�̂x,S) [resp., E(�̂x̃,S)] and �x [resp., �x̃] share the same eigenvectors with possible different eigenvalues.
From definition (7) of the SSCM, the central limit theorem2 applies and consequently:

√
T (vec(�̂x,SSCM) − vec(V�VH )) →d N (0;R	̂SSCM

,R	̂SSCM
KN2) (13)√

T (vec(�̂x̃,SSCM) − vec(̃V�̃ṼH )) →d N (0;R̂̃	SSCM
,R̂̃	SSCM

K(2N)2), (14)

where the covariance matrices of these asymptotic distributions are given by the following theorem proved in Appendix A:

Theorem 2. The second-order moments of the SSCM associated with C-CES and NC-CES distributed data are respectively given by

R	̂SSCM
=

∑
1≤k �=�≤N

γk,�(v∗
� ⊗ vk)(vT

� ⊗ vH
k ) +

∑
1≤k,�≤N

(γk,� − χkχ�)(v∗
k ⊗ vk)(vT

� ⊗ vH
� ) (15)

R̂̃	SSCM
=

∑
1≤k �=�≤2N

γ̃k,�(̃v∗
� ⊗ ṽk)(̃vT

� ⊗ ṽH
k ) +

∑
1≤k,�≤2N

(γ̃k,� − χ̃kχ̃�)(̃v∗
k ⊗ ṽk)(̃vT

� ⊗ ṽH
� )

+
∑

1≤k �=�≤2N

γ̃k,�(̃v∗
� ⊗ ṽk)(̃vT

k ⊗ ṽH
� ), (16)

where χk
def= χ( j) and ̃χk

def= χ̃( j) for k ∈ s j are given in (11) and (12), respectively, and where γk,� = λkλ�E 
( |(ut )k |2|(ut )�|2

(uH
t �ut )2

)
, k = 1, ..., N, � = 1, ..., N

and γ̃k,� = λ̃kλ̃�E 
(

(ūt )
2
k (ūt )

2
�

(ūT
t �̃ūt )2

)
, k = 1, ..., 2N, � = 1, ..., 2N are given by

γk,� = 2λ2
( j)

∞∫
0

x

(1 + λ( j)x)m j+2 ∏
1≤k �= j≤ J (1 + λ(k)x)mk

dx, k ∈ s j and � ∈ s j, (17)

γk,� = λ(i)λ( j)

∞∫
0

x

(1+λ(i)x)mi+1(1+λ( j)x)m j+1 ∏
1≤n �=i≤ J
1≤n �= j≤ J

(1+λ(n)x)mn
dx, k ∈ si, � ∈ s j with si �=s j (18)

γ̃k,� = 3̃λ2
( j)

4

∞∫
0

x

(1 + λ( j)x)
m j
2 +2 ∏

1≤n �= j≤ J (1 + λ(n)x)
mn
2

dx, k ∈ s j and � ∈ s j, (19)

2 N (m; R, C) denotes the complex Gaussian distribution with mean m, covariance R and complementary covariance C.
4
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γ̃k,� = λ̃(i)̃λ( j)

4

∞∫
0

x

(1+λ(i)x)
mi
2 +1(1+λ( j)x)

m j
2 +1 ∏

1≤n �=i≤ J
1≤n �= j≤ J

(1+λ(n)x)
mn
2

dx, k ∈ si, � ∈ s j with si �=s j . (20)

We note, because the SSCM and Tyler’s M estimator are distribution-free within CES distributions, that the asymptotic distributions of 
SSCM given in Theorems 1 and 2 for C (and NC)-CES distributed data and of Tyler’s M estimate given in [4] and [27] for RES and C (and 
NC)-CES respectively, do not require that the second or fourth-order moments of the CES distributed data to be finite. In these cases �x

and �x̃ denote respectively the scatter and extended scatter matrices defined up to a multiplicative constant.
Unlike the asymptotic distributions of the SCM and ML estimate which are defined only for C-CES and NC-CES distributed data with 

finite fourth-order moments. However, the covariance matrices R	̂SCM
, R	̂ML

, R	̂Ty
, R	̂SSCM

and R̂̃	SCM
, R̂̃	ML

, R̂̃	Ty
, R̂̃	SSCM

of the asymptotic 

distributions of �̂x,SCM, �̂x,ML, �̂x,Ty, �̂x,SSM and of �̂x̃,SCM, �̂x̃,ML, �̂x̃,Ty, �̂x̃,SSCM share respectively the same structure:∑
1≤k �=�≤N

ak,�(v∗
� ⊗ vk)(vT

� ⊗ vH
k ) +

∑
1≤k,�≤N

bk,�(v∗
k ⊗ vk)(vT

� ⊗ vH
� ) (21)

and ∑
1≤k �=�≤2N

ãk,�(̃v∗
� ⊗ ṽk)(̃vT

� ⊗ ṽH
k ) +

∑
1≤k,�≤2N

b̃k,�(̃v∗
k ⊗ ṽk)(̃vT

� ⊗ ṽH
� ) +

∑
1≤k �=�≤2N

ãk,�(̃v∗
� ⊗ ṽk)(̃vT

k ⊗ ṽH
� ), (22)

with ak,� = a�,k , bk,� = b�,k , ̃ak,� = ã�,k and ̃bk,� = b̃k,� .
Moreover in the particular case of C-CES distributed data �x = λI, we have J = 1 and m1 = N in (11) and (17) which respectively 

give χk = 1
N and γk,� = 2

N(N+1)
, k, � = 1, ..., N , and consequently the covariance of the asymptotic distributions of the SSCM and Tyler’s 

M-estimate are proportional:

R	̂SSCM
= 1

λ2(N + 1)2
R	̂Ty

= 1

N(N + 1)
I − 1

N2(N + 1)
vec(I)vecT (I). (23)

Similarly, this property of proportionality is preserved for ̃xt
def= (xT

t , xH
t )T with xt is C-CES distributed data and �x̃ = λI, and we have

R̂̃	SSCM
= 1

4λ2(N + 1)2
R̂̃	Ty

= 1

4N(N + 1)
[I + K(J ⊗ J)] − 1

4N2(N + 1)
vec(I)vecT (I). (24)

4. Asymptotic distribution of subspace projectors

4.1. Asymptotic distribution of SSCM subspace projectors

Now we consider the orthogonal projector �̂SSCM,( j) = ∑
k∈s j

v̂k̂vH
k derived from the spectral decomposition of the SSCM �̂x,SSCM whose 

eigenvalues are λ̂1 > ... > λ̂k > ... > λ̂N > 0 and associated orthonormal eigenvectors v̂1, ..., ̂vk, ..., ̂vN . Then, using the standard perturba-
tion result associated with the mapping �̂x,SSCM = E(�̂x,SSCM) + δ(�x,SSCM) = V�VH + δ(�x,SSSM) �→ �̂SSCM,( j) = �( j) + δ(�SSCM,( j)) for 
orthogonal projectors [32] (see also the operator approach in [33]) applied to the eigenprojector �( j) of �x which is the same of V�VH :

δ(�SSCM,( j)) = −�( j)δ(�x,SSCM)S#
j − S#

j δ(�x,SSCM)�( j) + o(δ(�x,SSCM)), (25)

where �( j)
def= V�VH − χ( j)IN = ∑

k/∈s j
(χk − χ( j))vkvH

k , the asymptotic behaviors of �̂SSCM,( j) and �̂x,SSCM are directly related. The stan-

dard theorem of continuity (see e.g., [34, p. 122]) on regular functions of asymptotically Gaussian statistics applies: 
√

T (vec(�̂SSCM,( j) −
vec(�( j)) →d N (0; R�̂SSCM,( j)

, R�̂SSCM,( j)
KN2 ) with

R�̂SSCM,( j)
= [(�#∗

( j) ⊗ �( j)) + (�∗
( j) ⊗ �#

( j))]R	̂SSCM
[(�#∗

( j) ⊗ �( j)) + (�∗
( j) ⊗ �#

( j))]. (26)

Then plugging (15) into (26) and using the same steps to derive the result associated with the orthogonal projector ̂̃�SSCM,( j) = ∑
k∈s j

̂̃vk̂̃v
H
k

derived from the spectral decomposition of the extended SSCM �̂x̃,SSCM, the following theorem is proved in Appendix A after simple 
algebraic manipulations:

Theorem 3. The covariance of the asymptotic distribution of the eigenprojectors �̂SSCM,( j) and ̂̃�SSCM,( j) are, respectively, given by

R�̂SSCM,( j)
= (U∗

SSCM,( j) ⊗ �( j)) + (�∗
( j) ⊗ USSCM,( j)), (27)

R̂̃�SSCM,( j)
= [I + K(J ⊗ J)][(Ũ∗

SSCM,( j) ⊗ �̃( j)) + (�̃∗
( j) ⊗ ŨSSCM,( j))] (28)

with

USSCM,( j)
def=

∑
k/∈s

γk,( j)

(χk − χ( j))
2

vkvH
k and ŨSSCM,( j)

def=
∑
k/∈s

γ̃k,( j)

(χ̃k − χ̃( j))
2

ṽk̃vH
k . (29)
j j

5



H. Abeida and J.-P. Delmas Digital Signal Processing 131 (2022) 103767
We note first that this theorem extends [20, rels (3.12), (3.13)] dedicated to RES distributed data. On the other hand, these expressions 
have a similar structure than the ones derived for the noise projector associated with the SCM and extended SCM, respectively [30]. 
Furthermore, we note that the covariance matrices of the Gaussian asymptotic distribution of subspace projectors built from the SCM, ML 
and Tyler’s M-estimate are similarly structured. They are respectively given for C-CES and NC-CES data by [27]:

R�̂( j)
= (U∗

( j) ⊗ �( j)) + (�∗
( j) ⊗ U( j)), (30)

R̂̃�( j)
= [I + K(J ⊗ J)][(Ũ∗

( j) ⊗ �̃( j)) + (�̃∗
( j) ⊗ Ũ( j))], (31)

where

U( j) = ϑ
∑
k/∈s j

λkλ( j)

(λk − λ( j))
2

vkvH
k and Ũ( j) = ϑ

∑
k/∈s j

λ̃kλ̃( j)

(̃λk − λ̃( j))
2

ṽk̃vH
k , (32)

with

ϑ = E(Q2
t )

N(N + 1)
for SCM estimate, (33)

= E[φ2(Qt)Q2
t ]

N(N+1)(1+[N(N+1)]−1E[φ′(Qt)Q2
t ])2

= N(N + 1)

E[φ2(Qt)Q2
t ] for ML estimate, (34)

= N + 1

N
for Tyler’s M estimate, (35)

with φ′(u) def= dφ(u)
du . We note that ϑ = 1 for Gaussian distributed data for which the ML estimate is reduced to the SCM estimate.

4.2. Asymptotic inadmissibility of subspace projectors

For circular complex angular central Gaussian distributed data, Tyler’s M estimate is the ML of �x and thus by the invariance property 
of the ML, its associated orthogonal projectors �̂Ty,( j) is the ML estimate of �( j) . Thanks to the free distribution property of the asymptotic 
distribution of Tyler’s M estimate in the C-CES family, where is added the circular complex angular central Gaussian distribution [4], the 
covariance matrix R�̂Ty,( j)

is less than or equal to the covariance of the asymptotic distribution of any other asymptotically unbiased 
estimator of �( j) for arbitrary C-CES distributed data. We get in particular for the SSCM estimate:

R�̂Ty,( j)
≤ R�̂SSCM,( j)

. (36)

In the case of non-circular distributed data, it is straightforward to prove using the associated r.v. x̄t that non-circular Tyler’s M estimate 
(6) is the ML of �x̃ for the distribution of p.d.f. p(xt) = s−1

N |�−1/2
x̃ |(̃xt�

−1
x̃ x̃t)

−N with respect to the U (CS N ) distribution. Now by following 
similar arguments to those in the proof of (36), we also obtain:

R̂̃�Ty,( j)
≤ R̂̃�SSCM,( j)

. (37)

Furthermore from (23) and (24), we deduce that when �x → λI and �x̃ → λI, the inequalities (36) and (37) approach equalities, respec-
tively. These inequalities show that the estimator �̂Ty,( j) asymptotically dominates the estimator �̂SSCM,( j) for arbitrary parameter �( j) in 
the sense of the mean squared error. This property of asymptotic inadmissibility of the projector associated with the SSCM proved firstly 
for RES distributed data in [19] and [20], is thus extended to the arbitrary C-CES and NC-CES distributed data.

5. Application to factor models

5.1. Asymptotic distribution of the noise subspace

We consider now the case of low-rank plus identity scatter matrices �x and �x̃ that are commonly used in signal processing to account 
for low dimensional signal of interest embedded in spatial white noise.

�x = �s + λI and �x̃ = �s̃ + λI, (38)

where �s and �s̃ have rank P with P < N and P < 2N , respectively. In this case, Theorem 3 applies where the subspace ( j) is the 
so-called noise subspace and the covariances of the asymptotic distribution of the associated subspace are denoted by R�̂SSCM

and R̂̃�SSCM
.

In the particular case where λ1 > ... > λP > λP+1 = ... = λN︸ ︷︷ ︸
λ

> 0, it is proved in Appendix A that the one-dimensional integrals (11), 

(17) and (18) can be reduced to closed-form expressions without integrals except for Gauss hypergeometric functions that extend the 
complicated expressions given in [22, Th. 1] for distinct eigenvalues (i.e., for P + 1 = N). These expressions are reported in Appendix A for 
the ease of the readers.

While for NC-CES distributed data, the one-dimensional integrals (12), (19) and (20) cannot be reduced to closed-form expressions for 
any eigenvalues except the case ̃λ1 = ... = λ̃P for which identity (66) proved in Appendix A allows us to derive the following expressions 
from simple algebraic manipulations:
6
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χ̃k = 1

2N
2 F1

(
1, N − P

2
, N + 1,1 − λ̃

λ̃1

)
, k = 1, ..., P , (39)

χ̃
def= χ̃k = (̃λ/̃λ1)

2N
2 F1

(
1, N − P

2
+ 1, N + 1,1 − λ̃

λ̃1

)
, k = P + 1, ...,2N, (40)

γ̃k,k = 3

4N(N + 1)
2 F1

(
2, N − P

2
, N + 2,1 − λ̃

λ̃1

)
, k = 1, ..., P , (41)

γ̃
def= γ̃k,k = 3(̃λ/̃λ1)

2

4N(N + 1)
2 F1

(
2, N − P

2
+ 2, N + 2,1 − λ̃

λ̃1

)
, k = P + 1, ...,2N, (42)

γ̃k
def= γ̃k,� = (̃λ/̃λ1)

4N(N + 1)
2 F1

(
2, N − P

2
+ 1, N + 2,1 − λ̃

λ̃1

)
, k = 1, ..., P , � = P + 1, ...,2N. (43)

We note that (39), (40) and (43) are consistent with the expressions [20, (3.16), (3.17)] given for N-dimensional RES distributed data.

5.2. Performance of subspace-based algorithms

We consider here that the scatter matrices �x and �x̃ in (38) are structured as follows:

�x = A(θ)RsAH (θ) + λI and �x̃ = Ã(θ)Rs̃ÃH (θ) + λI, (44)

where the real-valued parameter of interest θ is characterized by the subspace generated by the columns of the full column rank matrices 
A(θ) and Ã(θ), and where Rs and Rs̃ are P × P positive definite Hermitian and real-valued symmetric matrices, respectively. This is in 
particular the case of the general noisy linear mixture model:

xt = A(θ)st + nt . (45)

This parametric model finds wide applications in various areas such as communication systems and array processing as explained in [27, 
Section II]. We note that st and nt cannot be both CES distributed as the family of CES distributions is not closed under summation except 
for the Gaussian distribution. But fixing both the structures (44) and the CES distribution of xt , (2) and (3) can be considered as good 
approximations thanks to the flexibility of the family of the elliptical symmetric distributions.

In these conditions any subspace-based algorithms can be considered as the following mapping:

(x1, ..,xt , ..,xT ) �−→ �̂ �−→ �̂
alg�−→ θ̂ , (46)

where �̂ can be the SSCM, SCM, ML and Tyler’s M estimate of �x for C-CES distributed data, or of �x̃ for NC-CES distributed data, and 
�̂ denotes the orthogonal projection matrix associated with the so-called noise subspace of �̂. The functional dependence θ̂ = alg(�̂)

constitutes an extension of the mapping

�(θ)
def= I − B(θ)[BH (θ)B(θ)]−1BH (θ)

alg�−→ θ , (47)

in the neighborhood of �(θ) with B(θ) is either A(θ) or ̃A(θ). Each extension alg(.) specifies a particular subspace-based algorithm which 
is assumed asymptotically unbiased and differentiable w.r.t. (Re(�(θ), Im(�(θ)), whose MUSIC algorithm is an example. Among these 
algorithms, the asymptotically minimum variance (AMV) algorithm (introduced in [35] and [36]), which minimizes the covariance matrix 
of the asymptotic distribution of the estimate ̂θ plays a role of benchmark. The covariance of the Gaussian asymptotic distribution of the 
estimate ̂θ given by these subspace-based algorithms is given by [27]:

R
θ̂

= DalgR�̂DH
alg, (48)

where Dalg is the differential matrix3 of the algorithm and R�̂ is the covariance of the asymptotic distribution of the different estimates of 
the projector matrices on the noise subspace built on the SSCM, SCM, ML and Tyler’s M estimates (27)-(31). Consequently, from (32)-(35), 
the covariance matrices R

θ̂
associated with the SCM, ML and Tyler’s M estimates for arbitrary elliptical distributed data are equal up to a 

multiplicative factor ϑ , to the covariance matrix R
θ̂

associated with the SCM and ML estimates for Gaussian distributed data. Besides, the 
covariance of the asymptotic distribution of the AMV algorithms takes the particular expression [27]:

R
θ̂

= (�′ H (θ)R#
�̂

�′(θ))−1, (49)

where �′(θ) def= dvec(�(θ))
dθ . It has been proved in [27] that the AMV estimates ̂θ derived from the estimates �̂ML and ̂̃�ML built on the ML 

estimate of �x and �x̃ , respectively, are asymptotically efficient, i.e., their covariance matrices R
θ̂ ,ML reach the Cramér-Rao bound (CRB) of 

the parameter θ . Consequently the following theorem is deduced from (36), (37), (48) and (49):

3 This differential matrix D is defined by the relation ̂θ = alg(�̂) = alg(�(θ))︸ ︷︷ ︸+Dvec(�̂ − �(θ)) + o(�̂ − �(θ)).
θ

7
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Theorem 4. The covariance of the Gaussian asymptotic distribution of the estimated parameter ̂θ derived for any subspace-based algorithm built on 
the SSCM is bounded below by those built on Tyler’s M estimate for C-CES and NC-CES data. These two covariance matrices being themselves bounded 
below by the CRB.

T × CRB(θ) = (�′ H (θ)R#
�̂,ML

�′(θ))−1 = R
θ̂ ,ML ≤ R

θ̂ ,Ty ≤ R
θ̂ ,SSCM. (50)

Note that similarly to Tyler’s M estimate, R
θ̂ ,SSCM is distribution-free and that for any subspace-based algorithm there is no general 

order relation between R
θ̂ ,SSCM and R

θ̂ ,SCM. However, since the SCM is very sensitive to heavy-tailed CES distributions, R
θ̂ ,SSCM can be 

bounded above by R
θ̂ ,SCM for such distributions. This point will be illustrated in Subsection 5.4.

Moreover, since the covariances of asymptotic distributions of the projectors given by (27) and (28) are structured in a similar way to 
those associated with the SCM, ML and Tyler’s M estimate (30) and (31), it follows that all the analytical results concerning the asymptotic 
distributions of subspace-based algorithms resulting from the SCM, ML and Tyler’s M estimates immediately extend to subspace-based 
algorithms resulting from the SSCM, especially in DOA estimation.

Furthermore, to gain insight into the effect of P , N and eigenvalue spectra on the degradation of the SSCM-based estimates compared 
to the Tyler’s M-based estimates, we consider in the next subsection the special case in which λ1 = ... = λP .

5.3. Asymptotic efficiency of the SSCM relative to Tyler’s M estimate

In this special case which includes the case P = 1, the proportionality of USSCM,( j) and U( j) , and of ŨSSCM,( j) and Ũ( j) given by (29) and 
(32) implies that the covariance matrices of the asymptotic distribution of any subspace-based algorithms derived from the SSCM, SCM, 
ML and Tyler’s M estimates are proportional for both C-CES and NC-CES distributed data.

R
θ̂ ,SSCM = γ1

(χ1 − χ)2

(λ1 − λ)2

λ1λ

1

ϑ
R

θ̂
and R

θ̂ ,SSCM = γ̃1

(χ̃1 − χ̃ )2

(̃λ1 − λ̃)2

λ̃1̃λ

1

ϑ
R

θ̂
, (51)

where ϑ is given by (33)-(35) for SCM, ML and Tyler’s M estimates and R
θ̂

denotes the associated covariance matrix of the estimated 
parameter. We see from (51) that for very heavy tailed CES data for which ϑ (33) is not upper-bounded for the SCM, the covariance 
matrix R

θ̂ ,SSCM can be upper-bounded by the covariance matrix R
θ̂ ,SCM. This point is specified in Subsection 5.4 with P = 1.

From proportionality (51), we can define the asymptotic efficiency of the SSCM relative to Tyler’s M estimate by the ratios rc
def=

(χ1−χ)2

γ1

λ1λ

(λ1−λ)2
N+1

N ≤ 1 and rnc
def= (χ̃1−χ̃ )2

γ̃1

λ̃1λ̃

(̃λ1−̃λ)2
N+1

N ≤ 1 for C-CES and NC-CES distributed data, respectively, for which the following 
theorem is proved in Appendix A.

Theorem 5. Under the assumption λ1 = ... = λP and ̃λ1 = ... = λ̃P , the ratios rc and rnc are given respectively by:

rc = [2 F1(1, N − P + 1, N + 2,1 − λ
λ1

)]2

2 F1(2, N − P + 1, N + 2,1 − λ
λ1

)
and rnc =

[2 F1(1, N − P
2 + 1, N + 2,1 − λ̃

λ̃1
)]2

2 F1(2, N − P
2 + 1, N + 2,1 − λ̃

λ̃1
)

. (52)

These ratios are monotonic increasing functions of respectively λ
λ1

and λ̃

λ̃1
from the intervals (0.1) to (0,1).

In the neighborhood of λ
λ1

= 1, λ̃

λ̃1
= 1 and λ

λ1
= 0, λ̃

λ̃1
= 0, we have respectively:

rc = 1 − (N − P + 1)(P + 1)

(N + 2)2(N + 3)

(
1 − λ

λ1

)2

+ o

(
1 − λ

λ1

)2

, (53)

rnc = 1 −
(

(2N − P + 2)(P + 2)

4(N + 2)2(N + 3)

)(
1 − λ̃

λ̃1

)2

+ o

(
1 − λ̃

λ̃1

)2

, (54)

and

rc =
{

oN,1(1) for P = 1
(1 + 1

N )(1 − 1
P )(1 + oN,P (1)) for P > 1

(55)

rnc =
{

õN,P (1) for P = 1,2
(1 + 1

N )(1 − 2
P )(1 + õN,P (1)) for P > 2

, (56)

where limλ/λ1→0 oN,P (1) = limλ̃/̃λ1→0 õN,P (1) = 0 with

oN,P (1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− N+1

N
1

log λ
λ1

+ o

(
1

log λ
λ1

)
for P = 1

−2(N − 1) λ
λ1

log λ
λ1

+ o
(

λ
λ1

log λ
λ1

)
for P = 2

2(N−P+1)
(P+1)(P+2)

(
λ
λ

)
+ o

(
λ
λ

)
for P > 2

(57)
1 1

8
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õN,P (1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4�(N+ 1
2 )√

π�(N)

(
λ̃

λ̃1

)1/2 + o

((
λ̃

λ̃1

)1/2
)

for P = 1

− N+1
N

1
log λ̃

λ̃1

+ o

(
1

log λ̃

λ̃1

)
for P = 2

3
√

π�(N)

2�(N− 1
2 )

(
λ̃

λ̃1

)1/2 + o

((
λ̃

λ̃1

)1/2
)

for P = 3

−2(N − 1) λ̃

λ̃1
log λ̃

λ̃1
+ o

(
λ̃

λ̃1
log λ̃

λ̃1

)
for P = 4

4(2N2+4N−2N P−P+2)
(N+1)(P−2)(P−4)

(
λ
λ1

)
+ o

(
λ
λ1

)
for P > 4

. (58)

It follows from (53) and (54) that the performance of the subspace-based algorithms derived from SSCM and Tyler’s M estimate are 
very similar for close eigenvalues, and particularly for large values of N and P . This property is consistent with (23) and (24). It follows, 
conversely, from (55) and (56), that for well-separated eigenvalues, the performance of the SSCM-based subspace algorithms are largely 
outperformed by those derived from Tyler’s M estimate for P = 1 and P = 1, 2 for C-CES and NC-CES distributed data because rc and rnc
tend to zero when λ/λ1 and λ̃/̃λ1 tend to zero, respectively. But comparing õN,2(1) to õN,1(1), rnc tends to zero less rapidly for P = 2
than for P = 1. Note however that for N and P large, the performance of the subspace-based algorithms derived from SSCM and Tyler’s 
M estimate are very similar because rc and rnc tend to (1 + 1

N )(1 − 1
P ) < 1 and (1 + 1

N )(1 − 2
P ) < 1 when λ/λ1 and λ̃/̃λ1 tend to zero, 

respectively.
These points are highlighted in Fig. 1 that represents the ratios rc and rnc as functions respectively of λ/λ1 and λ̃/̃λ1, for P = 1, 3, 5

with different values of N . This figure confirms the analysis of the behavior of rc and rnc from the analytical results (53), (54) and (55), 
(56) proved in the neighborhood of one and zero, in all the domain (0,1) of the ratio of eigenvalues.

Consequently, despite the asymptotic performance of all subspace-based algorithms built from Tyler’s M estimate outperforming those 
of the SSCM-based algorithms, these performances are close in particular for large values of N and not too small values of P , and, 
therefore, conclude that SSCM estimate is of great interest from the point of view of its lower computational complexity for large values 
of N .

5.4. Subspace-based DOA estimation

We illustrate here the relative inefficiency of the SSCM relative to Tyler’s M estimate in the worst case of P = 1. Let us consider a 
narrowband signal source st with power σ 2

s which impinges on a uniform linear array of N sensors separated by a half-wavelength for 
which the steering vectors are given by a(θ) = (1, e jθ , . . . , e j(M−1)θ )T where θ = π sin(ω), with ω is the DOAs relative to the normal of 
array broadside, with a spatially circular white noise nt with power σ 2

n . The array output xt = a(θ)st + nt is assumed to be either circular 
or non-circular complex Student’s t-distributed with parameter ν > 0 associated with a circular or rectilinear (st = eiφrt with rt is real-
valued and φ is unknown and fixed) source. This distribution has finite 2nd-order moments if ν > 2 and finite fourth order moments if 
ν > 4 in which case ϑ = ν−2

ν−4 and ϑ = N+ν/2+1
N+ν/2 for the SCM and ML estimate, respectively [37]. The complex Student’s t-distribution has 

heavier tails than the Gaussian one. The limiting case ν → ∞ yields the Gaussian distribution. We also remind the reader that ϑ = N+1
N

for Tyler’s M estimate (see (35)).
In this model, the scatter matrices �x and �x̃ (44) are given by

�x = σ 2
s a(θ)aH (θ) + σ 2

n I and �x̃ = σ 2
s ã(θ )̃aH (θ) + σ 2

n I (59)

where ã(θ) def= (eiφaT (θ), e−iφaH (θ))T and Eqs. (76) and (84) [resp., (39) and (41)] are applied here with λ1 = Nσ 2
s + σ 2

n [resp., λ̃1 =
2Nσ 2

s + σ 2
n ] and λ = σ 2

n . In this example, it is well known that the conventional MUSIC [38] and NC MUSIC [30] algorithms are efficient 
for Gaussian distributed data. This property has been extended to C-CES and NC-CES distributed data in [27], [39]. Consequently the 
variance r

θ̂
of the asymptotic distribution of the estimated DOA by MUSIC and NC MUSIC algorithms are given respectively by

r
θ̂

= T × CRB(θ) = ϑ

α

σ 2
n

σ 2
s

(
1 + σ 2

n

Nσ 2
s

)
and r

θ̂
= T × CRB(θ) = ϑ

α

σ 2
n

σ 2
s

(
1 + σ 2

n

2Nσ 2
s

)
, (60)

where α def= 2a′ H (θ)�a′(θ) and ϑ is given by (34).
Figs. 2 and 3 compare the theoretical asymptotic variance r

θ̂

T and MSEs of conventional and NC MUSIC algorithms based on SCM, SSCM 
and Tyler’s M estimate versus SNR for complex Student’s t-distributed data of different values of the parameter ν . Note first that for 
N = 6 and ν = 2, we get from the above expressions of ϑ that ϑ = N+1

N = 7/6 and ϑ = N+ν/2+1
N+ν/2 = 8/7 for Tyler’s M and ML estimators, 

respectively. So the asymptotic variance of Tyler’s M estimator and the CRB are too close to be distinguishable in Figs. 2 and 3, which 
are equal up to a multiplicative factor ϑ to the asymptotic variance of the SCM estimate associated with Gaussian distributed data. These 
figures also show that the theoretical asymptotic variances given by the MUSIC algorithms based on SSCM and Tyler’s M estimates from 
(48), are very close to each other and to their MSE for a weak SNR and for ν > 4 in the worst-case scenario of P = 1. On the other hand, 
for 2 < ν ≤ 4, for which the fourth-order moments of the data do not exist, and hence the asymptotic distribution of the MUSIC estimates 
based on the SCM is not available, the associated MSE increases strongly when ν approaches 2, for which the data are no longer of the 
second-order.

6. Conclusion

We have presented in this paper an asymptotic performance analysis of the SSCM by giving analytical closed-form expressions of the 
expectation and covariance of the SSCM by analytically solving one-dimensional integrals for arbitrary eigenvalue spectra of the associated 
9



H. Abeida and J.-P. Delmas Digital Signal Processing 131 (2022) 103767
Fig. 1. Ratios rc and rnc versus respectively λ/λ1 and λ̃/̃λ1 for different values of N and P = 1,3,5.

SCM for C-CES and NC-CES distributed data. We then conducted an asymptotic performance analysis of the associated projectors and of 
subspace-based algorithms associated with the SSCM. Finally, this asymptotic performance based on SSCM has been compared to that 
based on Tyler’s M estimate, where an analytical analysis of the efficiency of the SSCM relative to Tyler’s M estimate is studied. These 
results lead us to conclude that the performances of the SSCM and Tyler’s M estimate are close for a high-dimensional data and not too 
small dimension of the principal component space and, therefore, to deduce that the SSCM estimate is of great interest from the point of 
view of their lower computational complexity for high-dimensional data. Finally, this result opens up the interest of a future analysis of 
10
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Fig. 2. Theoretical asymptotic variance r
θ̂

T and MSEs (with 2000 Monte Carlo runs) of conventional MUSIC algorithm based on SCM, SSCM and Tyler’s M estimate versus SNR 
for circular complex Student’s t-distributed data (with T = 500) for either ν > 4 or 2 < ν ≤ 4 and N = 6.

Fig. 3. Theoretical asymptotic variance r
θ̂

T and MSEs (with 2000 Monte Carlo runs) of NC MUSIC algorithm based on SCM, SSCM and Tyler’s M estimate versus SNR for NC 
complex Student’s t-distributed data (with T = 500) for either ν > 4 or 2 < ν ≤ 4 with φ = π/3 and N = 6.

the asymptotic performance of the SSCM in the regime where both the observation dimension N and the number of samples T converge 
to infinity in such a way that the ratio N/T converges to a positive constant.
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Appendix A

Proof of Theorem 1. Let us first consider the case of C-CES distributed data. Taking the square root �
1/2
x = V�1/2, we get from 

(8) E(�̂x,S ) = V�1/2E(
ut uH

t

uH
t �ut

)�1/2VH . Then, using the symmetries of the p.d.f. of the r.v. ut uH
t

uH
t �ut

, it is easy to prove that E(
ut uH

t

uH
t �ut

) is 

diagonal. Consequently E(�̂x,S ) = V�VH where � = Diag(χ1, .., χN ) and where χk = λkE 
( |(ut )k |2

uH
t �ut

)
, k = 1, ..., N . Because ut U (CS N)

distributed is equivalent to ūt
def= (ReT (ut), ImT (ut))

T U (RS2N ) distributed and that |(ut)k|2 = ((ūt)k)
2 + ((ūt)N+k)

2 and uH
t �ut =∑N

n=1 λn((ūt)n)2 + ∑2N
n=N+1 λn−N((ūt)n)2 = ūT

t �′ūt with �′ def= Diag(�, �). Therefore, we get χk
λk

= 2E 
(

((ūt )k)
2

ūT
t �′ūt

)
, k = 1, ..., N which is 

given from [21, proposition 3] for 2N-dimensional RES distributions by 
∫ ∞

0
1

(1+λk x)
∏N

n=1(1+λnx)
dx. Grouping the multiple eigenvalues λk ∈ s j

j, ..., J , (11) is obtained. �
Now, let us consider the NC-CES distributed data xt case. Note that by definition of the NC-CES distribution, the r.v.s x̄t defined by 

the one to one mapping x̃t = √
2Mx̄t where M def= 1√

2

(
I iI
I −iI

)
is a unitary matrix, are RES distributed with stochastic representation 

x̄t =d
√

2
√
Qt�

1/2
x̄ ūt with scatter matrix �x̄ = V̄( 1

2 �̃)V̄T where V̄ is a orthogonal matrix. Taking the square root �1/2
x̄ = V̄( 1

2 �̃)1/2 in (9), 
we get

E(�̂x̃,S) = E

(
x̃t x̃H

t

‖̃xt‖2

)
= E

(
Mx̄t x̄H

t MH

‖x̄t‖2

)
= MV̄(

1

2
�̃)1/2E(

ūt ūT
t

ūT
t ( 1

2 �̃)ūt
)(

1

2
�̃)1/2V̄T MH .

Then, using the symmetries of the p.d.f. of the r.v. ūt ūT
t

ūT
t ( 1

2 �̃)ūt
, it is easy to prove that E(

ūt ūT
t

ūT
t ( 1

2 �̃)ūt
) is diagonal. Therefore, E(�̂x̃,S) = Ṽ�̃ṼH

where Ṽ
def= MV̄ is a unitary structured matrix as 

(
V1
V∗

1

)
and �̃ = Diag(χ̃1, .., ̃χ2N ) where χ̃k = λ̃kE 

( |(ūt )k |2
ūT

t �̃ūt

)
, k = 1, ..., 2N , which is given 

from [21, proposition 3] for 2N-dimensional RES distributions by λ̃k
2

∫ ∞
0

x

(1+̃λk x)
∏2N

n=1(1+̃λnx)
1
2

dx. Finally, grouping the multiple eigenvalues 

λ̃k ∈ s j j, ..., J , (12) is derived. �

Proof of Theorem 2. For C-CES distributed data, R	̂S

def= E[vec( xt xH
t

‖xt‖2 )vecH (
xt xH

t
‖xt‖2 )] − E[vec( xt xH

t
‖xt‖2 )]E[vecH (

xt xH
t

‖xt‖2 )] with vec( xt xH
t

‖xt‖2 ) = (V∗ ⊗
V)vec(Ut) where Ut

def= �1/2ut uH
t �1/2

uH
t �ut

and E(Ut) = � follows from the proof of Theorem 1. Inspired by the proof in Appendix 6.2 [20], we 

then get R	̂S
= (V∗ ⊗ V)�(VT ⊗ VH ) with

�
def= E[vec(Ut)vecH (Ut)] − E[vec(Ut)]E[vecH (Ut)]
=

∑
1≤i, j,k,�≤N

E[(Ut)i, j(U∗
t )k,�](e j ⊗ ei)(eT

� ⊗ eT
k ) −

∑
1≤i, j≤N

E[(Ut)i,i)E[(U∗
t ) j, j](ei ⊗ ei)(eT

j ⊗ eT
j ).

It follows from the symmetries of the distribution of the terms of the Hermitian random matrix Ut , the only non-zero terms 
E[(Ut)i, j(U∗

t )k,�] are those corresponding to the indices i = j = k = �, i = k & j = � and i = j & k = �, for which E[(Ut)i,i(U∗
t )i,i] = γi,i

and E[(Ut)i, j(U∗
t )i, j] = E[(Ut)i,i(U∗

t ) j, j] = γi, j . Consequently

� =
∑

1≤i, j≤N

γi, j(e j ⊗ ei)(eT
j ⊗ eT

i ) +
∑

1≤i, j≤N

(γi, j − χiχ j)(ei ⊗ ei)(eT
j ⊗ eT

j )

−
N∑

i=1

γi,i(ei ⊗ ei)(eT
i ⊗ eT

i ),

and thus (15) follows.
With the notation used in the proof of Theorem 1, γi, j can be expressed for N-dimensional C-CES distributions as: γi, j =

λiλ jE 
(

(((ūt )i)
2+((ūt )N+i)

2)(((ūt ) j)
2+((ūt )N+ j)

2)

(ūT
t �′ūt )2 )

)
, i = 1, ..., N, j = 1, ..., N , which yields that γi, j

λiλ j
= 4E 

(
((ūt )i)

4

(ūT
t �′ūt )2

)
for i �= j and γi,i

λ2
i

=
2E 

(
((ūt )i)

4

(ūT
t �′ūt )2

)
+ 2E 

(
((ūt )i)

2((ūt )N+i)
2

(ūT
t �′ūt )2

)
.

We deduce, thanks to [21, proposition 3] which gives the expressions of γi, j and γi,i in one-dimensional integral representations for 
2N-dimensional RES distributions, that γi, j = λiλ j

∫ ∞
0

x
(1+λi x)(1+λ j x)

∏N
n=1(1+λnx)

dx and γi,i = 2λ2
i

∫ ∞
0

x
(1+λi x)

∏N
n=1(1+λnx)

dx. Finally, grouping 

the multiple eigenvalues λk ∈ s j j, ..., J , (17) and (18) are derived. �

For NC-CES distributed data, we get from the proof of Theorem 1, x̃t x̃H
t

‖̃xt‖2 = Ṽ( 1
2 �̃)1/2 ūt ūT

t

ūT
t ( 1

2 �̃)ūt
( 1

2 �̃)1/2ṼH , which gives vec( x̃t x̃H
t

‖̃xt‖2 ) =
(̃V∗ ⊗ Ṽ)vec(Ũt), where Ũt

def= �̃1/2ūt ūT
t �̃1/2

ūt �̃ūt
and E(Ũt) = �̃. Following similar steps as in the case of C-CES distributed data, we get R̂̃	S

=
(̃V∗ ⊗ Ṽ)�̃(̃VT ⊗ ṼH ) with
12
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�̃
def= E[vec(Ũt)vecT (Ũt)] − E[vec(Ũt)]E[vecT (Ũt)]
=

∑
1≤i, j,k,�≤2N

E[(Ũt)i, j(Ũt)k,�](̃e j ⊗ ẽi)(̃eT
� ⊗ ẽT

k ) −
∑

1≤i, j≤2N

E[(Ũt)i,i)E[(Ũt) j, j](̃ei ⊗ ẽi)(̃eT
j ⊗ ẽT

j ).

Since the entries of the real-valued symmetric random matrix Ũt are symmetrically distributed, it follows that E[(Ũt)i, j(Ũt)k,�] = 0 unless 
i = j = k = �, i = k & j = �, i = j & k = � and i = � & j = k for which E[(Ũt)i,i(Ũt)i,i] = γ̃i,i and E[(Ũt)i, j(Ũt)i, j] = E[(Ũt)i,i(Ũt) j, j] =
E[(Ũt)i, j(Ũt) j,i] = γ̃i, j . Consequently

�̃ =
∑

1≤i, j≤2N

γ̃i, j (̃e j ⊗ ẽi)(̃eT
j ⊗ ẽT

i ) +
∑

1≤i, j≤2N

(γ̃i, j − χ̃iχ̃ j)(̃ei ⊗ ẽi)(̃eT
j ⊗ ẽT

j )

+
∑

1≤i, j≤2N

γ̃i, j (̃e j ⊗ ẽi)(̃eT
i ⊗ ẽT

j ) − 2
2N∑
i=1

γ̃i,i (̃ei ⊗ ẽi)(̃eT
i ⊗ ẽT

i )

and (16) follows.
We deduce once again from [21, proposition 3] that the expressions of γ̃i, j for i �= j and γ̃i,i are given by

λ̃i λ̃ j
4

∫ ∞
0

x

(1+̃λi x)(1+̃λ j x)
∏2N

n=1(1+̃λnx)
1
2

dx and 3̃λ2
i

4

∫ ∞
0

x

(1+̃λi x)2
∏2N

n=1(1+̃λnx)
1
2

dx, respectively. Finally, grouping the multiple eigenvalues λ̃k ∈ s j

j, ..., J , (18) and (19) are derived. �

Proof of Theorem 3. For C-CES distributed data, the asymptotic distribution of the eigenprojectors �̂SSCM,( j) is given by (26) with �#
( j) =∑

k/∈s j

1
(χk−χ( j))

vkvH
k and �( j) = ∑

k∈s j
vkvH

k . It can be easily simplified thanks to the following identities which are straightforward from 
the orthonormality of the vectors vk:

(�#∗
( j) ⊗ �( j))(v∗

k ⊗ vk) = (�∗
( j) ⊗ �#

( j))(v∗
k ⊗ vk) = 0, k = 1, ..., N, (61)

(�#∗
( j) ⊗ �( j))(v∗

� ⊗ vk) =
{

1
(χ�−χ( j))

(v∗
� ⊗ vk), k ∈ s j and � /∈ s j

0 elsewhere
(62)

(�∗
( j) ⊗ �#

( j))(v∗
� ⊗ vk) =

{
1

(χk−χ( j))
(v∗

� ⊗ vk), k /∈ s j and � ∈ s j

0 elsewhere
. (63)

Plugging (61), (62) and (63) into (26), where R	̂S
is given by (15), (27) follows after simple algebra manipulations.

Since in the case of NC-CES distributed data, R̂̃�SSCM,( j)
has a form similar to (26), it follows then that (28) can be obtained following 

similar steps as above using the orthonormality of ̃vk , ̃v∗
k = J̃vk and (̃v∗

� ⊗ ṽk) = K2N (̃vk ⊗ ṽ∗
�). �

Closed-form expressions of (11), (17) and (18) without integral
For ease of reading, the following identities are used in this proof:

P∏
p=1

1

1 + λp x
=

P∑
p=1

cp

1 + λpx
where cp =

P∏
j=1, j �=p

(
1 − λ j

λp

)−1

, (64)

1

(1 + λnx)(1 + λx)m
= 1(

1 − λ
λn

)m
1

1 + λnx
−

m−1∑
�=0

λ

λn

(
1 − λ

λn

)�+1

1

(1 + λx)m−�
, ∀m ∈N∗, (65)

∞∫
0

x�−1

(x + y)p(x + z)q
dx = z−q y�−p B(�, p + q − �) 2 F1

(
�,q, p + q,1 − y

z

)
, for 0 < � < p + q. (66)

Identity (64) is the partial fraction expansion of 
P∏

n=1

1
1+λnx , (65) is proved by induction on m and (66) follows from the change of variables 

x = yt
1−t and the definition of 2 F1(., ., ., .).

Now, let’s start to prove (75)-(77). Thanks to (64) and (65), (11) can be expressed as follows:

χk = λk

∞∫
0

1

(1 + λkx)2(1 + λx)N ′ P∏
p=1,p �=k

(1 + λpx)

dx, k = 1, ..., P ,

= λk

P∑
p=1,p �=k

c′
p

∞∫
1

(1 + λkx)2(1 + λpx)(1 + λx)N ′ dx
0

13
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=
P∑

p=1,p �=k

λkc′
p(

1 − λ
λp

)N ′

∞∫
0

1

(1 + λkx)2(1 + λpx)
dx

−
P∑

p=1,p �=k

N ′−1∑
�=0

λkλc′
p

λp

(
1 − λ

λp

)�+1

∞∫
0

1

(1 + λkx)2(1 + λx)N ′−�
dx, (67)

where c′
p

def= (1 − λk
λp

)cp . It follows from identity (66) that

∞∫
0

1

(1 + λkx)2(1 + λpx)
dx = 1

1 − (
λp
λk

)

⎛⎝1 +
log(

λk
λp

)

1 − λk
λp

⎞⎠ , (68)

∞∫
0

1

(1 + λkx)2(1 + λx)N ′−l
dx = 1

λk

1

N ′ − � + 1
2 F1

(
1, N ′ − �, N ′ − � + 2,1 − λ

λk

)
. (69)

Inserting (68) and (69) into (67), we obtain (75).
Similarly, χ defined by (11) which can be expressed thanks to (64) as follows:

χ = λ

∞∫
0

1

(1 + λx)N ′+1
P∏

p=1
(1 + λp x)

dx = λ

P∑
p=1

cp

∞∫
0

1

(1 + λx)2(1 + λpx)(1 + λx)N ′−1
dx

can be obtained by similar steps as in the proof of χk by replacing N ′ by N ′ − 1 and λk by λ in (75). Noting that now 
2 F1

(
1, N ′ − � − 1, N ′ − � + 1,0

) = 1 in (69), (77) is obtained.
Now, let’s prove (78). It follows from (17), using (64) and (65), that

γk,k = 2λ2
k

∞∫
0

x

(1 + λkx)3(1 + λx)N ′ P∏
p=1,p �=k

(1 + λpx)

dx, k = P + 1, ..., N,

= 2λ2
k

P∑
p=1,p �=k

c′
p

∞∫
0

x

(1 + λkx)3(1 + λpx)(1 + λx)N ′ dx

=
P∑

p=1,p �=k

2λ2
k c′

p(
1 − λ

λp

)N ′

∞∫
0

x

(1 + λkx)3(1 + λp x)
dx

−
P∑

p=1,p �=k

N ′−1∑
�=0

2λ2
kλc′

p

λp

(
1 − λ

λp

)�+1

∞∫
0

x

(1 + λkx)3(1 + λx)N ′−�
dx. (70)

It follows again from identity (66) that

∞∫
0

x

(1 + λkx)3(1 + λpx)
dx = λk + λn

2λk (λk − λn) 2
+ λn (log (λn) − log (λk))

(λk − λn) 3
, (71)

∞∫
0

x

(1 + λkx)3(1 + λx)N ′−�
dx = 1

λ2
k

1

(N ′ − � + 1)(N ′ − � + 2)
2 F1

(
2, N ′ − �, N ′ − � + 3,1− λ

λk

)
. (72)

Substitute (71) and (72) into (70) proves (78).
Similarly, γ defined by (18) which can be expressed thanks to (64) as follows:

γ = 2λ2

∞∫
0

x

(1 + λx)N ′+2
P∏

p=1
(1 + λp x)

dx = 2λ2
P∑

p=1

cp

∞∫
0

x

(1 + λx)3(1 + λp x)(1 + λx)N ′−1
dx

can be obtained by similar steps as in the proof of γk,k by replacing N ′ by N ′ − 1, and λk by λ in (78). Noting that now 
2 F1

(
2, N ′ − � − 1, N ′ − � + 2,0

) = 1 in (72), (80) is obtained.
14
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Finally, let us prove (81) and (83). It follows from (18) that

γk,� = λkλ�

∞∫
0

x

(1 + λkx)2(1 + λ�x)2(1 + λx)N ′ P∏
p=1,p �=k,p �=�

(1 + λnx)

dx, 1 ≤ k �= � ≤ P

= λkλ�

P∑
p=1,p �=k,p �=�

cp

∞∫
0

(1 − λk
λp

)(1 − λ�

λp
)x

(1 + λkx)2(1 + λ�x)2(1 + λpx)(1 + λx)N ′ dx, (73)

and

γk,� = λkλ

∞∫
0

x

(1 + λkx)2(1 + λx)N ′+1
P∏

p=1,p �=k
(1 + λpx)

dx, k = 1, ..., P , � = P + 1, ..., N

= λkλ

P∑
p=1,p �=k

cp

∞∫
0

(1 − λk
λp

)x

(1 + λkx)2(1 + λpx)(1 + λx)N ′+1
dx. (74)

Hence (81) and (83) are obtained by using the following partial fraction expansions:

(1 − λk
λp

)(1 − λ�

λp
)x

(1 + λkx)2(1 + λ�x)2(1 + λpx)
= −λ2

k (λp − λ�)(λ
2
k − 2λpλ� + λkλ�)

λ2
p(λk − λp)(λk − λ�)3(1 + λkx)

+ λ2
k (λp − λ�)

λ2
p(λk − λ�)2(1 + λkx)2

− λ2
�(λk − λp)(2λkλp − λkλ� − λ2

�)

λ2
p(λk − λ�)3(λp − λ�)(1 + λ�x)

+ λ2
�(λp − λk)

λ2
p(λk − λ�)2(1 + λ�x)2

+ λp

(λk − λp)(λp − λ�)(1 + λpx)

(1 − λk
λp

)x

(1 + λkx) 2(1 + λpx)
= − λk

λp(λk − λp)(1 + λkx)
+ 1

λp(1 + λkx)2 + 1

(λk − λp)(1 + λp x)
,

in respectively (73) and (74), and the following integrals identities deduced from (66)

∞∫
0

1

(1 + λ′x)(1 + λx)N ′′ dx = 1

λ′
1

N ′′ 2 F1

(
1, N ′′, N ′′ + 1,1 − λ

λ′

)
.

∞∫
0

1

(1 + λ′x)2(1 + λx)N ′′ dx = 1

λ′
1

N ′′ + 1
2 F1

(
1, N ′′, N ′′ + 2,1 − λ

λ′

)
.

This allows you to prove the following expressions:

χk =
P∑

p=1,p �=k

c′
p

(1 − λ
λp

)N ′
(1 − λp

λk
)

⎛⎝1 +
log

(
λk
λp

)
1 − λk

λp

⎞⎠
−

N ′−1∑
�=0

λ

N ′ − � + 1

⎛⎝ P∑
p=1,p �=k

c′
p

λp(1 − λ
λp

)�+1 2 F1

(
1, N ′−�, N ′ − �+2,1 − λ

λk

)⎞⎠ ,

k = 1, ..., P and P > 1, (75)

χ1 = 1

N
2 F1

(
1, N − 1, N + 1,1 − λ

λ1

)
, P = 1, (76)

χ
def= χk =

P∑
p=1

cp

(1 − λ
λp

)N ′−1(1 − λp
λ

)

⎛⎝1 +
log

(
λ
λp

)
1 − λ

λp

⎞⎠ −
N ′−2∑
�=0

λ

N ′ − �

⎛⎝ P∑
p=1

cp

λp(1− λ
λp

)�+1

⎞⎠ ,

k = P + 1, .., N, (77)

γk,k =
P∑

p=1,p �=k

c′
pλk

λp(1 − λ
λ

)N ′
(1 − λk

λ
)2

⎛⎝1 + λk

λp
−

2 log
(

λk
λp

)
1 − λp

⎞⎠

p p λk

15
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−
N ′−1∑
�=0

2λ

(N ′ − � + 1)(N ′−� + 2)

⎛⎝ P∑
p=1,p �=k

c′
p

λp(1 − λ
λp

)�+1 2 F1

(
2, N ′ − �, N ′ − � + 3,1 − λ

λk

)⎞⎠ ,

k = 1, ..., P and P > 1, (78)

γ1,1 = 2

N(N − 1)
2 F1

(
2, N − 2, N + 1,1 − λ

λ1

)
, P = 1, (79)

γ
def= γk,k =

P∑
p=1

cpλ

λp(1 − λ
λp

)N ′−1(1 − λ
λp

)2

⎛⎝1 + λ

λp
−

2 log
(

λ
λp

)
1 − λp

λ

⎞⎠
−

N ′−2∑
�=0

2λ

(N ′ − �)(N ′ − � + 1)

⎛⎝ P∑
p=1

cp

λp(1 − λ
λp

)�+1

⎞⎠ , k = P + 1, ..., N, (80)

γk,� =
P∑

p=1,p �=k,p �=�

cptk,�,p, 1 ≤ k �= � ≤ P and P > 2, (81)

γ1,2 = λ1λ2

⎡⎣ (λ1 + λ2) 2 F1

(
1, N ′, N ′ + 1,1 − λ

λ1

)
N ′ (λ1 − λ2) 3

− 2 F1

(
1, N ′, N ′ + 2,1 − λ

λ1

)
(N ′ + 1) (λ1 − λ2) 2

−
(λ1 + λ2) 2 F1

(
1, N ′, N ′ + 1,1 − λ

λ2

)
N ′ (λ1 − λ2) 3

− 2 F1

(
1, N ′, N ′ + 2,1 − λ

λ2

)
N ′ + 1

⎤⎦ ,

P = 2, (82)

γk
def= γk,� =

P∑
p=1,p �=k

cptk,p, k = 1, .., P , � = P + 1, ...N and P > 1, (83)

γ1 = (λ/λ1)

N(N + 1)
2 F1

(
2, N, N + 2,1 − λ

λ1

)
, P = 1, (84)

with

tk,�,p
def= λkλ�

[
1

N ′ (λk − λp
) (

λp − λ�

) 2 F1

(
1, N ′, N ′ + 1,1 − λ

λp

)

+ λk
(
λp − λ�

)
(N ′ + 1)λ2

p (λk − λ�)
2 2 F1

(
1, N ′, N ′ + 2,1 − λ

λk

)
+ λ�

(
λp − λk

)
(N ′ + 1)λ2

p (λ� − λk)
2 2 F1

(
1, N ′, N ′ + 2,1 − λ

λ�

)

−
(
λp − λ�

) (
λ4

k − 2λ2
kλpλ� + λ3

kλ�

)
N ′λ3

p
(
λk − λp

)
(λk − λ�) 3 2 F1

(
1, N ′, N ′ + 1,1 − λ

λk

)

− λ2
�

(
λk − λp

) (
2λkλp − λkλ� − λ2

�

)
N ′λ3

p (λk − λ�)
3 (

λp − λ�

) 2 F1

(
1, N ′, N ′ + 1,1 − λ

λ�

)]
and

tk,p
def= λkλ

[
1

(N ′ + 2)λpλk
2 F1

(
1, N ′ + 1, N ′ + 3,1 − λ

λk

)
+ 1

(N ′ + 1)(λk − λp)λp
2 F1

(
1, N ′ + 1, N ′ + 2,1 − λ

λp

)
− 1

(N ′ + 1)(λk − λp)λp
2 F1

(
1, N ′ + 1, N ′ + 2,1 − λ

λk

)]
,

where N ′ def= N − P , cp
def=

P∏
j=1, j �=p

(
1 − λ j

λp

)−1
, c′

p
def= (1 − λk

λp
)cp and the Gauss hypergeometric functions 2 F1 (1, �, � + 1, s), 2 F1 (1, �, � + 2, s)

and 2 F1 (2, �, � + 3, s) have the following explicit expressions obtained using partial fraction expansions:

2 F1(1, �, � + 1, s)
def= 1

B(�,1)

1∫
t�−1

1 − st
dt
0
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= 1

B(�,1)

[
− log(1 − s)

s�
−

(
�−1∑
k=1

1

ks�−k

)
1�>1

]
, (85)

2 F1(1, �, � + 2, s)
def= 1

B(�,2)

1∫
0

t�−1(1 − t)

1 − st
dt

= 1

B(�,2)

[
1

�s
+ (1 − s) log(1 − s)

s�+1 +
(

�−1∑
k=1

1 − s

ks�−k+1

)
1�>1

]
, (86)

2 F1 (2, �, � + 3, s)
def= 1

B(�,3)

1∫
0

t�−1(1 − t)2

(1 − st)2
dt

= 1

B(�,3)

[
1

�s2
+ 1 − s

s�+1 + (1 − s)(s + 1 − s� + �) log(1 − s)

s�+2

+
(

2(1 − s)

(� − 1)s3

)
1�>1 −

(
�−3∑
k=1

(1 − s)[(� − k)(s − 1) − 2s]
(k + 1)s�−k+1

)
1�>2

]
, (87)

where B(�, 1) = 1
�

, B(�, 2) = 1
�(�+1)

and B(�, 3) = 2
�(�+1)(�+2)

. �

Proof of Theorem 5. Note first that the closed-form expressions (52) of rc and rnc are proved by using the expressions of χ1, χ , γ1 and χ̃1, 
χ̃ , γ̃1 given by (75)-(84) and (39)-(43) expressed in terms of Gauss hypergeometric functions 2 F1(a, b, c, s), and the symmetric property 
2 F1(a, b, c, s) = 2 F1(b, a, c, s) and the following identity [40, (15.2.20)], i.e.

c(1 − s)2 F1(a,b, c, s) − c 2 F1(a − 1,b, c, s) + (c − b)s 2 F1(a,b, c + 1, s) = 0, (88)

by taking (a, b, c, s) = (N − P + 1, 1, N + 1, 1 − λ
λ1

) for rc and (a, b, c, s) = (N − P
2 + 1, 1, N + 1, 1 − λ̃

λ̃1
) for rnc . �

To prove that the function rc(
λ
λ1

) is monotonically increasing, consider the derivative drc
dρ with ρ def= λ

λ1
. Using the identity [40, (15.2.1)]:

d

ds
2 F1(a,b, c, s) = ab

c
2 F1(a + 1,b + 1, c + 1, s), (89)

we straightforwardly get from the expression (52) of rc :

drc

dρ
= 2(N − P + 1)

N + 2
2 F1(1,a1,b1, zρ)

[2 F1(2,a1,b1, zρ)]2
(90)

× [2 F1(1,a1,b1, zρ)2 F1(3,a1 + 1,b1 + 1, zρ) − 2 F1(2,a1 + 1,b1 + 1, zρ)2 F1(2,a1,b1, zρ)],
with a1 = N − P + 1, b1 = N + 2 and zρ = 1 −ρ and 2 F1(σ , a1, b1, zρ) = 1

B(a1,b1−a1)

∫ 1
0

xa1−1(1−x)b1−a1−1

(1−xzρ )σ
dx, while 2 F1(1, a1, b1, zρ)2 F1(3, a1 +

1, b1 + 1, zρ) − 2 F1(2, a1 + 1, b1 + 1, zρ)2 F1(2, a1, b1, zρ) ≥ 0 thanks to the following inequality [41, chap. IX, rel(1.1)]

1∫
0

p(x)dx

1∫
0

p(x) f (x)g(x)dx ≥
1∫

0

p(x) f (x)dx

1∫
0

p(x)g(x)dx,

with p(x) = xa1 (1−x)b1−a1−1

(1−xzρ )3 , f (x) = 1 − xzρ and g(x) = 1−xzρ

x where the function p(x) is positive, while the functions f (x) and g(x) are 

monotone decreasing for fixed 0 < zρ < 1 and 0 < x < 1. Consequently drc
dρ ≥ 0. The proof for ρ def= λ̃

λ̃1
follows the same steps. �

For the first special case of λ/λ1 and ̃λ/̃λ1 close to one, (53) and (54) are proved starting from its exact expressions given in (52) by 
using the third-order expansion

2 F1(a,b, c, s) = 1 + ab

c
s + a(a + 1)b(b + 1)

c(c + 1)

s2

2
+ a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

s3

6
+ o(s3), (91)

derived from (89).
For the second special case of λ/λ1 and λ̃/̃λ1 close to zero, we note first that 2 F1(a, b, c, 1) is not defined for a + b ≥ c, and thus 

2 F1(2, N − P + 1, N + 2, 1 − λ
λ1

) [resp. 2 F1(2, N − P
2 + 1, N + 2, 1 − λ̃

λ̃1
)] in the expression of rc [resp. rnc] is not defined for P = 1 [resp. 

P = 1, 2]. Taking the limit as λ
λ1

and λ̃

λ̃1
tend to 0 and using identity

2 F1(a,b, c,1) = �(c)�(c − b − a)

�(c − a)�(c − b)
(92)

provided a + b < c [40, (15.1.20)] proves the dominant terms (1 + 1 )(1 − 1 ) (55) for P > 1 and (1 + 1 )(1 − 2 ) (56) for P > 2.
N P N P

17



H. Abeida and J.-P. Delmas Digital Signal Processing 131 (2022) 103767
Using the identity [40, (15.3.3)], i.e.

2 F1(a,b, c, s) = (1 − s)c−a−b
2 F1(c − a, c − b, c, s),

with (a, b, c, s) = (N, 32 , N + 2, 1 − λ̃

λ̃1
) in (52), we get

rnc =
(

λ̃

λ̃1

)1/2 [2 F1(1, N + 1
2 , N + 2,1 − λ̃

λ̃1
)]2

2 F1(N, 3
2 , N + 2,1 − λ̃

λ̃1
)

,

where [2 F1(1,N+ 1
2 ,N+2,1)]2

2 F1(N, 3
2 ,N+2,1)

= 4�(N+ 1
2 )√

π�(N)
thanks to (92). Thus the dominant term of (58) for P = 1 is proved. Furthermore, the expressions of 

oN,P (1) (57) and ̃oN,P (1) (58) for P > 1 are obtained using symbolic mathematical software. �
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