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Abstract

This paper is focused on estimators, both batch and adaptive, of the eigenvalue decomposition (EVD) of centro-
symmetric (CS) covariance matrices. These estimators make use of the property that eigenvectors and eigenvalues of such
structured matrices can be estimated via two decoupled eigensystems. As a result, the number of operations is roughly
halved, and moreover, the statistical properties of the estimators are improved. After deriving the asymptotic distribution
of the EVD estimators, the closed-form expressions of the asymptotic bias and covariance of the EVD estimators are
compared to those obtained when the CS structure is not taken into account. As a by-product, we show that the
closed-form expressions of the asymptotic bias and covariance of the batch and adaptive EVD estimators are very similar
provided that the number of samples is replaced by the inverse of the step size. Finally, the accuracy of our asymptotic
analysis is checked by numerical simulations, and it is found that the convergence speed is also improved thanks to the
use of the CS structure. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel fokusiert auf SchaK tzer der Eigenwertzerlegung (EVD) von zentrosymmetrischen (CS) Kovarianzmat-
rizen, wobei sowohl nicht-adaptive als adaptive SchaK tzer betrachtet werden. Diese SchaK tzer nutzen die Eigenschaft aus,
dass Eigenvektoren und -werte solcher strukturierten Matrizen durch zwei entkoppelte Eigensysteme geschaK tzt werden
koK nnen. Das Verfahren halbiert fast die Anzahl der Operationen und uK berdies werden die statistischen Eigenschaften der
SchaK tzer verbessert. ZunaK chst wird die asymptotische Verteilung der EVD-SchaK tzer hergeleitet und anschlie{end werden
die entsprechenden AusdruK cke des asymptotischen Bias und der asymptotischen Kovarianz in geschlossener Form mit
denjenigen SchaK tzern verglichen, die daraus resultieren, dass die CS-Struktur nicht beruK cksichtigt wird. ZusaK tzlich zeigen
wir, dass sich die angesprochenen AusdruK cke der nicht-adaptiven und der adaptiven EVD-SchaK tzer gleichen, falls die
Anzahl der Abtastwerte durch die Inverse der Schrittweite ersetzt wird. Schlie{lich wird die Genauigkeit unserer
asymptotischen Analysen durch numerische Simulationen uK berpruK ft und es stellt sich heraus, dass durch Ausnutzen der
CS-Struktur auch die Konvergenzgeschwindigkeit erhoK ht wird. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Cet article est consacreH à des estimateurs en block et adaptatifs de deH composition en valeurs/vecteurs propres (EVD) de
matrices de covariance de structure centro-symmeH trique (CS). Ces estimateurs sont construits à partir de la proprieH teH que
l'EVD de telles matrices structureH es peut s'obtenir à partir des deux EVD deH coupleH es. Il en reH sulte que la complexiteH
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numeH rique d'une telle EVD est grossièrement diviseH e par deux et que les proprieH teH s statistiques des ces estimateurs sont
ameH lioreH es. Après avoir donneH s les distributions asymptotiques de ces estimateurs d'EVD, des expressions analytiques
des biais et des covariances asymptotiques sont compareH es aux expressions obtenues sans tenir compte de la structure
CS. Nous montrons en outre que les expressions des biais et des covariances asymptotiques des estimateurs en block et
adaptatifs ont des structures similaires si le nombre d'eH chantillons de l'estimateur en block est remplaceH par l'inverse du
pas d'adaptation de l'estimateur adaptatif. Finalement la pertinence de l'analyse asymptotique est con"rmeH e par des
simulations et l'on montre que la vitesse de convergence des estimateurs est aussi ameH lioreH e lorsque la structure CS est
prise en compte. ( 1999 Elsevier Science B.V. All rights reserved.

Keywords: Eigenvalue decomposition; Centro-symmetric covariance matrices; Asymptotic bias and covariance of eigenvectors and
eigenvalues estimators; Asymptotic distribution of batch and adaptive estimators

1. Introduction

Signal processing applications often lead to
structured matrix problems. Algorithms which take
this structure into account usually require fewer
computations, and have better numerical proper-
ties [4]. An important matrix structure is the sym-
metric centro-symmetric structure, for which the
symmetric Toeplitz structure is a particular case.
This structure occurs in engineering problems [6]
and in signal processing applications: temporal
covariance matrices obtained from a temporal
sampling of a stationary signal, and spatial
covariance matrices issued from uncorrelated and
band-limited sources observed on symmetric
centro-symmetric sensor arrays (for example on
uniform linear arrays) [21] are centro-symmetric;
spatio-temporal covariance matrices used in sub-
space methods for blind identi"cation of multi-
channel FIR "lters [15] are block-symmetric
centro-symmetric. In the real case, we use the prop-
erty that an orthonormal eigenbasis of a symmetric
centro-symmetric matrix can be obtained from or-
thonormal eigenbases of two half-sized symmetric
real matrices [5]. This property has already been
used in [8,9] and in [19] for, respectively, a para-
meterized adaptive eigenspace algorithm and an
adaptive eigen"lter bank. But no asymptotic per-
formance analysis has been done yet. The purpose
of this paper is to give the asymptotic bias,
covariance and distribution of batch and adaptive
EVD estimators. The estimators we study are de-
rived from the maximum likelihood principle, in
the bach case, and from the Stochastic Gradient

Ascent algorithm (SGA), in the adaptive case, and
take into account the CS structure.

This paper is organized as follows. In Section 2,
we recall the property that an orthonormal eigen-
basis of a CS matrix can be obtained from or-
thonormal eigenbases of half-sized symmetric
matrices. In Section 3 (respectively in Section 4), we
study the bias, covariance and asymptotic distribu-
tion of batch (respectively of adaptive) estimators of
EVD of CS covariance matrices. In particular, two
theorems give closed form expressions of the
covariance of the limiting distributions of such an
estimated eigenvalue decomposition. Finally, in
Section 5 we present some simulations with two
purposes. On the one hand, we examine the accu-
racy of the expressions of the mean square error of
our estimators and investigate the step size domain
for which our asymptotic approach is valid. On the
other hand, we examine performance criteria for
which no analytic results were obtained in the pre-
ceding sections, such as the convergence speed,
which happens to be improved when the CS struc-
ture is taken into account. The following notations
are used throughout the paper. Matrices and vec-
tors are represented by bold upper case and bold
lower case characters, respectively. Vectors are by
default in column orientation and T stands for
transpose. The symbol vnw (respectively xny) de-
notes the "rst integer larger (respectively smaller)
than or equal to n. e

i
is the ith unit vector in

Rvn@2w or in Rxn@2y. E( ) ), Cov( ) ), Tr( ) ), det( ) )
and DD ) DD

F30
denote the expectation, the covariance,

the trace, the determinant operator and the
Frobenius matrix norm, respectively. Vec( ) ) is
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1We introduce this notation because, in general, we have no
a priori information on the order of the eigenvalues associated
to skew-symmetric and symmetric eigenvectors.

the `vectorizationa operator that turns a matrix
into a vector consisting of the columns of the
matrix stacked one below another. It is used in
conjunction with the Kronecker product A?B as
the block matrix, the (i, j) block element of which is
a
i,j

B. d
i,j

denotes the Kronecker notation: d
i,j
"1 if

i"j and d
i,j
"0 otherwise. Diag(a

1
,2, a

n
) is a di-

agonal matrix with diagonal elements a
i

and
Diag(A

1
,2, A

n
) is a block diagonal matrix with

block-diagonal entries A
i
.

2. Eigenvalue decomposition structure

We consider an n]n centro-symmetric
covariance matrix R

x
"E(xxT) of a Gaussian-dis-

tributed, zero mean real random vector x, and we
denote by j

1
'2'j

n
, the distinct eigenvalues of

R
x

and by *
1
,2,*

n
corresponding normalized

eigenvectors. The EVD estimators that we propose
stem from the property that an orthonormal eigen-
basis of R

x
can be obtained from orthonormal

eigenbases of half-sized symmetric matrices [5].
This property is recalled here for convenience of the
reader and in order to "x notations. For n, respec-
tively even and odd, R

x
can be partitioned as fol-

lows:

R
x
"C

R
1

RT
2

R
2

JR
1
JD , R

x
"C

R
1

r RT
2

rT r
0

rTJ

R
2

Jr JR
1
JD , (1)

where J is an xn/2y]xn/2y matrix with ones on
its anti-diagonal and zeros elsewhere, and
R
1
"RT

1
, JR

2
"RT

2
J. Furthermore, R

x
can be re-

duced to a block diagonal form by a data indepen-
dent orthogonal transformation K:

R
x
"KC

R~ O

O R`DKT, (2)

with respectively for n even and n odd:

R~"R
1
!JR

2
, R`"R

1
#JR

2
,

K"

1

J2C
I I

!J JD , (3)

R~"R
1
!JR

2
, R`"C

r
0

J2rT

J2r R
1
#JR

2
D ,

K"

1

J2 C
I 0 I

0T J2 0T

!J 0 J D ,

(4)

where I is the xn/2y]xn/2y identity matrix.
So xn/2y skew-symmetric and vn/2w symmetric

orthonormal eigenvectors of R
x

(denoted1 respec-
tively by *~

1
,2,*~xn@2y and *`

1
,2,*v̀n@2w), and corre-

sponding eigenvalues (denoted respectively by
j~
1
,2, j~xn@2y and j`

1
,2, jv̀n@2w

) are determined
from the solutions of the equations:

R~u~
i
"j~

i
u~
i
, i"1,2,xn/2y

and (5)

R`u`
i
"j`

i
u`
i
, i"1,2, vn/2w ,

where *s
i
are connected to us

i
respectively for n even

and odd by

*s
i
"Ks

e
us
i
, [respectively *s

i
"Ks

o
us
i
],

s"!, i"1,2,xn/2y ,

s"#, i"1,2,vn/2w , (6)

with

K~
e

$%&
"

1

J2C
I

!JD , K`
e

$%&
"

1

J2C
I

JD
and

K~
o

$%&
"

1

J2 C
I

0T

!JD , K`
o

$%&
"

1

J2 C
0 I

J2 0T

0 J D.
Moreover, the set M*~

1
,2,*~xn@2y,*`

1
,2,*v̀n@2wN forms

an orthonormal set which therefore spans the
eigenspace of R

x
.

J.-P. Delmas / Signal Processing 78 (1999) 101}116 103



2Eigenvectors are uniquely de"ned if we require that their
"rst nonzero component be positive.

3. Batch estimator

3.1. Maximum likelihood estimator

We consider in this section, the maximum likeli-
hood (ML) estimation of the EVD of R

x
from

t samples X
t
$%&
" (x

1
,2, x

t
). Let C

y~
t

y`
t
D $%&
" KTx

t
,

Y~
t

$%&
" ( y~

1
,2, y~

t
), Y`

t
$%&
" ( y`

1
,2, y`

t
) and

Y
t
$%&
" C

Y~
t

Y`
t
D. The Gaussian probability density of

X
t
, parameterized by (R~, R`), is

f (X
t
;( R~, R`))"Ddet K D f (Y

t
;( R~, R`))

"f (Y
t
;(R~, R`)). (7)

Then, since

EC
y~
t

y`
t
D[y~T

t
y`T

t
]"C

R~ O

O R`D, (8)

we have

f (Y
t
;(R~, R`))"f (Y~

t
; R~) f (Y`

t
; R`). (9)

So the ML estimators of (R~, R`) given X
t

are
obtained from the M¸ estimators of R~ given Y~

t
,

and of R` given Y`
t
. According to a classical result

(see e.g. [1, Theorem 3.2.1]), these ML estimators
are, respectively, the sample covariance matrices

R~
t

$%&
" 1

t
+t

k/1
y~
k

y~T
k

and R`
t

$%&
" 1

t
+t

k/1
y`
k

y`T
k

. Thus,
according to the invariance property2 of the ML
estimator (see e.g. [1, Corollary 3.2.1]), we have the
following theorem.

Theorem 1. Let (x
1
,2, x

t
) be a sample from a zero

mean Gaussian distribution with centro-symmetric
covariance matrix R

x
. Then a set of ML estimators of

the EVD of R
x

can be computed from the EVD of the
sample covariance matrices R~

t
and R`

t
. The eigen-

values ML estimator is j~
1,t

,2, j~xn@2y,t
, j`

1,t
,2,

jv̀n@2w,t
; i.e., the eigenvalues of R~

t
and R`

t
. The eigen-

vectors ML estimator is *~
1,t

,2, *~xn@2y,t
, *`

1,t
,2, *v̀n@2w,t

,
which is deduced from the eigenvectors
u~
1,t

,2, u~xn@2y,t
of R~

t
and u`

1,t
,2, uv̀n@2w,t

of R`
t

by
the relation (6).

We note that this procedure yields the same
estimator that the EVD of the symmetric centro-
symmetric (often called Forward}Backward)
sample covariance matrix:

RFB
t

$%&
"

1

2
(R

t
#JR

t
J), with R

t
$%&
"

1

t

t
+
k/1

x
k
xT
k
. (10)

From the complexity and precision point of view, it
is well known [12] that the EVD of a covariance
matrix should in practice be replaced by the SVD of
the associated data matrix. For example, an EVD
of an n]n covariance matrix requires O(n3) #ops
by iteration for the EVD computation and O(n2t)
#ops for the covariance computation. Computing
the covariance matrix is therefore the major com-
putational burden of the whole algorithm. On the
other hand, the SVD of the associated n]t data
matrix requires only O(nt) #ops by iteration (if for
instance one uses the bidiagonalisation Lanczos
method [12,20]). So, as the data matrix 1J2

(X
t
, JX

t
)

associated to RFB
t

doubles the number of data sam-
ples, the equivalent procedure which consists in
performing the SVD of the xn/2y]t and vn/2w]t
data matrices Y~

t
and Y`

t
, roughly reduces the

complexity by half, while avoiding less of accuracy
due to squaring up data.

3.2. Asymptotic distribution

Since the Gaussian 2n-vector Vec(y~
k

, y`
k

) is
composed of two Gaussian uncorrelated vectors
(8), y~

k
and y`

k
are independent random variables.

This implies that R~
t

and R`
t

are independent.
So the random vectors H~

t
and H`

t
, with

Hs
t
$%&
" Vec(us

1,t
,2, us

n
s,t
, js

1,t
,2, js

n
s,t
), s"!,# are

independent. ns used throughout the paper denotes
xn/2y for s"! and vn/2w for s"#. Let

u s
t
$%&
" Vec (u s

1,t
,2 ,u s

n
s,t
) , u s $%&" Vec (u s

1
,2 ,u s

n
s) ,

(Ks
t
$%&
" (js

1,t
,2, js

n
s,t
)T and Ks $%&" (js

1
,2, js

n
s)T). Then,

according to a classical result (e.g. in [1, Theorem
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13.5.1, p. 541]), Jt (Vec(us
t
,Ks

t
)!Vec(us, Ks)) con-

verges in distribution to the zero mean Gaussian
distribution of covariance C

u
s,js"Diag(C

u
s, Cjs),

where

Cjs"Diag(2(js
1
)2,2, 2(js

n
s)2), s"!,# (11)

and where C
u
s are the ns]ns matrix, the block (C

u
s)
i,j

of which are for s"!,#:

(C
u
s)
i,j
"G

+
1xkEixn

s

js
i
js
k

(js
k
!js

i
)2

us
k
us

T

k
, i"j,

!

js
j
js
i

(js
i
!js

j
)2

us
j
us

T

i
, iOj.

(12)

Lastly, we apply the linear mapping deduced from

Eq. (6), in which *s $%&" Vec(*s
1
,2,*s

n
s) is equal for

s"!,#:

*s"G
Diag(Ks

e
,2,Ks

e
)us, for n even,

Diag(Ks
o
,2,Ks

o
)us, for n odd,

(13)

Theorem 2 follows immediately.

Theorem 2. Jt (Vec(*~
t
, K~

t
, *`

t
, K`

t
)!Vec(*~, K~,

*`, K`)) converges in distribution to the zero mean
Gaussian distribution of covariance C

v,j with
C
v,j"Diag(C

v
~,Cj~,C

v
`,Cj`),

Cjs"Diag(2(js
1
)2,2, 2(js

n
s)2), s"!,#, (14)

C
v
s" +

1xiEjxn
s

js
i
js
j

(js
i
!js

j
)2

e
i
eT
i
?*s

j
*sT
j

! +
1xiEjxn

s

js
i
js
j

(js
i
!js

j
)2

e
i
eT
j
?*s

j
*sT
i
,

s"!,#. (15)

This result is quite comparable to the classical
results obtained when the centro-symmetric struc-
ture is not taken into account ([1, Theorem 13.5.1,
p. 541]). The only di!erence lies in the uncorrela-
tion between the skew-symmetric and the symmet-
ric estimated eigenvectors, and in the summations
(15), which are only done over the skew-symmetric
(respectively the symmetric) eigenvectors.

3.3. Asymptotic bias and asymptotic MSE

Asymptotic bias. By performing a Taylor expan-
sion of j~

i
and u~

i
(respectively j`

i
and u`

i
) in the

neighborhood of R~ (respectively R`), Kaveh et al.
[14] showed for complex data a result that can be
directly carried over to the real data case:

E(js
k,t

)"js
k
#oA

1

tB, s"!,#, (16)

E(us
k,t

)"us
k
!

js
k

2tA +
1xjEkxn

s

js
j

(js
j
!js

k
)2Bus

k
#oA

1

tB,
s"!,#. (17)

So, thanks to the linear mapping us
k
P*s

k
(formulas

(6)), Eq. (17) holds for the bias of *s
k,t

by replacing
us
k
by *s

k
:

E(*s
k,t

)"*s
k
!

js
k

2tA +
1xjEkxn

s

js
j

(js
j
!js

k
)2B*sk#oA

1

tB,
s"!,#. (18)

Asymptotic MSE. A simple global measure of per-
formance of our batch estimator is the MSE be-

tween *
t
$%&
" Vec(*

1,t
,2,*

n,t
) and * $%&" Vec(*

1
,2,*

n
),

and between K
t
$%&
" (j

1,t
,2, j

n,t
)T and K $%&

"

(j
1
,2, j

n
)T. These MSE are obtained from the

asymptotic bias (16), (18) and from the asymptotic
covariances cov(Ks

t
) and cov(us

t
). It has been shown

[3, Theorem 9.22, p. 340] that

Cov(Ks
t
)"

1

t
Cjs#OA

1

t2B
and (19)

Cov(us
t
)"

1

t
C
u
s#OA

1

t2B.
So, from Eqs. (16), (17) and (19), we get according to
Theorem 2

EDDK
t
!KDD2

F30
"

2

t

n
+
k/1

j2
k
#OA

1

t2B, (20)

EDD*
t
!*DD2

F30
"

1

tA +
1xjEkxxn@2y

j~
j
j~
k

(j~
j
!j~

k
)2

# +
1xjEkxvn@2w

j`
j
j`
k

(j`
j
!j`

k
)2B#OA

1

t2B.
(21)
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3.4. Analysis of the results

Let us now compare the results to the case where
the CS structure is not taken into account ([14] and
[1, Theorem 13.5.1, p. 541]), which we now recall
for convenience of the reader:

E(j
k,t

)"j
k
#oA

1

tB, (22)

E(*
k,t

)"*
k
!

j
k

2tA +
1xjEkxn

j
j

(j
j
!j

k
)2B*k#oA

1

tB,
(23)

EDDK
t
!KDD2

F30
"

2

t

n
+
k/1

j2
k
#OA

1

t2B,

EDD*
t
!*DD2

F30
"

1

tA +
1xjEkxn

j
j
j
k

(j
j
!j

k
)2B#OA

1

t2B.
(24)

We note that if the asymptotic bias and the
asymptotic MSE of the estimated eigenvalues are
unchanged, the asymptotic bias and the asymptotic
MSE of the estimated eigenvectors are reduced
when the CS structure is taken into account. The
number of terms in the summations (18) and (21)
are roughly halved and the di!erence between two
successive eigenvalues js

k
is generally larger than

between successive eigenvalues j
k
. In particular, if

successive eigenvalues j
k
interlace (i.e. j

2k
"j~

k
and

j
2k`1

"j`
k

), the asymptotic bias and the asymp-
totic MSE can be considerably reduced. Necessary
conditions for this interlaced distribution are given
in [5] for the general CS structure and in [11] for
the Toeplitz structure.

4. Adaptive estimator

4.1. Adaptive algorithm

For batch estimation, the estimator we proposed
in Section 3 is the ML estimator. For adaptive
estimation, many estimators are available. Any
gradient-type algorithm or RLS-type algorithm (i.e.
[22]) built upon x

t
can be split into two decoupled

algorithms in which one is built upon y~
t

and the
other upon y`

t
. We propose to use, as example an

adaptive algorithm introduced in the Neural Net-
work Literature by Oja, the so-called Stochastic
Gradient Ascent algorithm (SGA), because of the
simplicity of its asymptotic distribution [10]. Its
convergence is studied in [17] and, as was shown in
[10], it achieves a good convergence speed/misad-
justment tradeo! among a family of numerically
simple algorithms. Of course, the study set out in
this section could be immediately extended to other
gradient-type algorithm. For exemple, the general-
ized Hebbian algorithm (GHA), the weighted sub-
space algorithm (WSA) and the optimal "tting
analyser (OFA), the distribution of which are de-
rived in [10], can be studied along the same lines.
Adapted to our structured situation, the SGA algo-
rithm splits into two decoupled algorithms:

us
k,t`1

"us
k,t
#as

k
cCI

n
s!us

k,t
us

T

k,t

!

k~1
+
i/1
A1#

as
i

as
k
Bus

i,t
us

T

i,tDys
t
ysT
t

us
k,t

, (25)

js
k,t`1

"js
k,t
#c[us

T

k,t
ys
t
ysT
t

us
k,t
!js

k,t
], (26)

for s"!,# and k"1,2,ns (n~ $%&
" xn/2y and

n` $%&
" vn/2w ). u~

k,t
(respectively u`

k,t
) is associated to

the xn/2y skew-symmetric eigenvectors *
i
, (respec-

tively the vn/2w symmetric eigenvectors *
i
). The

parameters as
k

(as
1
"1 and as

k
'0, k"1,2,ns) af-

fords a better tradeo! between the convergence
speed and misadjustment [10], and c is the step
size. As the computational cost of the SGA algo-
rithm is O(n2) #ops by iteration, the number of
operations of our split procedure is roughly halved.
To evaluate the asymptotic distribution of this
EVD estimator, we shall use a general approxima-
tion result [2, Theorem 2, p. 108] which we now
recall for convenience of the reader.

4.2. Asymptotic distribution

4.2.1. A short review of a general Gaussian
approximation result

Consider a constant step size recursive stochastic
algorithm (we write Hc

t
for the sequence of
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estimates to emphasize the dependence on c):

Hc
t`1

"Hc
t
#cg(Hc

t
, x

t
), (27)

with x
t
"h(m

t
), where m

t
is a Markov chain indepen-

dent of H
t
. The "eld g(H, x) is the function which

essentially de"nes how the parameter Hc
t
is updated

as a function of new observation x
t
. Suppose that

the parameter vector Hc
t
converges almost surely to

the unique asymptotically stable point HH in the
corresponding decreasing step-size algorithm. Con-
sider the continuous Lyapunov equation:

DCH#CHDT#G"O, (28)

where D and G are, respectively, the derivative of
the mean "eld and the covariance of the "eld of the
algorithm (27):

D $%&
" EC

Lg

LH
(H, x

t
)DH/HH

, (29)

G $%&
"

=
+

t/~=

cov[g(HH,xt
), g(HH, x0

)]. (30)

If all the eigenvalues of the derivative D of the mean
"eld have strictly negative real parts, then, in a sta-
tionary situation, for c arbitrarily small, we have
as tPR:

1

Jc
(Hc

t
!HH)

L

P N(0,CH), (31)

where CH is the unique symmetric solution of the
Lyapunov equation (28).

4.2.2. Local caracterisation of the xeld
With H

t
"Vec(H~

t
,H`

t
) with Hs

t
, s"!,# de-

"ned in Section 3.2, the SGA algorithms (25) and
(26) can be globally written in a form similar to that
of Eq. (27). According to the previous section, one
needs to characterize two local properties of
the "eld g(H

t
,x

t
): the mean value of its derivative

and its covariance, both evaluated at the point
H

t
"HH.

Derivative of the 5eld. It is straightforward to see
that D can be partitioned as follows:

D"C
D

u
~ O O O

D
u
~,j~ !I

n
~ O O

O O D
u
` O

O O D
u
`,j` !I

n
`
D, (32)

with

D
u
s,js"2Diag(js

1
us

T

1
,2, js

n
sus

T

n
s), s"!,#. (33)

D
u
s are ns]ns block matrices, the block (D

u
s)
i,j

of
which is given in [10] by

(D
u
s)
i,j

"G
!as

i
[+i~1

k/1
(js

i
#askasijs

k
)us

k
us

T

k
#2js

i
us
i
us

T

i

#+n
s

k/i`1
(js

i
!js

k
)us

k
us

T

k
], i"j,

O, i(j,

!as
i
(1#asjasi)jsius

j
us

T

i
, i'j.

(34)

Covariance of the 5eld. The "eld of the algorithms
(25) and (26) can be globally written in the form:

g(H
t
,x

t
)"C

g~(H~
t

,y~
t

y~T

t
)

g`(H`
t

,y`
t

y`T

t
)D"C

g
u
~(H~

t
, y~

t
y~T

t
)

gj~(H~
t

, y~
t

y~T

t
)

g
u
`(H`

t
, y`

t
y`T

t
)

gj`(H`
t

, y`
t

y`T

t
)D

"C
A~ O

B~ O

O A`

O B`DCVec(y~
t

y~T
t

)

Vec(y`
t

y`T
t

)D!C
O

K~

O

K`D , (35)

with

As $%&" C
us

T

1
?As

1
F

us
T

n
s?As

n
sD and Bs $%&" C

us
T

1
?us

T

1
F

us
T

n
s?us

T

n
sD ,

s"!,#, (36)
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and

As
k
"as

kCI
n
s!us

k,t
us

T

k,t
!

k~1
+
i/1
A1#

as
i

as
k
Bus

i,t
us

T

i,tD,
k"1,2,ns, s"!,#. (37)

The covariance G of the "eld evaluated at
H"HH"Vec(*~, K~, *`, K`), in the case where
the observations x

t
are independent, can be

partitioned as follows:

G"C
G

u
~ GT

u
~,j~ O O

G
u
~,j~ Gj~ O O

O O G
u
` GT

u
`,j`

O O G
u
`,j` Gj`

D. (38)

Using the expression of Cov(Vec(ys
t
ysT
t
)) given in

[10] and after some manipulations, the following
relations hold:

G
u
s,js"O and Gjs"2Diag((js

1
)2,2,(js

n
s)2), (39)

for s"!,#. Here G
u
s are the ns]ns matrices, the

block (G
u
s)
i,j

of which is given in [10] by

(G
u
s)
i,j
"

G
+i~1

k/1
(as

k
)2js

i
js
k
us
k
us

T

k
#+n

s

k/i`1
(as

i
)2js

i
js
k
us
k
us

T

k
], i"j

!(as
.*/(i,j)

)2js
i
js
j
us
j
us

T

i
, iOj.

(40)

4.2.3. Solution of the Lyapunov equation
For independent observations x

t
and for the in-

vestigated algorithm, which can be written in
a form similar to Eq. (27) with m

t
"x

t
for which the

eigenvalues of the derivative (32) of the mean "eld
have strictly negative real parts (see [10] for the
eigenvalues of D

u
s), the hypotheses of the model of

Benveniste et al. ([2, Theorem 2, p. 108]) are ful"l-
led. But, the underlying assumption for the results
by Benveniste et al. is that the solution of the
corresponding stochastic approximation type algo-
rithm with decreasing step size, almost surely con-
verges to the unique asymptotically stable point of
the associated ODE. Since the normalized eigen-
vectors are de"ned up to a sign, the global attractor

HH is not unique. However, the practical use of the
Benveniste results in such situation is usually justi-
"ed (for example in [7]) by using formally a general
approximation result ([2, Theorem 1, p. 107]). Fur-
thermore, the almost sure convergence of the asso-
ciated decreasing step size algorithms are not
strictly ful"lled for the SGA algorithm. This a.s.
convergence would need a boundedness condition,
whose satisfaction is a challenging problem. But, as
discussed in [13], this condition was proved for
only the Oja learning rule [16] designed for ex-
tracting the most dominant eigenvector by means
of a single linear unit neuron network, where Oja et
al. [18] showed that if this algorithm is used with
uniformly bounded inputs x

t
, then *

1,t
remains in-

side some bounded subset. If we allow ourselves the
Benveniste results in our situation, the Lyapunov
continuous equations can be solved exactly. Since
the matrices D and G are 2]2 block diagonal, the
Lyapunov equation (28) can be reduced to two
decoupled equations. Thus

CH"Diag(CH~, CH`), (41)

where CHs"C
C
u
s CT

u
s,js

C
u
s,js Cjs D are solutions of the

Lyapunov equation:

C
D

u
s O

D
u
s,js !I

n
sDC

C
u
s CT

u
s,js

C
u
s,js Cjs D

#C
C
u
s CT

u
s,js

C
u
s,js Cjs DC

DT
u
s DT

u
s,js

O !I
n
sD"!C

G
u
s O

O GjsD.
(42)

So C
u
s are solutions of the Lyapunov equation:

D
u
sC

u
s#C

u
sDT

u
s#G

u
s"O, the block (C

u
s)
i,j

of which
is given in [10] by

(C
u
s)
i,j
"G

+
1xkEixn

s

as
.*/(i,k)

js
i
js
k

2Djs
i
!js

k
D

us
k
us

T

k
, i"j,

!

as
.*/(i,j)

js
i
js
j

2Djs
i
!js

j
D

us
j
us

T

i
, iOj,

(43)
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for s"!,#. Considering the change of basis
stated in [10], Eq. (42) gives the following expres-
sions after some manipulations:

C
u
s,js"O and Cjs"Diag((js

1
)2,2,(js

n
s)2), (44)

for s"!,#. Along the same steps as for the
batch estimation, the following theorem is proved.

Theorem 3. 1/Jc(Vec(*~
t
,K~

t
, *`

t
,K

t
)!Vec(*~, K~,

*`, K`)) converges in distribution (tPR and cP0)
to the zero mean Gaussian distribution of covariance
C
v,j with C

v,j"Diag(C
v
~,Cj~,C

v
`,Cj`),

Cjs"Diag((js
1
)2,2,js

n
s)2), s"!,#, (45)

C
v
s" +

1xiEjxn
s

as
.*/(i,j)

js
i
js
j

2Djs
i
!js

j
D
e
i
eT
i
?*s

j
*sT
j

! +
1xiEjxn

s

as
.*/(i,j)

js
i
js
j

2Djs
i
!js

j
D

e
i
eT
j
?*s

j
*sT
i
,

s"!,#. (46)

As far as the asymptotic distribution is con-
cerned, similar results could be derived from other
gradient-like algorithms such as the generalized
Hebbian algorithm (GHA), the weighted subspace
algorithm (WSA) and the optimal "tting analyzer
(OFA). It would be su$cient to use the asymptotic
distributions of their unstructured eigenvectors es-
timators given in [10].

4.3. Asymptotic bias and asymptotic MSE

Asymptotic bias. Several simple bias and MSE
characterizations can be derived from the regular
structure of the covariance matrix CH as expressed
by Eqs. (45) and (46). A word of caution is none-
theless necessary because the convergence of

1/Jc (Hc
t
!HH) to a limiting Gaussian distribution

with covariance matrix CH does not guarantee the
convergence of its moments to those of the limiting
Gaussian distribution. In batch estimation, both
the "rst and the second moments of the limiting

distribution of Jt (H
t
!HH) are equal to the corre-

sponding asymptotic moments (Section 3.3). In the

following sections, we assume the convergence of
the second-order moments allowing us to write:

CovH
t
"cCH#o(c). (47)

Let H
t
"HH#dH

t
. Provided H

t
is stationary, tak-

ing the expectation of both sides of Eqs. (25) and
(26) gives

0"E(gs(HsH#dHs
t
, ys

t
ysT
t
)), s"!,#. (48)

As the "eld gs is linear in its second argument
and Hs

t
and ys

t
ysT
t

are independent (for indepen-
dent observations x

t
), the mean "eld at point

HH#dH
t
is

E(gs(HsH#dHs
t
, ys

t
ysT
t
))"E(gs(HsH#dHs

t
,Rs)),

s"!,#. (49)

Then, E(gs(HsH#dHs
t
,Rs)), s"!,# can be ex-

panded in the neighborhood of HsH as

E(gs(HsH#dHs
t
,Rs))

"0#
Lgs

LHs
Hs

t/Hs
H
E(dHs

t
)

#

1

2

L2gs

LHs
2Hs

t/Hs
H
E(Vec(dHs

t
dHs

T

t
))

#E(ODDdHs
t
DD3), (50)

in which, thanks to Eq. (32), the "rst-order term is
given by

C D
u
s O

D
u
s,js !I

n
sDC

E(dus
t
)

E(dKs
t
)D. (51)

From Eq. (5) and from the expression of
E(dus

i,t
dus

j,t
) deduced from Eqs. (43) and (47), we get

after some algebric manipulations the second-order
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term:

1

2

L2gs

LHs
2
Hs/Hs

H

E(Vec(dHs
t
dHs

T

t
))"c

!as
1

+
1:ixn

s

as
1
js2
i
js
1

2Djs
i
!js

1
D

!as
2

+
1xiE2xn

s

as
.*/(i,2)

js2
i
js
2

2Djs
i
!js

2
D
#

2~1
+
i/1

(as
i
#as

2
)as

i
js
i
js
2

2

F

!as
n
s +
1xi:n

s

as
i
js2
i
js
n
s

2Djs
i
!js

n
sD
#

n
s~1
+
i/1

(as
i
#as

n
s)as

i
js
i
js
n
s

2

+
1:ixn

s

as
1
js2
i
js
1

2Djs
i
!js

1
D

+
1xiE2xn

s

as
.*/(i,2)

js2
i
js
2

2Djs
i
!js

2
D

F

+
1xi:n

s

as
i
js

2

i
js
n
s

2Djs
i
!js

n
sD

#o(c). (52)

Then, the resolution of the block triangular equa-
tion (50) in which D

u
s is a block triangular matrix

too, is straightforward. We successively get

E(dus
k,t

)"!

c
4A +

1xjEkxn
s

as
.*/(j,k)

js2
j

Djs
j
!js

k
D

!

k~1
+
j/1
A1#

as
j

as
k
Bas

j
js
jBus

k
#o(c),

s"!,#, (53)

E(djs
1,t

)"o(c), s"!,#, (54)

E(djs
k,t

)"
c
2

k~1
+
j/1
A1#

as
j

as
k
Bas

j
js
j
js
k
#o(c),

s"!,#, k"2,2, ns. (55)

So, thanks to the linear mapping us
k
P*s

k
(6), Eq.

(53) holds for the bias of *s
k,t

by replacing us
k
by *s

k
:

E(*s
k,t

)"*s
k
!

c
4A +

1xjEkxn
s

as
.*/(j,k)

js2
j

Djs
j
!js

k
D

!

k~1
+
j/1
A1#

as
j

as
k
Basjjs

jB*sk#o(c),

s"!,#, (56)

E(js
1,t

)"js
1
#o(c), s"!,#, (57)

E(js
k,t

)"js
k
#

c
2

k~1
+
j/1
A1#

as
j

as
k
Basjjsjjsk#o(c),

s"!,#, k"2,2,ns. (58)

Asymptotic MSE. The MSE between *
t
$%&
" Vec(*

1,t
,

2,*
n,t

) and * $%&" Vec(*
1
,2,*

n
), and between

K
t
$%&
" (j

1,t
,2,j

n,t
)T and K $%&

" (j
1
,2,j

n
)T, is ob-

tained from the asymptotic bias (56), (57), (58) and
from the asymptotic covariance (47). And accord-
ing to Theorem 3:

EDDK
t
!KDD2

F30
"c

n
+
k/1

j2
k
#o(c), (59)

EDD*
t
!*DD2

F30

"cA +
1xjEkxxn@2y

a~
.*/(j,k)

j~
j
j~
k

2Dj~
j
!j~

k
D

# +
1xjEkxvn@2w

a`
.*/(j,k)

j`
j

j`
k

2Dj`
j
!j`

k
D B#o(c). (60)
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4.4. Analysis of the results

Let us now compare the results to the case where
the CS structure is not taken into account [10],
which we now recall for convenience of the reader:

E(*
k,t

)"*
k
!

c
4A +

1xjEkxn

a
.*/(j,k)

j2
j

Dj
j
!j

k
D

!

k~1
+
j/1
A1#

a
j

a
k
BajjjB*k#o(c), (61)

E(j
1,t

)"j
1
#o(c), (62)

E(j
k,t

)"j
k
#

c
2

k~1
+
j/1
A1#

a
j

a
k
Bajjjjk#o(c),

k"2,2,n, (63)

EDDK
t
!KDD2

F30
"c

n
+
k/1

j2
k
#o(c),

EDD*
t
!*DD2

F30
"cA +

1xjEkxn

a
.*/(j,k)

j
j
j
k

2Dj
j
!j

k
D B#o(c).

(64)

We note that if the asymptotic bias of the largest
estimated eigenvalue and the asymptotic MSE of
the estimated eigenvalues are unchanged, the
asymptotic bias and the asymptotic MSE of the
EVD are generally reduced when the CS structure
is taken into account.

4.5. Comparison between batch and adaptive EVD
estimators

It is worth noticing, from Theorems 2 and 3, that
both estimators have very similar asymptotic distri-
butions. With a

i
"1, i"1,2,n, these distribu-

tions are equivalent if we substitute 2/t by c and the
di!erences (j

j
!j

k
)2 by Dj

j
!j

k
D. Furthermore, it is

the same for the MSE of the estimated eigenvalues
and eigenvectors. As for the bias, we note that
j~
1,t

, j`
1,t
*~
1,t
*`
1,t

have similar bias for both estima-
tions, but js

k,t
, s"!,#, k"2,2,ns have a bias

in o(1/t) for batch estimation and in O(c) for adap-
tive estimation; lastly, the bias of *s

k,t
, s"!,#,

k"2,2,ns has an extra term in the case of adap-
tive estimation. However, in this latter case the bias
is always directed along *s

k
.

We note that the ML batch estimators and the
SGA adaptive estimators derive from the same cost

functions, which is undoubtedly the reason for such
similar asymptotic properties. On the one hand,

Us
k
$%&
" (us

1
,2,us

n
s) derives from the successive con-

strained minimizations of Tr(Us
T

k
Rs
t
Us

k
), k"1,2,ns

with respect to us
k

under the constraint that
Us

T

k
Us

k
"I

k
in ML batch estimation. On the other

hand, Us
n
s derives from the minimization of

Tr(Us
T

n
sRs

t
Us

n
s), from a projected gradient-like proced-

ure in SGA instantaneous adaptive estimation. The
projection on the constraint Us

T

n
sUs

n
s"I

n
s is realized

thanks to an expansion of a Gram}Schmidt ortho-
gonalization [10].

Concerning the deviation from orthonormality,
we note that the ML batch estimation gives a ca-
nonic orthonormal estimated eigenbasis whereas
the SGA adaptive estimation gives an approxim-
ately orthonormal estimated eigenbasis only. Since
Ks

T

e
Ks

e
"I, Ks

T

o
Ks
o
"I, Ks

T

e
K~s
e

"O and Ks
T

o
K~s

o
"O,

it is straightforward to see from Eq. (6) that

EDDVT
n,t

V
n,t
!I

n
DD2
F30

"EDDU~T

n
~,t

U~
n
~,t
!I

n
~DD2F30#EDDU`

T

n
`,t

U`
n
`,t
!I

n
`DD2F30 ,

(65)

with V
n,t

$%&
" (*

1,t
,2,*

n,t
) and Us

n
s,t

$%&
" (us

1,t
,2,us

n
s,t
).

In [10], it is shown by simulation that these devi-
ations from orthonormality EDDU~T

n
~,t

U~
n
~,t
!I

n
~DD2F30

and EDDU`
T

n
`,t

U`
n
`,t
!I

n
`DD2F30 are both, up to the "rst

order, proportional to c2. In this paper,
EDDVT

n,t
V
n,t
!I

n
DD2
F30

is proportional to c2 as well in
the domain of validity of the MSE (60).

5. Simulations

We consider throughout this section indepen-
dent observations x

t
in R4 associated to the sym-

metric Toeplitz matrix R
x
"Toeplitz(1,!0.3633,

0.0209,!0.0043) obtained from an ARMA process
generated by the linear "lter F(z)"57.7293(1!
0.03z~1)/(1!0.03z~1!0.01z~2) driven by an unit
variance noise. R

x
has the following eigenvalues:

j
1
"j~

1
"1.6079, j

2
"j`

1
"1.2028,

j
3
"j~

2
"0.7597, j

4
"j`

2
"0.4296.

The "rst experiment presents the case of ML
batch estimation. Fig. 1 shows the eigenvalues
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Fig. 1. MSE of the estimated eigenvectors and eigenvalues EDD*
t
!*HDD2F30 and EDDK

t
!KHDD2F30 averaging 100 independent runs for batch

estimation when the CS structure is taken into account (]) or not (L) as a function of the sample number t, compared to the theoretical
asymptotic values 1/tTr(C

v
) and 1/t Tr(Cj) when the CS structure is taken into account (0) or not (1).

MSE and eigenvectors MSE (averaged over 100
independent runs), when the CS structure is taken
into account or not, as a function of the sample
number. We observe a reduction of the eigenvector
MSE of 9 dB when the CS structure is taken into
account, and these MSE tend to values in excellent

agreement with the theoretical asymptotic values
predicted by Eqs. (20), (21) and (24).

The second experiment presents the case of
SGA adaptive estimation (as

i
"1, s"!,#,

i"1,2,ns). Fig. 2 shows the learning curves
(averaged over 200 independent runs) of the
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Fig. 2. Learning curves of the MSE EDD*
t
!*HDD2F30 and EDDK

t
!KHDD2F30 averaging 200 independent runs for respectively the SGA and the

GHA algorithms when the CS structure is taken into account (2) or not (3), compared to the theoretical asymptotic values cTr(C
v
) and

cTr(Cj) when the CS structure is taken into account (0) or not (1).

eigenvalue MSE, and eigenvector MSE when the
CS structure is taken into account or not, with the
common step size c"0.01. These MSEs tend to
values in excellent agreement with the theoretical
values predicted by Eqs. (59), (60) and (64). We
observe a reduction of the eigenvector MSE of 7 dB
when the CS structure is taken into account. Fur-
thermore, in this latter case the convergence speed
is improved as well. We note that the same analysis
carried out for the GHA algorithm gives the same
conclusion.

Fig. 3 shows the theoretical asymptotic and the
estimated eigenvalue and eigenvector MSEs as

a function of c. Our present asymptotic analysis is
seen to be valid over a large range of c (c(0.03),
and the domain of `stabilitya is c(0.07, for which
we observe good agreement between the theoretical
and estimated MSEs. This result supports our con-
jecture that the asymptotic covariance matrice of
our adaptive EVD estimator is identical to the
covariance matrix in the limiting distribution.

Fig. 4 reveals something which could not be
determined from our "rst-order analysis: the true
order of deviation from orthonormality. In this
"gure, we plot on a log-log scale EDDVT

t
V
t
!I

n
DD2
F30

as a function of c. We "nd a slope equal to 2
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Fig. 3. Estimated (respectively, theoretical asymptotic) eigenvectors and eigenvalues MSE as a function of the step size c when the CS
structure is taken into account (]) (respectively, (0)) or not (L) (respectively, (1)).
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Fig. 4. Deviation from orthonormality EDDVT
t
V

t
!I

n
DD2
F30

at `convergencea estimated by averaging 100 independent runs as a function of
c in log}log scales for the SGA and GHA algorithms when the CS structure is taken into account (#) or not (L).
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[respectively 1] which means that, experimentally,
EDDVT

t
V

t
!I

n
DD2
F30

Jc2 [respectively Jc] for the
SGA [respectively GHA] algorithm. And further-
more, this deviation from orthonormality is re-
duced when the CS strucuture is taken into account

6. Conclusion

In this paper, we have presented a performance
analysis of ML batch estimation and adaptive es-
timation of the EVD of CS covariance matrices.
When the CS structure is taken into account, it is
shown that the EVD estimation can be split into
two independent EVD estimations. The asymptotic
distributions are derived, and closed-form expres-
sions are given for the asymptotic covariance, bias
and MSE for ML batch estimation and SGA adap-
tive estimation. As a result of the exploitation of the
CS structure, it is shown that the complexity of the
EVD is roughly halved, and that the covariance,
bias and MSE are reduced. Of course, these results
extend to any gradient-type or RLS-type algorithm
since all these EVD algorithms can be split into two
independent EVD algorithms, the conditioning of
which is improved because the di!erence between
two successive eigenvalues increases in general. Fi-
nally, numerical simulations con"rm the accuracy
of our asymptotic analysis and show that for the
adaptive estimation, the deviation from orthonor-
mality is reduced and the convergence speed is
improved yielding a better tradeo! between con-
vergence speed and misadjustment.
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