
Signal Processing 205 (2023) 108886 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Slepian-Bangs formulas for parameterized density generator of 

elliptically symmetric distributions 

Habti Abeida 

a , Jean-Pierre Delmas b , ∗

a Taif University, College of Engineering, Dept. of Electrical Engineering, Al-Haweiah, 21974, Saudi Arabia 
b Samovar laboratory, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau 91120, France 

a r t i c l e i n f o 

Article history: 

Received 9 June 2022 

Revised 22 November 2022 

Accepted 10 December 2022 

Available online 15 December 2022 

Keywords: 

Slepian-Bangs formula 

Cramér-Rao bound 

Elliptical symmetric distributions 

Parametric density generator 

Student’s t and generalized Gaussian 

distribution 

Parametric and semiparametric models 

a b s t r a c t 

This paper mainly deals with an extension of the matrix Slepian-Bangs (SB) formula to elliptical sym- 

metric (ES) distributions under the assumption that the arbitrary density generator depends on unknown 

parameters, aiming to rigorously quantify and understand the impact of this assumption on ES distributed 

parametric estimation models. This matrix SB formula is derived in a unified way within the framework 

of real (RES) and circular (C-CES) or noncircular (NC-CES) complex elliptically symmetric distributions, 

and then compared to the matrix SB formula obtained with fully known or completely unknown density 

generators. This new matrix SB formula involves a common structure to the existing one with a simple 

corrective coefficient. Closed-form expressions of this coefficient are given for Student’s t and generalized 

Gaussian distributions and are each compared according to different knowledge of the density genera- 

tor. This allows us to conclude that for an arbitrary parameterization, the Cramér-Rao bound (CRB) may 

be very sensitive to the knowledge of the density generator for super-Gaussian distributions contrary to 

sub-Gaussian distributions. Finally, we prove that for the parametrization with an unknown scale factor, 

the CRB for the estimation of the other parameters of the scatter matrix does not depend on the type of 

knowledge of the density generator. This latter result remains true for the specific noisy linear mixture 

data model where the parameter of interest is characterized by the range space of the mixing matrix. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

To assess the performance of many estimation algorithms, it is 

ecessary to derive the Cramer-Rao bound (CRB), which is a lower 

ound on the variance of any unbiased estimator of the parameters 

f interest for the problem at hand. This bound relies on a para- 

etric probabilistic model of the data which may be either exact 

r misspecified. Under the matched model assumption, the CRB is 

sually computed as the inverse of the Fisher information matrix 

FIM). Fortunately a simple elementwise closed-form expression of 

his FIM, called Slepian-Bangs (SB) formula has been derived for 

he real Gaussian distribution in [1] and [2] , in which both the ex- 

ectation and the covariance are parameterized. Then this formula 

as extended to the circular complex Gaussian and non-circular 

aussian case in [3] and [4] , respectively. However, in practice, the 

aussian assumption is not always adapted due to outliers. It is 

nown from the literature that outliers can be modeled by ellipti- 

ally symmetric (ES) distributions with heavy tails. The Gaussian- 
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ased SB formula was later extended to circular complex ES (C- 

ES) distributions (see e.g., [5–7] ) in [8] and [9] and to noncircular 

omplex ES (NC-CES) distributions [10] . We remind here the ellip- 

ically symmetric (ES) distributions encompass the Gaussian, the 

eneralized Gaussian and all the compound Gaussian distributions, 

uch as the Student’s t and K-distributions, as special cases. Be- 

ause of their great flexibility in modeling both heavy-tailed and 

ight-tailed non-Gaussian distributed data, these distributions have 

een used in a variety of applications, in particular in the radar 

nd array signal processing fields (see [7] and references therein). 

In all above references on the derivations of SBs, the density 

enerator is assumed to be perfectly known. Unlike this case, when 

onsidered as a nuisance parameter, an extension of SB formula 

as proposed in [11] in the context of semiparametric estimation 

or C-CES distributions. However, when the data model is misspec- 

fied by the parametric probabilistic model, the SB formula was 

eneralized in [12] and [13] for the Gaussian model and then ex- 

ended in [14] to C-CES distributions. 

Given a particular ES distribution, its density generator might 

epend on some extra parameters (e.g., shape and scale parame- 

ers for the Student’s t distribution) that are in general unknown. 

n this context, closed-form expressions of the FIM for the esti- 
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1 The readers interested in these density generator functions can refer to 

[7] which gives several examples. 
2 The usual normalizing constant being included in g r,N (1) , δr,N depends here in 

fact only on N. 
ation of these parameters along with the symmetry center and 

catter matrix for the circular Student’s t and generalized Gaus- 

ian distribution have been derived in [15–17] where the trace of 

he scatter matrix is constrained. In this paper, we rather consider 

hese extra parameters of the density generator as unknown nui- 

ance parameters and we are interested in the FIM for the estima- 

ion of the parameters parameterizing the symmetry center and 

catter matrix which is constrained to be equal to the covariance 

atrix. The derived SB formula is compared to that for which the 

ensity generator is fully known or completely unknown. This new 

B formula involves a common structure to the existing one with 

 simple corrective coefficient. Closed-form expressions of this co- 

fficient are given for Student’s t and generalized Gaussian distri- 

utions and are each compared according to different knowledge 

f the density generator. This allows us to conclude that for an 

rbitrary parameterization, the CRB may be very sensitive to the 

ype of knowledge of the density for super-Gaussian distributions 

ontrary to sub-Gaussian distributions. Finally, we prove that if 

he symmetry center and the scatter matrix have no parameter in 

ommon with an unknown scale factor, the CRB for the estimation 

f the other parameters of the scatter matrix does not depend on 

he type of knowledge of the density generator. The same result 

s true for the specific noisy linear mixture data model where the 

arameter of interest is characterized by the range space of the 

ixing matrix. 

The remainder of this paper is organized as follows. 

ection 2 recalls the real to complex representation of ES dis- 

ributions useful to be able to deduce the SB formulas for complex 

ata from those for real data. It also gives a brief reminder of 

tudent’s t and generalized Gaussian distributions under the con- 

traint that the scatter matrix is equal to the covariance matrix, 

nd of the classic and parametric SB formulas. The parameterized 

B formula is derived in Section 3 for arbitrary density generators 

nd then for Student’s t and generalized Gaussian distributions, 

here comparisons are given for different parameterizations of the 

ymmetric center and scatter matrix for three types of knowledge 

f the density generators. The specific model noisy linear mixture 

ata model where the parameter of interest is characterized by 

he range space of the mixing matrix is covered in Section 4 . 

inally, the paper is concluded in Section 5 . 

The following notations are used throughout the paper. Matri- 

es and vectors are represented by bold upper case and bold lower 

ase characters, respectively. Vectors are by default in column ori- 

ntation, while the superscripts T , H and ∗ stand for transpose, 

onjugate transpose and conjugate. E(. ) , | . | , Re (. ) and Im (. ) are

he expectation, determinant, real and imaginary part operators re- 

pectively. I N is the identity matrix of dimension N. vec (·) is the 

vectorization” operator that turns a matrix into a vector by stack- 

ng the columns of the matrix one below another which is used in 

onjunction with the Kronecker product A � B as the block matrix 

hose (i, j) block element is a i, j B . Finally, �(x ) and B (x, y ) are the

sual gamma and beta functions and x = d y means that the r.v. x

nd y have the same distribution. 

. Preliminaries on elliptically symmetric distributions and 

lepian-Bangs formulas 

.1. RES, C-CES and NC-CES distributions 

Consider first the case of a N-dimensional RES distributed ran- 

om variable (r.v.) x whose probability density function (p.d.f.) is 

f the form 

p(x ) = | �| −1 / 2 g r,N [(x − μ) T �−1 (x − μ)] , (1) 
2 
here μ and � are the symmetry center and the scatter matrix, 

espectively, and where the density generator 1 g r,N : R 

+ �→ R 

+ sat- 

sfies 2 δr,N 
def = 

∫ ∞ 

0 t N/ 2 −1 g r,N (t) dt < ∞ . To derive the SB formula, we 

ssume throughout this paper that the second-order moments of 

 are finite. To avoid the scale ambiguity problem between � and 

 r,N , we here impose the constraint on g r,N such that � = E[(x −
)(x − μ) T ] rather than usual constraints on � that we cannot 

ork on when it is parameterized. The r.v. x admits the following 

tochastic representation [18] 

 = d μ + 

√ 

Q r,N �
1 / 2 u r,N , (2) 

here Q r,N and u r,N are independent, u r,N is uniformly distributed 

n the unit real N-sphere and Q r,N has the p.d.f. 

p(q ) = δ−1 
r,N q 

N/ 2 −1 g r,N (q ) . (3) 

An N-dimensional complex r.v. x is CES distributed if and only 

f the 2 N-dimensional r.v. x̄ 
def = ( Re (x ) T , Im (x ) T ) T is RES distributed

19] . Depending on whether �
def = E[(x − μ)(x − μ) T ] = 0 or � � = 0 ,

 is C-CES or NC-CES distributed, respectively. Using the one-to 

ne mapping x̄ �→ ̃

 x 
def = (x T , x H ) T = 

√ 

2 M ̄x where M 

def = 

1 √ 

2 

(
I i I 

I −i I 

)
s unitary, we get ( ̄x − μ̄) T �̄−1 ( ̄x − μ̄) = ( ̃  x − ˜ μ) H ˜ �−1 ( ̃  x − ˜ μ) and

 ̄�| = 2 −2 N | ̃  �| where �̄
def = E[( ̄x − μ̄)( ̄x − μ̄) T ] , ˜ �

def = E[( ̃  x − ˜ μ)( ̃  x −
 ) H ] = 

(
� �
�∗ �∗

)
, μ̄

def = ( Re ( μ) T , Im ( μ) T ) T , ˜ μ
def = ( μT , μH ) T and

he p.d.f. (1) becomes 

p(x ) = | ̃  �| −1 / 2 g c,N 

[ 
1 

2 

( ̃  x − ˜ μ) H ˜ �−1 ( ̃  x − ˜ μ) 
] 
, (4) 

here g c,N (t) 
def = 2 N g r, 2 N (2 t) which satisfies δc,N 

def = 

 ∞ 

0 t N−1 g c,N (t) dt = δr, 2 N = 

�(N) 

πN . From the stochastic represen- 

ation (2) where N is replaced by 2 N, we get 

 = d μ + 

√ 

Q c,N [( ̃  �1 / 2 ) 1 , 1 u c,N + ( ̃  �1 / 2 ) 1 , 2 u 

∗
c,N ] , (5) 

ith 

˜ �1 / 2 def = 

(
( ̃  �1 / 2 ) 1 , 1 ( ̃  �1 / 2 ) 1 , 2 
( ̃  �1 / 2 ) ∗

1 , 2 
( ̃  �1 / 2 ) ∗

1 , 1 

)
where closed-form expres- 

ions of ( ̃  �1 / 2 ) 1 , 1 and ( ̃  �1 / 2 ) 1 , 2 are given in [10] with 

˜ � = ˜ 

1 / 2 ( ̃  �1 / 2 ) H , Q c,N and u c,N are independent, u c,N is uniformly dis- 

ributed on the unit complex N-sphere and Q c,N 
def = 

1 
2 Q r, 2 N with 

.d.f. 

p(q ) = δ−1 
c,N q 

N−1 g c,N (q ) . (6) 

n the particular case where � = 0 , x is C-CES distributed, and 

4) and (5) respectively reduce to 

p(x ) = | �| −1 g c,N [(x − μ) H �−1 (x − μ)] and 

x = d μ + 

√ 

Q c,N �
1 / 2 u c,N . (7) 

e consider from now on that μ and � are parameterized by 

 parameter α ∈ R 

M that characterizes ( μ, �), but we omit this 

ependence ( μ( α) , �( α)) to simplify the notations. We also as- 

ume that the density generators are either fully known, known 

p to unknown parameters β ∈ R 

L , or completely unknown and in- 

erpreted as infinite-dimensional nuisance parameters. β acts as a 

uisance parameter, while α is a parameter of interest (time delay, 

irection of arrival, range, impulse response coefficients...) depend- 

ng on the related problem. 
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.2. Constrained density generators of Student’s t and generalized 

aussian distributions 

We give here a brief reminder of the expressions of the den- 

ity generators of Student’s t and generalized Gaussian distribu- 

ions (see [7] for details) under the constraint that the scatter ma- 

rices � are equal to the covariance matrices. We note that the Stu- 

ent’s t distribution, which belongs to the subclass of compound 

aussian distributions, have gained popularity for modeling radar 

lutter [20] and the generalized Gaussian distributions have been 

sed for modeling various images or features extracted from these 

mages [21] . These distributions are used in the illustration of the 

arameterized SB formulas in Section 3.2 . From the expressions of 

he unconstrained density generators [7] , we deduce easily the fol- 

owing expressions that are reduced to a single parameter: 

 

ν
c,N (t) = 

2 

N �(N + 

ν
2 
) 

πN (ν − 2) N �( ν
2 
) 

(
1 + 

2 t 

ν − 2 

)−(N+ ν2 ) 
and 

 

s 
c,N (t) = 

s �(N)[�( N+1 
s 

)] N 

πN N 

N [�( N 
s 
)] N+1 

e 

− t s ⎡ ⎣ N�( N s ) 
�( N+1 

s ) 

⎤ ⎦ s 
, (8) 

or Student’s t distribution with ν > 2 degrees of freedom and gen- 

ralized Gaussian distributions with exponent s > 0 , respectively. 

he expressions of the associated RES constrained density genera- 

ors g r,N (t) is related to g c,N (t) by g c,N (t) = 2 N g r, 2 N (2 t) . 

.3. Classic and semiparametric SB formulas 

The purpose of this Subsection is to unify in a common struc- 

ured matrix formula, the classic and semiparametric SB formulas 

elating to C-CES and NC-CES distributions from that of the RES 

istributions. 

For RES distributed data, all the steps of the proof of the clas- 

ic and semiparametric SB formula for C-CES distributions given in 

8] and [11] (with [14, Appendix B] ), respectively, apply by using 

he identity E[(y T Ay )(y T By )] = Tr (A ) Tr (B ) + 2 Tr (AB ) for any sym-

etric N × N matrices A and B , and N-dimensional zero-mean real- 

alued Gaussian distributed r.v. y . This allows us to prove that the 

lassic and semiparametric matrix SB formula for RES distributions 

ave the following structure: 

RB 

−1 ( α) = a 1 
d μT 

d αT 
�−1 d μ

d αT 
+ 

(
d vec (�) 

d αT 

)T (
a 2 ( �

−T 
� �−1 ) 

+ a 3 vec (�−1 ) vec T (�−1 ) 
)(d vec (�) 

d αT 

)
, (9) 

here a 1 = ξr, 1 ,N , a 2 = 

1 
2 ξr, 2 ,N for both classic and semiparamet- 

ic SB formulas and a 3 
def = a Clas 

3 
= 

1 
4 (ξr, 2 ,N − 1) [resp., a 3 

def = a SePa 
3 

= 

ξr, 2 ,N 

2 N ] for the classic [resp., semiparametric] SB formula with 

r, 1 ,N 
def = 

E 

[
Q φ2 

r,N (Q ) 
]

N 

and ξr, 2 ,N 
def = 

E 

[
Q 

2 φ2 
r,N (Q ) 

]
N(N + 2) 

, (10) 

here Q 

def = Q r,N and φr,N (t) 
def = 

2 
g r,N (t) 

dg r,N (t) 

dt 
. 

These classic and semiparametric SB formulas allow us to di- 

ectly deduce those of NC-CES distributed data obtained, thanks to 

he relationship between the representation of real and complex 

.v.’s introduced in Subsection 2.1 . These SB formulas are similarly 

tructured where μ, �, d μT 

d αT , 

(
d vec (�) 

d αT 

)T 

and vec T (�−1 ) in (9) are 

eplaced by ˜ μ, ˜ �, d ̃  μH 

d αT , 

(
d vec ( ̃  �) 

d αT 

)H 

and vec H ( ̃  �−1 ) , respectively, 

here a 1 = ξc, 1 ,N and a 2 = 

ξc, 2 ,N 

2 for both classic and semiparamet- 

ic SB formulas and a 3 
def = a Clas = 

1 (ξc, 2 ,N −1) [resp., a 3 
def = a SePa = 
3 4 3 

3 
ξc, 2 ,N 

2 N ] for the classic [resp., semiparametric] SB formula with 

c, 1 ,N 
def = 

E 

[
Q φ2 

c,N (Q ) 
]

N 

and ξc, 2 ,N 
def = 

E 

[
Q 

2 φ2 
c,N (Q ) 

]
N(N + 1) 

, (11) 

here Q 

def = Q c,N and φc,N (t) 
def = 

1 
g c,N (t) 

dg c,N (t) 

dt 
. On the other hand, 

he classic and semiparametric SB formulas for C-CES distributed 

ata can be deduced directly by replacing ˜ � by 

(
� 0 

0 �∗

)
, 

ielding the classic and semiparametric SB formulas proved in 

8,9] , and [11] , respectively, which are also similarly structured 

here d μT 

d αT �
−1 d μ

d αT , 

(
d vec (�) 

d αT 

)T 

and vec T (�−1 ) is replaced by 

e 

(
d μH 

d αT �
−1 d μ

d αT 

)
, 

(
d vec (�) 

d αT 

)H 

and vec H (�−1 ) in (9) with a 1 = 

 ξc, 1 ,N and a 2 = ξc, 2 ,N for both classic and semiparametric SB for- 

ulas and a 3 
def = a Clas 

3 
= ξc, 2 ,N − 1 [resp., a 3 

def = a SePa 
3 

= − ξc, 2 ,N 

N ] for 

he classic [resp., semiparametric] SB formula. 

Note that for real Gaussian distributions, φr,N (t) = 

1 and Q is χ2 
N 

distributed which give E(Q ) = N and 

(Q 

2 ) = N(N + 2) , and thus from (10) , ξr, 1 ,N = ξr, 2 ,N = 1 and

a 1 , a 2 , a 
Clas 
3 

, a SePa 
3 

) = (1 , 1 2 , 0 , − 1 
2 N ) , which imply that (9) re-

uces to the well known elementwise classic SB formula 

 FIM ( α)] k,	 = 

d μT 

d αk 
�−1 d μ

d α	 
+ 

1 
2 Tr (�−1 d�

dαk 
�−1 d�

dα	 
) [1] , [2] . Sim- 

larly for complex circular and noncircular Gaussian dis- 

ributions, we get (a 1 , a 2 , a 
Clas 
3 

, a SePa 
3 

) = (2 , 1 , 0 , − 1 
N ) and

a 1 , a 2 , a 
Clas 
3 

, a SePa 
3 

) = (1 , 1 2 , 0 , − 1 
2 N ) , respectively. 

. Parameterized Slepian-Bangs formulas 

.1. Arbitrary density generator 

In this Section the density generators g r,N and g c,N are assumed 

o be known up to unknown parameters β ∈ R 

L and here denoted 

y g 
β
r,N 

and g 
β
c,N 

. Consequently the unknown parameter for the RES, 

-CES and NC-CES distributions is ( αT , β
T 
) T ∈ R 

M+ L where β is an 

nknown nuisance parameter. The following result is proved in the 

ppendix. 

esult 1. For each RES, C-CES and NC-CES distribution, the clas- 

ic, semiparametric and parameterized SB formula have the same 

tructure (9) with identical coefficients a 1 and a 2 and differ only 

y their coefficients a 3 given in the parameterized SB formula by 

 3 
def = a Par 

3 
= a Clas 

3 
−a 4 where a 4 = ξ

T 
r, 3 ,N �

−1 
r, 4 ,N 

ξr, 3 ,N for RES distribu- 

ions, with 

r, 3 ,N 
def = 

E 

[ 
Q φr,N (Q ) φβ

r,N (Q ) 
] 

N 

and �r, 4 ,N 
def = E 

[ 
φβ

r,N (Q ) φβ
r,N 

T 
(Q ) 

] 
, 

(12) 

here φβ
r,N 

(t) 
def = 

1 

g 
β
r,N 

(t) 

∂g 
β
r,N 

(t) 

∂ β
∈ R 

L and Q 

def = Q r,N , and similarly for 

/NC-CES distributions by replacing r by c, T by H and the associ- 

ted expression of a Clas 
3 

are given above. 

Note that for Gaussian distributions for which the density gen- 

rator g r,N (t) = 

1 
(2 π) N/ 2 exp (− 1 

2 t ) has no parameter, we get a Par 
3 

= 

 

Clas 
3 

= 0 . 

In particular, if μ and � have no parameters in common with 

and � parameterized and characterized by α1 and α2 , respec- 

ively, the parameters α1 and α2 are decoupled in the FIM (9) . 

onsequently the CRB for the estimation of α1 has the common 

xpression 

RB ( α1 ) = 

(
a 1 

d μT 

d αT 
1 

�−1 d μ

d αT 
1 

)−1 

(13) 
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3 The constraint ν > 2 ensures that the Student’s t distribution has second-order 

finite moments 
or fully known density generator, known up to parameters and 

ompletely unknown density generators, in contrast to the CRB for 

he estimation of α2 

RB ( α2 ) = 

( (
d vec (�) 

d αT 
2 

)T (
a 2 (�

−T 
� �−1 ) 

+ a 3 vec (�−1 ) vec T (�−1 ) 
)(d vec (�) 

d αT 
2 

))−1 

(14) 

hich generally depends on the type of knowledge about the 

ensity generator through the term a 3 . However, in the specific 

arameterization of the scatter matrix � = α′ 
2 
�0 ( α

′′ 
2 
) with un- 

nown scaling factor α′ 
2 

and α2 = (α′ 
2 
, α′′ 

2 
T 
) T , the following result 

s proved in the Appendix: 

esult 2. For each RES, C-CES and NC-CES distribution, where μ
nd � have no common parameters with the parameterization 

= α′ 
2 
�0 ( α

′′ 
2 
) of the scatter matrix, the CRB for the estimation 

f α′′ 
2 

does not depend on α′ 
2 
, nor on the type of knowledge about 

he density generator and is given for RES distributions by the ex- 

ression: 

RB ( α
′′ 
2 ) = 

1 

a 2 

⎛ ⎝ 

( 

d vec (�0 ) 

d α′′ 
2 

T 

) T (
( �−T 

0 � �−1 
0 ) 

− 1 

N 

vec (�−1 
0 ) vec T (�−1 

0 ) 
)( 

d vec (�0 ) 

d α′′ 
2 

T 

) ) −1 

. (15) 

n other words, for this specific parametrization, the perfect knowl- 

dge or only the knowledge up to unknown extra parameter of 

he density generator does not reduce the CRB on α
′′ 
2 

. Similarly to 

9) , the CRB for C-CES distributions is deduced from (15) , thanks 

o the relationship between the representation of real and com- 

lex r.v.’s, by replacing 

(
d vec (�0 ) 

d α
′′ 
2 

T 

)T 

and vec T (�−1 
0 

) by 

(
d vec (�0 ) 

d α
′′ 
2 

T 

)H 

nd vec H (�−1 
0 

) . For the NC-CES distributions, �0 , 

(
d vec (�0 ) 

d α
′′ 
2 

T 

)T 

and 

ec T (�−1 
0 

) must be replaced by ˜ �0 , 

(
d vec ( ̃  �0 ) 

d α
′′ 
2 

T 

)H 

and vec H ( ̃  �−1 
0 

) . 

By contrast, the scale parameter α′ 
2 
, cannot be estimated in the 

bsence of knowledge of the density generator due to the intrin- 

ic ambiguity of the parametrization of the p.d.f. of the ES dis- 

ributions, while the CRB on this parameter may depend on the 

nowledge of the density generator (with fully known or known 

p to unknown parameters). Moreover, unlike Result 2 , the CRB 

or the estimation of α
′′ 
2 

when the parameter α′ 
2 

is known is given 

y (16) which depends on the type of knowledge of the density 

enerator through the coefficient a 3 

RB ( α
′′ 
2 ) = 

⎛ ⎝ 

( 

d vec (�0 ) 

d α′′ 
2 

T 

) T (
a 2 ( �

−T 
0 � �−1 

0 ) 

+ a 3 vec (�−1 
0 ) vec T (�−1 

0 ) 
)( 

d vec (�0 ) 

d α′′ 
2 

T 

) ) −1 

, (16) 

s illustrated by an example in Sub section 3.2 . 

It follows from Result 1 that for general parameterization of μ
nd �, the comparison of the classical and semi-parametric SB for- 

ulas recalled in subsection 2.3 and the parameterized SB formula 

mounts to comparing the coefficient a 3 of the associated SB for- 

ulas. Naturally, more knowledge about the density generator re- 

ults in a smaller CRB on parameter α, and we must therefore have 
4 
he following inequalities on the coefficients a 3 : 

 

SePa 
3 ≤ a Par 

3 ≤ a Clas 
3 with a Par 

3 = a Clas 
3 −a 4 . (17) 

ote that the inequality a SePa 
3 

≤ a Clas 
3 

is equivalent for example for 

-CES distributions to the inequality 

ξc, 2 ,N 

N 

≤ξc, 2 ,N − 1 ⇔ ξc, 2 ,N ≥ N 

N + 1 

, (18) 

hich is in fact strict. It follows directly from the Cauchy-Schwarz 

nequality (E(XY )) 2 ≤ E(X 2 ) E(Y 2 ) with X = Qφc,N (Q ) (where Q 

def = 

 c,N ) and Y = 1 with equality if and only if the r.v. Q φc,N (Q ) is

onstant. Since this property is equivalent to g c (t) = t a where a is

onstant, which cannot satisfy the condition 

∫ ∞ 

0 t N−1 g c,N (t) dt < ∞ , 

nd then the equality can not hold. To go further in the compari- 

on of the coefficient a 3 , we consider the following specific distri- 

utions. 

.2. Student’s t and generalized Gaussian distributions 

To illustrate Results 1 and 2 , we consider the two commonly 

sed Student’s t distribution with ν > 2 degrees of freedom 

3 and 

eneralized Gaussian distributions with exponent s > 0 reminded 

n Subsection 2.2 . It is simple to prove that the coefficients ξr, 1 ,N 

nd ξr, 2 ,N , ξc, 1 ,N and ξc, 2 ,N are independent of the constraint on 

he density generators for arbitrary distributions. These have been 

alculated for complex Student’s t or complex generalized Gaussian 

istributions by several authors (see e.g., [8] , [9] , [22] ) and given re-

pectively by: 

S 
c, 1 ,N = 

ν/ 2 

((ν/ 2) − 1) 

(ν/ 2) + N 

((ν/ 2) + N + 1) 
and ξ S 

c, 2 ,N = 

(ν/ 2) + N 

(ν/ 2) + N + 1 
, 

(19) 

CG 
c, 1 ,N = 

�(2 + 

N−1 
s 

)�( N+1 
s 

) 

(�(1 + 

N 
s 
)) 2 

and ξCG 
c, 2 ,N = 

N + s 

N + 1 

. (20) 

n contrast, the coefficients ξr, 3 ,N and ξr, 4 ,N , ξc, 3 ,N and ξc, 4 ,N , nat- 

rally, generally depend on the constraint imposed on the density 

enerators which leads to a relation between the multidimensional 

arameters of the standard density generators (e.g., β reduces to 

he exponent s (8) for the generalized Gaussian distribution where 

he standard density generator is parameterized by exponent and 

cale [7] ). The following result concerning Student’s t and general- 

zed Gaussian distribution is proved in the Appendix: 

esult 3. For complex Student’s t and generalized Gaussian distri- 

ution, the coefficients ξc, 3 ,N and ξc, 4 ,N are given respectively by 

S 
c, 3 ,N = 

N + 1 

2 

(
ν
2 

− 1 

)(
ν
2 

+ N 

)(
ν
2 

+ N + 1 

) , (21) 

S 
c, 4 ,N = 

N−1 ∑ 

	 =0 

1 

4(	 + 

ν
2 
) 2 

−
N 

(
ν2 

4 
+ N 

(
ν
2 

− 2 

)
− 2 

)
4 

(
ν
2 

− 1 

)2 ( ν
2 

+ N 

)(
ν
2 

+ N + 1 

) , (22) 

nd 

GG 
c, 3 ,N = 

N + s + N(N + 1) k N,s 

Ns 
, (23) 
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4 This model encompasses many far or near-field, narrow or wide-band DOA 

models with scalar or vector-sensors for an arbitrary number of parameters per 

source and many other models as the bandlimited SISO, SIMO [23] and MIMO 

[24] channel models. 
5 This model can be applied for DOA estimation modeling with rectilinear or 

strictly second-order sources and for SIMO channels estimation modeling with BPSK 

or MSK symbols [26] where θ represents both the localization parameters (azimuth, 

elevation, range) and the phase of the sources, and the real and imaginary parts of 

channel impulse response coefficients, respectively. 
6 We note that s t and n t cannot be both elliptical symmetric distributed as the 

family of elliptical symmetric distributions is not closed under summation except 

for the Gaussian distribution. But fixing both the structure (29) of � and the ellip- 

tical symmetric distribution of x t can be considered as good approximations thanks 

to the flexibility of the family of the elliptical symmetric distributions. Furthermore, 

this family of distributions offers robustness to outliers and heavy tailed samples. 
GG 
c, 4 ,N = 

2 N + s 

Ns 2 

 

(N + 1) s ( 2(N + s ) + N(N + 1) k N,s ) k N,s + N( N + s ) ψ 

′ (
1 + 

N 
s 

)
s 4 

, 

(24) 

ith k N,s 
def = ψ 

(
N 
s 

)
− ψ 

(
N+1 

s 

)
where ψ(x ) 

def = 

�
′ 
(x ) 

�(x ) 
is the digamma 

unction and ψ 

′ 
(x ) 

def = 

dψ(x ) 
dx 

. 

For the associated RES distributions, the coefficients ξr, 1 ,N , ξr, 2 ,N , 

r, 3 ,N and ξr, 4 ,N are related to ξc, 1 ,N , ξc, 2 ,N , ξc, 3 ,N and ξc, 4 ,N by 

he relations ξc, 1 ,N = 4 ξr, 1 , 2 N , ξc, 2 ,N = 4 ξr, 2 , 2 N , ξc, 3 ,N = 2 ξr, 3 , 2 N and 

c, 4 ,N = ξr, 4 , 2 N . 

We see that ξc, 2 ,N given by (19) and (20) for respectively com- 

lex Student’s t and generalized Gaussian distributions can be 

ritten as 

S 
c, 2 ,N = 

N 

N + 1 

(
1 + ν/ 2 N 

1 + ν/ (2(N + 1)) 

)
and ξCG 

c, 2 ,N = 

N 

N + 1 

(
1 + 

s 

N 

)
. 

(25) 

onsequently ξ S 
c, 2 ,N 

and ξCG 
c, 2 ,N 

are very close to N 
N+1 and there- 

ore from (17) and (18) , the coefficients a SePa 
3 

, a Par 
3 

and a Clas 
3 

are

ery close for ν/N  1 and s/N  1 , respectively. On the con- 

rary, ξc, 2 ,N ≈ 1 and ξc, 2 ,N ≈ s/ (N + 1) for respectively ν/N � 1 and 

/N � 1 . We can deduce that for Student’s t distributions which 

ossess heavier tails than the Gaussian distribution, the knowl- 

dge of the density generator has a slight impact on the CRB for 

he estimation of parameters α. On the other hand, for the gen- 

ralized Gaussian distribution, this impact is strong for s/N � 1 , 

.e., for much lighter tailed distributions than Gaussian distribu- 

ion. To show the influence of the parameter s on the coefficient 

 3 , a 
Clas 
3 

= 

s −1 
N+1 and a SePa 

3 
= − N+ s 

N (N +1) 
are compared to a Par 

3 
obtained 

rom tedious algebraic manipulation of (23) and (24) with the aid 

f symbolic algebra and calculus tools in the vicinity of s = ∞ 

hich corresponds to a uniform distribution in an ellipsoid. We 

et 

 

SePa 
3 < a Par 

3 = 

N(π2 − 6) − 6 

π2 N(N + 1) 
s (1 + o(1)) < a Clas 

3 . (26) 

his influence is illustrated in Fig. 1 which shows a large difference 

etween these coefficients a 3 . 

We can therefore conjecture that the knowledge of the den- 

ity generator brings little information on the parameter α for the 

eavy-tailed distributions unlike for lighter-tailed distributions. 

To illustrate the impact of the knowledge of the scale factor 
′ 
2 

on the estimation of the parameter α
′′ 
2 

of �0 for the modeling 

f Result 2 , we assume here that generalized Gaussian distributed 

ata are modeled as a stationary, zero-mean autoregressive pro- 

ess of first order with one lag correlation α
′′ 
2 

= ρ which gives 

 �] k,	 = [ �0 (ρ)] k,	 = ρ| k −	 | (with α
′ 
2 = 1 ). Fig. 2 shows a large dif-

erence between the CRB for the estimation of ρ according to the 

nowledge available on the density generator. This observed be- 

avior is consistent with that of Fig. 1 as explained at the end 

f section III-A, thanks to the sensitivity of the coefficient a 3 in 

16) to the knowledge available on the density generator. 

To reinforce the behavior of the CRB on the parameter of inter- 

st ρ under different knowledge on the density generator, we com- 

are in Fig. 3 , the CRB on ρ to the mean square error (MSE) (es-

imated by 20 0 0 runs) of the associated maximum likelihood (ML) 

stimator derived from T independent snapshots x t , t = 1 , . . . , T 

dentically distributed as in the scenario of Fig. 2 . More precisely, 

hen α
′ 
2 

is assumed to be unknown, the semiparametric, param- 

terized, and classic CRB given by (15) which are equal are com- 

ared to the MSE of the joint ML estimates ˆ ρ where ( ˆ α′ 
2 
, ˆ ρ, ̂  s ) =

rg max α′ ,ρ,s 

∑ T 
t=1 log p(x t ) and to the MSE of the ML estimate 
2 

5 
ˆ obtained from ( ˆ α′ 
2 
, ˆ ρ) = arg max α′ 

2 
,ρ

∑ T 
t=1 log p(x t ) (given s ), 

here the density generator g s 
c,N 

(t) is given by (8) . Similarly, when 

′ 
2 

is assumed to be known, our parameterized CRB and the clas- 

ic CRB given by (16) are respectively compared to the MSE of the 

oint ML estimate ˆ ρ where ( ̂  ρ, ̂  s ) = arg max ρ,s 
∑ T 

t=1 log p(x t ) and 

o the MSE of the ML estimate ˆ ρ = arg max ρ
∑ T 

t=1 log p(x t ) (given 

 ), respectively. Note that these different maximizations are derived 

orm simple numerical optimizations because, to the best of our 

nowledge, there is no ML algorithm in the literature, despite the 

ub-optimal approaches proposed in [16] , [17] for the Student’s t

istribution. Fig. 3 confirms clearly the efficiency of the ML as these 

RBs are very close to the associated MSE with the ML estimates 

or T = 500 snapshots. 

. Noisy linear mixture data model 

We consider here the following model 4 

 t = A ( θ) s t + n t ∈ R 

N ′ ( or C 

N ′ ) , t = 1 , . . . , T (27)

here the real-valued parameter of interest θ is characterized by 

he range space of the full column matrix A ( θ) . Two assumptions

ave been commonly used for the signals s t and n t . 

In the conditional or deterministic model, (s t ) t=1 ,.,T 

re conditioned from an independent zero-mean process 

as it was explained in [25] ) and are considered as de- 

erministic nuisance parameters. n t , t = 1 , . . . , T are zero- 

ean, independent RES (or C-CES) distributed with scat- 

er matrix σ 2 
n I N ′ . In this case x 

def = (x T 1 , ., x 
T 
T ) 

T ∈ R 

N (or C 

N )

here N = T N 

′ is RES (or C-CES) distributed with μ = 

(A ( θ) s 1 ) 
T , . . . , (A ( θ) s T ) 

T ) T and � = σ 2 
n I N with α = ( θ

T 
, ρT , σ 2 

n ) 
T 

ith ρ
def = ( Re T (s 1 ) , Im 

T (s 1 ) , ., Re T (s T ) , Im 

T (s T )) 
T . This model

xtends also to rectilinear CN-CES 5 distributed data. By slightly 

odifying the end of the proof given in [25] in the estimation 

ramework of DOA, we obtain the following result. 

esult 4. For each RES, C-CES or NC-CES noisy linear mixture dis- 

ributed conditional model, the CRB for the estimation of θ is given 

y a common expression for fully known, known up to parameters 

nd completely unknown density generators. We get, for example, 

or C-CES distributed data the following expression: 

RB ( θ) = 

σ 2 
n 

2 T ξc, 1 ,N 

[
Re 

(
da H (θ ) 

d θ
(R 

T 
s,T � 
⊥ 

A (θ ) ) 
da (θ ) 

d θ

)]−1 

, (28) 

where R s,T 
def = 

1 
T 

∑ T 
t=1 x t x 

H 
t , a (θ ) 

def = vec (A (θ )) and 
⊥ 
A (θ ) 

def = I−
 (θ )[ A 

H (θ ) A (θ )] −1 A 

H (θ ) is the ortho-complement of the projec- 

ion matrix on the columns of A (θ ) . 

In the unconditional or stochastic model, both s t and n t are 

ssumed zero-mean random, not correlated with each other such 

hat x t , t = 1 , . . . , T are zero-mean, independent RES (or C-CES)

istributed 

6 with μ = 0 where the scatter matrix has the following 
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Fig. 1. Coefficients a SePa 
3 , a Par 

3 and a Clas 
3 versus s for N = 6 . 

Fig. 2. CRB (ρ) versus s for ρ = 0 . 9 and N = 6 . 

s

�

w

t  

T

Ã  

r

r

g

t

tructure 

= A ( θ) R s A 

H ( θ) + σ 2 
n I N , (29) 

here R s is real-valued positive definite symmetric (or Hermi- 

ian). Here too α = ( θ
T 
, ρT , σ 2 

n ) 
T but ρ collects the entries of R s .

his model also extends to NC-CES distributed data with 

˜ � = 
6 
 

 ( θ) R r ̃
 A 

H ( θ) + σ 2 
n I 2 N , where here θ is only characterized by the

ange space of the full column matrix ˜ A ( θ) 
def = 

(
A ( θ) 

A 

∗( θ) 

)
and R r is 

eal-valued positive definite symmetric. For this model, the proof 

iven in [10] that the CRB on the DOA parameter θ is proportional 

o the CRB for Gaussian distributed data in the context of fully 
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Fig. 3. CRB (ρ) and MSE (ρ) versus s for ρ = 0 . 9 and N = 6 . 
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nown density generator, directly extends to known up to parame- 

ers and completely unknown density generators because the proof 

s based on the structure (9) with μ = 0 , irrelevant the value of the

oefficient a 3 . Thus we obtain the following result. 

esult 5. For each RES, C-CES or NC-CES noisy linear mixture dis- 

ributed unconditional model, the CRB for the estimation of θ has 

 common expression for fully known, known up to parameters 

nd completely unknown density generators. For example for CES 

istributed data, we get: 

RB ( θ) = 

σ 2 
n 

2 T ξc, 2 ,N 

[
Re 

(
da H (θ ) 

d θ
(H 

T 
� 
⊥ 

A (θ ) ) 
da (θ ) 

d θ

)]−1 

, (30) 

here H 

def = R s A 

H (θ ) �−1 A (θ ) R s . Note that (30) reduces to

RB ( θ) = 

σ 2 
n 

2 T ξc, 2 ,N 

[ 
Re 

(
(D 

H 
θ

⊥ 

A (θ ) 
D θ ) �H 

T 
)] −1 

for DOA model- 

ng with one parameter per source where A (θ ) 
def = [ a 1 , . . . , a K ]

here (a k ) k =1 , ... ,K are the steering vectors parameterized by the 

OA θk with θ
def = (θ1 , . . . , θK ) 

T , and D θ
def = [ 

da 1 
dθ1 

, . . . , 
da K 
dθK 

] for K

ources. This last expression of CRB was given in [11] and [27] as 

emiparametric CRB without noticing that it was equal to the 

lassic CRB. 

In other words from Results 3 and 4 , the fully knowledge or 

he functional knowledge (unknown parameter) does not provide 

ny additional information about the parameter θ unlike arbitrary 

arameter α. 

. Conclusion 

This paper rigorously quantifies the impact of the arbitrary 

ensity generators depending on unknown parameters of ES dis- 

ributed parametric estimation models, by deriving an extension 
7 
f the SB formula of the FIM for known elliptical symmetric dis- 

ributions. This SB formula was derived in a unified way within 

he framework of RES, C-CES and NC-CES distributed data. It was 

hen compared to the SB formula obtained with fully known or 

ompletely unknown density generators for different types of the 

ymmetry center and scatter matrix, in particular for the specific 

oisy linear mixture data model where the parameter of interest 

s characterized by the range space of the mixing matrix. This al- 

ows us to conclude, contrary to commonly known results, that for 

n arbitrary parameterization, the CRB may be very sensitive to the 

ype knowledge of the density generator for super-Gaussian distri- 

utions contrary to sub-Gaussian distributions. These results make 

t possible to know the situations where it is advantageous or not 

o use all the information available on the ES distributed data to 

onstruct efficient estimators. 
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A

P tion of ( αT , β
T 
) T is the inverse of the FIM and thus given from the 

m
I α I α,β

I T 
α,β

I β

)
is the FIM for ( αT , β

T 
) T and I α is given by the structured 

m t is straightforward to get (I α,β ) k,	 = − 1 
N E[ Qφr,N (Q ) φβ	 

r,N 
(Q )] Tr ( d�

dαk 
�−1 ) 

w rix I α,β = 

(
d vec (�) 

d αT 

)T 

vec (�−1 ) ξ
T 
r, 3 ,N with ξr, 3 ,N 

def = 

E[ Q φr,N (Q ) φβ
r,N 

(Q )] 

N where 

φ r β, I β = E[ φβ
r,N 

(Q ) φβ
r,N 

T 
(Q )] 

def = �r, 4 ,N . Gathering the expressions of I α , 

I ays the structure (9) with a 1 = 4 ξr, 1 ,N , a 2 = 2 ξr, 2 ,N are the coefficients 

g ith a 4 = ξ
T 
r, 3 ,N �

−1 
r, 4 ,N 

ξr, 3 ,N where ξr, 1 ,N and ξr, 2 ,N are given by (10) . 

Subsection 2.1 , it is straightforward to prove that the parameterized 

S cture (9) where a 1 and a 2 are both equal to those of the classic and 

s ith a 4 = ξ
T 
c, 3 ,N �

−1 
c, 4 ,N 

ξc, 3 ,N with ξc, 3 ,N 
def = 

E[ Q φc,N (Q ) φβ
c,N 

(Q )] 

N and �c, 4 ,N 
def = 

E �

P  with the parameter α2 = (α′ 
2 
, α′′ T 

2 ) 
T parameterizing the scatter matrix 

� wing partitioned matrix form 

F (A.31) 

w c (�0 ) and C = α′ 2 
2 

(
d vec (�0 ) 

d α
′′ 
2 

T 

)T (
a 2 (�

−T 
0 

� �−1 
0 

) + a 3 vec (�−1 
0 

) vec T (�−1 
0 

) 
)

(
a 2 = 2 ξr, 2 ,N and a 3 = − 2 ξr, 2 ,N 

N implies a 2 + Na 3 = 0 and consequently 

F ) . For the classic and parametric SB formulas, a 2 + Na 3 � = 0 and the 

i  α′ 2 
2 [ C − b a −1 b 

T ] −1 which also gives (15) not containing the coefficient 

a

P

φ (A.32) 

φ , (A.33) 

w

ξ

Q 

ν ′ + 2 Q 

log 

(
1 + 

2 Q 

ν ′ 
))]

, (A.34) 

ξ

′ −νQ ) 

+ 2 Q ) 
log 

(
1 + 

2 Q 

ν ′ 
))

. (A.35) 

Student’s t distribution without constraint on � and F 	,q denotes the 

F  = d 
ν−2 
ν NF 2 N,ν . with p.d.f. 

and 0 for q < 0 . (A.36) 
ppendix 

roof of Result 1.. It is well known that the CRB for the estima

atrix inversion lemma by CRB ( α) = 

(
I α − I α,β I −1 

β
I T 
α,β

)−1 

, where 

(
atrix (9) for the RES distribution. Following the derivation of I α , i

here φβ	 

r,N 
(t) 

def = 

1 

g 
β
r,N 

(t) 

dg 
β
r,N 

(t) 

d β	 
, Q 

def = Q r,N , which gives the M × L mat

β
r,N 

(t) 
def = 

1 

g 
β
r,N 

(t) 

∂g 
β
r,N 

(t) 

∂ β
. From (1) , we get by definition of the FIM fo

 β , and I α,β we prove that the CRB for the estimation of α has alw

iven for both classic and semiparametric SB and a 3 = a Clas 
3 

− a 4 w

Using again the real to complex representation introduced in 

B formulas for NC-CES and C-CES distributions have also the stru

emiparametric SB formulas and where a 3 is given by a Clas 
3 

− a 4 w

[ φβ
c,N 

(Q ) φβ
c,N 

T 
(Q )] where φβ

c,N 
(t) 

def = 

1 

g 
β
c,N 

(t) 

∂g 
β
c,N 

(t) 

∂ β
and Q 

def = Q c,N . 

roof of Result 2.. It follows from Result 1 that the FIM associated

= α′ 
2 �0 ( α

′′ 
2 ) , can be written for RES distributed data in the follo

IM ( α2 ) = 

1 

α′ 2 
2 

(
a b 

T 

b C 

)
ith a = N(a 2 + Na 3 ) , b = α′ 

2 (a 2 + Na 3 ) 

(
d vec (�0 ) 

d α
′′ 
2 

T 

)T 

(�−T 
0 

� �−1 
0 

) ve

d vec (�0 ) 

d α
′′ 
2 

T 

)
. We note that for the semiparametric SB formula, 

IM ( α2 ) = 

1 

α′ 2 
2 

(
0 0 T 

0 C 

)
. Thus, CRB ( α

′′ 
2 
) = α′ 2 

2 C 

−1 which gives (15

nverse of the partitioned FIM (A.31) allows us to derive CRB ( α
′′ 
2 
) =

 3 . �

roof of Result 3.. Complex Student’s t−distribution 

From (8) , we get after simple algebraic manipulation 

c,N (t) 
def = 

1 

g ν
c,N 

(t) 

dg νc,N (t) 

dt 
= −2 N + ν

ν ′ + 2 t 
, 

ν
c,N (t) 

def = 

1 

g ν
c,N 

(t) 

∂g νc,N (t) 

∂ν
= k ′ N,ν − 1 

2 

log 

(
1 + 

2 t 

ν ′ 
)

− Nν ′ − νt 

ν ′ (ν ′ + 2 t) 

ith ν′ def = ν − 2 and k ′ 
N,ν

def = 

1 
2 

(
ψ 

(
N + 

ν
2 

)
− ψ 

(
ν
2 

))
. 

Hence with Q = Q c,N 

c, 3 ,N 
def = 

E[ Q φc,N (Q ) φν
c,N (Q )] 

N 

= − (2 N+ν) 

N 

[
(k ′ N,ν −N)E 

(
Q 

ν ′ + 2 Q 

)
+ 

ν

ν ′ E 

(
Q 

2 

ν ′ + 2 Q 

)
− 1 

2 

E 

(
c, 4 ,N 

def = E[ φν
c,N 

2 
(Q )] 

= k ′ 2 N,ν + 

1 

4 

E 

(
log 

2 
(

1 + 

2 Q 

ν ′ 
))

+ 

1 

ν ′ 2 E 

(
(Nν ′ − νQ ) 2 

(ν ′ + 2 Q ) 2 

)
− k ′ N,ν

[
E 

(
log 

(
1 + 

2 Q 

ν ′ 
))

+ 

2 

ν ′ E 

(
Nν ′ −νQ 

ν ′ + 2 Q 

)]
+ 

1 

ν ′ E 

(
(Nν

(ν ′ 

Then, observing that Q = d NF 2 N,ν where Q is associated with 

 -distribution with 	 and q degrees of freedom [7] , we have here Q

p(q ) = 

1 

((ν/ 2) − 1) N B (N, ν/ 2) 
q N−1 

(
1 + 

2 q 

ν − 2 

)−(N+ ν/ 2) 

for q ≥ 0 
8 
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hanks to [28,29] 
∫ 1 

0 u x −1 (1 − u ) y −1 log 
p (u ) log 

q (1 − u ) du = B p,q (x, y ) 
def = 

rly B 1 , 0 (x, y ) = B 0 , 1 (y, x ) = B (x, y )(ψ ( x ) − ψ(x + y )) , we get the follow- 

i  (A.35) 

ψ 

(
N + 

ν

2 

))2 

, 

E

E
 

log 

(
1 + 

2 Q 

ν ′ 
))

. 

.35) and using ψ 

′ ( ν
2 

)
− ψ 

′ (N + 

ν
2 

)
= 

∑ N−1 
	 =0 

1 

( 	 + ν2 ) 
2 allows us to obtain 

a
 

and (22) of ξc, 4 ,N . �

C iven by 

g (A.37) 

y

φ (A.38) 

φ (A.39) 

w
 log (b) 

bs 
and where k N,s 

def = ψ 

(
N 
s 

)
− ψ 

(
N+1 

s 

)
where ψ(x ) 

def = 

�
′ 
(x ) 

�(x ) 
is the 

d

ξ

 

(A.40) 
Using 
∫ + ∞ 

0 
t p−1 

(1+ 2 s t) 
p+ q dt = 

(
s 
2 

)p 
B (p, q ) , p > 0 , q > 0 , s > 0 , and t

∂ p+ q 
∂ x p ∂ x q 

B (x, y ) for integers p, q > 0 and q + x, p + y > 0 , and particula

ng expressions of the different expectations included in (A.34) and

E 

(
1 

ν ′ + 2 Q 

)
= 

ν

ν ′ (2 N + ν) 
, 

E 

(
1 

(ν ′ + 2 Q ) 2 

)
= 

ν(ν + 2) 

ν ′ 2 (2 N + ν)(2 N + ν + 2) 
, 

E 

(
Q 

ν ′ + 2 Q 

)
= 

N 

2 N + ν
, 

E 

(
Q 

2 

ν ′ + 2 Q 

)
= 

N(N + 1) 

2 N + ν
, 

E 

(
Q 

ν ′ + 2 Q 

)
= 

Nν

ν ′ (2 N + ν)(2 N + ν + 2) 
, 

E 

(
Q 

2 

(ν ′ + 2 Q ) 2 

)
= 

N(N + 1) 

(2 N + ν)(2 N + ν + 2) 
, 

E 

(
log 

(
1 + 

2 Q 

ν ′ 
))

= ψ 

(
1 − N − ν

2 

)
− ψ 

(
1 − ν

2 

)
, 

E 

(
log 

2 
(

1 + 

2 Q 

ν ′ 
))

= ψ 

′ 
(
ν

2 

)
− ψ 

′ 
(

N 

2 

+ 

ν

2 

)
+ 

(
ψ 

(
ν

2 

)
−

 

(
Q 

ν ′ + 2 Q 

log 

(
1 + 

2 Q 

ν ′ 
))

= 

N 

(
ψ 

(
1 + N + 

ν
2 

)
− ψ 

(
ν
2 

))
2 N + ν

, 

 

(
1 

ν ′ + 2 Q 

log 

(
1 + 

2 Q 

ν ′ 
))

= 

1 

ν ′ E 

(
log 

(
1 + 

2 Q 

ν ′ 
))

− 2 

ν ′ E 

(
Q 

ν ′ + 2 Q

Plugging these expressions of the expectations in (A.34) and (A

fter some tedious algebraic manipulations the values (21) of ξc, 3 ,N

omplex generalized Gaussian distribution. From (8) , g s 
c,N 

(t) is g

 

s 
c,N (t) = c N,s e 

−t s /b with b 
def = 

[ 

N�
(

N 
s 

)
�
(

N+1 
s 

)] s 

and c N,s 
def = 

s �(N) b −N/s 

πN �
(

N 
s 

) , 

ielding after some algebraic manipulation 

c,N (t) 
def = 

1 

g s 
c,N 

(t) 

dg s c,N (t) 

dt 
= − s 

b 
t s −1 , 

s 
c,N (t) 

def = 

1 

g s 
c,N 

(t) 

∂g s c,N (t) 

∂s 
= αN,s + (γN,s − βN,s ) t 

s − 1 

b 
t s log (t) , 

ith αN,s 
def = 

1 
s 2 

(s + N(N + 1) k N,s ) , βN,s 
def = 

Nk N,s −ψ 

(
N+1 

s 

)
bs 

and γN,s 
def= 

igamma function. 

Hence with Q = Q c,N 

c, 3 ,N 
def = 

E[ Q φc,N (Q ) φs 
c,N (Q )] 

N 

= − s 

Nb 

[ 
αN,s E(Q 

s ) + (γN,s − βN,s )E(Q 

2 s ) − 1 

b 
E(Q 

2 s log (Q )) 
]

9 
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ξ

f

E

w  

t

ξ

R

[

[

[

[

[

[

[

[

[

[

[  
c, 4 ,N 
def = E[ φs 

c,N 
2 
(Q )] 

= α2 
N,s + (γN,s − βN,s ) 

2 E(Q 

2 s ) + 

1 

b 2 
E(Q 

2 s log 
2 
(Q )) 

+2 αN,s (γN,s − βN,s )E(Q 

s ) − 2 αN,s 

b 
E(Q 

s log (Q )) 

+ 

2(βN,s − γN,s ) 

b 
E(Q 

2 s log (Q )) . (A.41) 

Then observing that Q = d G 1 /s where G ∼ Gam (N/s, b) [7] , the 

ollowing equalities [15, Eqs. (a.14)-(a.17)] 

E(Q 

s ) = 

Nb 

s 

E(Q 

2 s ) = 

Nb 2 (N + s ) 

s 2 

E(Q 

s log (Q )) = 

Nb 

s 2 
A N,s 

E(Q 

2 s log (Q )) = 

Nb 2 (N + s ) 

s 3 

(
A N,s + 

s 

N + s 

)
(Q 

2 s log 
2 
(Q )) = 

Nb 2 (N + s ) 

s 4 

(
A 

2 
N,s + 

2 s 

N + s 
A N,s + ψ 

′ 
(

N + s 

s 

))
, 

here A N,s 
def = log (b) + ψ( N+ s 

s ) used in (A .40) and (A .41) , allows us

o obtain after some algebraic manipulations the values (23) of 

c, 3 ,N and (24) of ξc, 4 ,N . �

eferences 

[1] D. Slepian, Estimation of signal parameters in the presence of noise, Trans. IRE 

Prof. Group Inform. Theory PG IT-3 (1954) 68–89 . 
[2] W.J. Bangs, Array Processing with Generalized Beamformers, 1971 Ph.D. thesis . 

Ph.D. dissertation, Yale Univ., New Haven, CT, USA 
[3] P. Stoica, R. Moses, Introduction to Spectral Analysis, Upper Saddle River, NJ: 

Prentice-Hall, 1997 . 

[4] J.-P. Delmas, H. Abeida, Stochastic cramer-rao bound for non-circular signals 
with application to DOA estimation, IEEE Trans. Signal Process. 52 (11) (2004) 

3192–3199 . 
[5] P.R. Krishnaiah, J. Lin, Complex elliptically symmetric distributions, Comm. 

Statist. - Theory and Methods 15 (1986) 3693–3718 . 
[6] C.D. Richmond, Adaptive Array Signal Processing and Performance Analysis 

in non-Gaussian Environments, 1996, Ph.D. thesis, Massachusetts Institute of 

Technology. 
[7] E. Ollila, D. Tyler, V. Koivunen, H. Poor, Complex elliptically symmetric distri- 

butions: survey, new results and applications, IEEE Trans. Signal Process. 60 
(11) (2012) 5597–5625 . 

[8] O. Besson, Y.I. Abramovich, On the fisher information matrix for multivariate 
elliptically contoured distributions, IEEE Signal Process. Lett. 20 (11) (2013) 
1130–1133 . 

10 
[9] M. Greco, F. Gini, Cramér-rao lower bounds on covariance matrix estimation 

for complex elliptically symmetric distributions, IEEE Trans. Signal Process. 61 
(24) (2013) 6401–6409 . 

[10] H. Abeida, J.P. Delmas, Slepian-bangs formula and cramér rao bound for cir- 
cular and non-circular complex elliptical symmetric distributions, IEEE Signal 

Process. Letters 26 (10) (2019) 1561–1565 . 
[11] S. Fortunati, F. Gini, M.S. Greco, A.M. Zoubir, M. Rangaswamy, Semiparametric 

CRB and slepian-bangs formulas for complex elliptically symmetric distribu- 

tions, IEEE Trans. Signal Process. 67 (20) (2019) 5352–5364 . 
12] C.D. Richmond, L.L. Horowitz, Parameter bounds on estimation accuracy under 

model misspecification, IEEE Trans. Signal Process. 63 (9) (2015) 2263–2278 . 
[13] P.A. Parker, C.D. Richmond, Methods and bounds for waveform parameter esti- 

mation with a misspecified model, 49th Asilomar Conference on Signals, Sys- 
tems and Computers (2015) 1702–1706 . 

[14] A. Mennad, S. Fortunati, M.N.E. Korso, A. Younsi, A.M. Zoubir, A. Renaux, 

Slepian-bangs type formulas and the related misspecified cramer-rao bounds 
for complex elliptically symmetric distributions, Signal Process. 142 (2018) 

320–329 . 
[15] M. Greco, S. Fortunati, F. Gini, Naive, robust or fully-adaptive: an estimation 

problem for CES distributions, Sensor, Array and Multichannel Signal Process- 
ing Workshop, (SAM), A Coruna, Spain, 2014 . 

[16] S. Fortunati, F. Gini, M. Greco, Matched, mismatched, and robust scatter matrix 

estimation and hypothesis testing in complex t distributed data, EURASIP J Adv 
Signal Process (2016) . 

[17] S. Fortunati, M.S. Greco, F. Gini, The impact of unknown extra parameters on 
scatter matrix estimation and detection performance in complex t-distributed 

data, IEEE Statistical Signal Processing Workshop (SSP) (2016) . 
[18] D. Kelker, Distribution theory of spherical distributions and a location-scale 

parameter generalization, Sankhya, Series A 32 (4) (1970) 419–430 . 

[19] E. Ollila, V. Koivunen, Generalized complex elliptical distributions, Proc. SAM 

Workshop (2004) 460–464 . 

20] A . Balleri, A . Nehorai, J. Wang, Maximum likelihood estimation for compound–
gaussian clutter with inverse gamma texture, IEEE trans. Aerosp. Electron. Syst. 

43 (2) (2007) 775–780 . 
21] P. Moulin, J. Liu, Analysis of multiresolution image denoising schemes using 

generalized gaussian and complexity priors, IEEE Trans. Inf. Theory 45 (3) 
(1999) 909–919 . 

22] H. Abeida, J.P. Delmas, Refinement and derivation of statistical resolution lim- 

its for circular or rectilinear correlated sources in CES data models, Signal Pro- 
cessing 195 (2022) . 

23] E. Moulines, P. Duhamel, J.F. Cardoso, S. Mayrargue, Subspace methods for 
the blind identification FIR filters, IEEE Trans. Signal Process. 43 (2) (1995) 

516–525 . 
24] K. Abed-Meraim, Y. Hua, Blind identification of multi-input multi-output sys- 

tem using minimum noise subspace, IEEE Trans. Signal Process. 45 (1) (1997) 

254–258 . 
25] P. Stoica, A. Nehorai, Performance study of conditional and unconditional di- 

rection of arrival estimation, IEEE Trans. Acoust. Speech, Signal Processing 38 
(10) (1990) 1783–1795 . 

26] J.-P. Delmas, P. Comon, Y. Meurisse, Performance limits of alphabet diversities 
for FIR SISO channel identification, IEEE Trans. Signal Process. 57 (1) (2009) 

73–82 . 

27] S. Fortunati, F. Gini, M.S. Greco, A.M. Zoubir, Semiparametric stochastic CRB 
for DOA estimation in elliptical data model, Proceedings of EUSIPCO, A Coruña, 

Spain (2019) . 
28] F.A. Sirehy, Further results on the beta function and the incomplete beta func- 

tion, App. Math. Sci. 7 (70) (2013) 3489–3495 . 
29] N. Shang, A. Li, Z. Sun, H. Qin, A note on the beta function and some prop-

erties of its partial derivatives, IAENG Int. J. Appl. Math. 44 (4) (2014) 200–

205 . 

http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0001
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0002
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0002
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0003
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0005
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0007
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0008
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0009
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0010
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0011
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0012
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0013
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0014
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0015
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0016
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0017
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0018
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0020
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0021
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0022
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0023
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0024
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0026
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0027
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0028
http://refhub.elsevier.com/S0165-1684(22)00425-X/sbref0029

	Slepian-Bangs formulas for parameterized density generator of elliptically symmetric distributions
	1 Introduction
	2 Preliminaries on elliptically symmetric distributions and Slepian-Bangs formulas
	2.1 RES, C-CES and NC-CES distributions
	2.2 Constrained density generators of Student’s  and generalized Gaussian distributions
	2.3 Classic and semiparametric SB formulas

	3 Parameterized Slepian-Bangs formulas
	3.1 Arbitrary density generator
	3.2 Student’s  and generalized Gaussian distributions

	4 Noisy linear mixture data model
	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Appendix
	References


