IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 10, OCTOBER 1995

2323

Adaptive Harmonic Jammer Canceler

Jean Pierre Delmas

Abstract— A new adaptive harmonic jammer canceler is pro-
posed. It is based on the use of two sensors that enable an adaptive
generation of a reference signal that is uncorrelated with the
desired signal. This reference signal is used for the reconstruction
of the desired signal by an adaptive subtraction method. This
canceler is well suited to radio communications.

A theoretical analysis of the convergence of the coupled al-
gorithms is presented with the help of the associated ordinary
differential equation introduced by L. Ljung. Numerical simula-
tions illustrate the different proposed algorithms.

1. INTRODUCTION

N a number of radio communication applications, a certain

desired signal, the bandwidth of which is narrow relative to
its center frequency, is corrupted by purely harmonic jammers
with unknown frequencies. After complex demodulation, the
sampled complex envelope of the received signal (z(n))nez
is given by

P
z(n) =xz(n)+y(n) with y(n) = Z Mg
k=1

where z represents the contribution of the desired signal, and
it is desirable to eliminate y from z.

This problem was addressed by Hsu and Giordano [7],
then extended by Ketchum and Proakis {8] in direct-sequence
spread-spectrum communication. In these papers, the desired
signal is estimated as the output of a linear prediction error
filter (PEF) associated with z. However, this solution has two
drawbacks: first, the zeros of this filter cannot be exactly
related to the sinusoid frequencies [17], so that the sinu-
soids are not perfectly eliminated; second, the desired signal
contribution is highly distorted by the PEF. However, in direct-
sequence spread-spectrum context, these undesirable effects
can be overcome by increasing the number of chips per data
symbol, because the intersymbol interference can be negligible
when the processing gain of spread spectrum is chosen much
greater than the length of the PEF.

In this paper, we present a spatio-temporal approach based
on the use of two receivers that is composed of two adaptive
algorithms. The first algorithm yields a purely harmonic signal
that is used by the second algorithm as a reference signal
to reconstruct the desired signal by a canceling approach.
In particular, since the above mentioned drawbacks of [7]
and [8] are eliminated, we believe that our scheme may be
applied in a wider context than just the direct-sequence spread-
spectrum communications context, because the sinusoids and
the distortion of the desired signal can be perfectly removed.
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This paper is organized as follows. After formulating the
problem in Section II, we study in detail the case where the two
received signals are not corrupted by noise in Section III. Then,
the preceding results are extended to the case where these
signals are embedded in additive observation noise in Section
IV. Simulations’ results are shown in Section V. Finally, a
proof of the convergence of the schemes presented in Sections
III and IV is reported in the Appendix.

II. PROBLEM FORMULATION

Let us denote the complex envelope of the signals received
on the two receivers by z1(n) and 2ze(n). If the multipath
effects are short delays, then the narrow band hypothesis
formulated on the desired signal implies that, if z1(n) is given
by!

P
z1(n) = z(n) + Z Apeiner (1a)
k=1
then
P .
zo(n) = az(n) + Z Agage'™* (1b)
k=1

where a and (aj)k=1,..,p are unknown complex factors re-
lated to the differential time delays and to the attenuations,
referenced with respect to the first receiver and correspond-
ing, respectively, to the desired signal and to the jammers
impinging on the receiver array. P is also assumed to be
unknown.

Our approach is based on the fact that the complex factor a
coincides with the first argument of the minimization problem
(E denoting the expectation operator)

aegl,eirelCN E|zao(n) — azi(n)
N 2
+ > Bilzaln — k) — azi(n — k)] )
k=1

where N is any integer greater than or equal to P. It is
therefore possible to estimate a by any standard stochastic
gradient algorithm. If we denote the corresponding sequence
of estimates by a(n), the signal w(n) 2 zo(n)—a(n)z1(n) is,
after convergence, a purely harmonic signal whose angular fre-
quencies are wy , - - - ,wp. Therefore, z can be reconstructed by

z(n) = z1(n) + [C(2)jw(n) 3)

!'This theoretical model can be applied in practice provided the bandwidths
of the jammers are negligible as compared to the inverse of the time of
convergence of the adaptive algorithms (because what is just required is that
the model be valid during this time of convergence). This is the case if these
bandwidths are very negligible compared to the frequencies wy.
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(the notation [ ] is shorthand for the action of the transversal
filter C(z) 2 Y Tekz™F on a signal) with M > P and
where C(z) is found by the minimization of

E|z1(n) + [C(2)]w(n)|*. €N

It turns out that w(n) plays the role of the reference noise
signal in the classic canceling approach presented by Widrow
[16], for instance. Consequently, this essentially comes down
to the situation studied by Glover [5], where the fixed step-size
stochastic algorithm implements a notch filter applied to z;(n)
with a notch located at each of the frequencies of the jammers.

III. THE NOISE-FREE CASE

In this section, we study in detail the above mentioned
adaptive approach. In particular, we discuss the uniqueness of
the solution to the minimization problems (2) and (4). First, we
must show that the complex gain a defined by (1b) coincides
with the first argument of the minimization problem (2). Let us
first remark that zo(n) — a2 (n) coincides with a purely har-
monic signal with angular frequencies w;, - - - ,wp. Therefore,
if N > P, there always exist coefficients by, - - -, by for which

N
2(n) — azi(n) + Y bi[za(n — k) — azi(n — k)] = 0.
k=1

It turns out that in the noise-free case, the minimum value of
the criterion (2) is zero and that (a,by,---,by) is a solution
of (2).

Now, let us discuss the uniqueness of that solution. For this
purpose, we are going to study the structure of the kernel of
the covariance matrix R, of the random vector

z(n) 2 [z2(n), z2(n = 1),- -+, z2(n — N), z1(n), z1(n — 1),
oz (n = N)T.

Denote by R, the covariance matrix of the random vector
z(n) £ [o(n), s(n = 1), z(n - N)|¥

and further assume that z is a stationary random process and
(Ak)k=1,..p and (z(n))nez are complex, uncorrelated zero-
mean random variables. It is easily seen that

R.=R.® ({H [a, 1])

P

+ Y stdwa @l e (| Flen) ©

k=1

in which 42 £ E|Ag|? and where d(wy) denotes the vector
[1,ewk ... eN“r]T (@ stands for the Kronecker matrix
product, * and ¥ denote, respectively, conjugate and conjugate
transposition).

Let h é [h0127 hl_yg, Sy hN,27 h0,17 SN hN,l]T be a vector
of C2W+1) such that hgp = 1. Then h¥*R,h = 0 iff. h
belongs to the kernel of each of the two positive-definite
matrices found in the right hand side of (5).

As the desired signal z is assumed to be nondeterministic,
the matrix R, is positive definite. From this, we deduce
immediately that the Kernel of R, ®([% ][a, 1]) coincides with
the space CV*! @ [1 ]; therefore h¥R,h = 0 iff h can be
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written as
hT =[1,by,---,by] ® [1, —a). (6)
On the other hand, it is easily seen that h belongs to the
Kernel of the second matrix of (5) iff [1,by, -,bn]|T is

orthogonal to the vectors d(wi)k=1,...,P-
This implies that each argument of the minimization prob-
lem
min  E|hTz(n)|? 7

h0,2=1

can be written as h? = [1,b;,---,bx] ® [1, —a] where

N
B(z) 21+ Zb,z‘l
1=0

is an FIR filter for which B(e®*) =0 fork=1,---, P.
Thus, the solutions of the minimization problem (2) are
a =aand (B, ,by) such that 1 + Y1, Bre™%* =0
for k =1,---,P.
Let us now consider the adaptive minimization of (2). As
is well known [6], in order to be able to minimize (2) in a
reliable way by a stochastic gradient algorithm, the functional

$(a,f) & E|z(n) — azi(n)
2

N
+ Y Belza(n — k) — azi(n — k)]
k=1

must not have spurious local minima. Unfortunately, this is
not the case. In fact, it is easily seen that ¢(c,3) has a
spurious local minimum iff the function defined by ¥(a) =
ming ¢(a, ) has a spurious local minimum.

We illustrate this fact in Fig. 1, which represents ¥(c) in a
simple situation and demonstrates that ¢(«, 3) may admit local
spurious minima. In this figure, we choose N = P = 1,x(n)
is white, with power o2 = 1,7 = 100,a = 1,w; = 0 and
a1 = —1. ¥(a) has a global minimum for o = 1 associated
with 8 ~ -1 (é(a,) = 0) and a spurious minimum
a ~ —0.9 associated with 8 =~ —0.217 (¢(e, B) = 5.26).

Hence, we cannot work with the variables o and 3 in order
to use stochastic gradient algorithms. However, it is possible

to use the Hermitian functional
2

N N
zo(n) + Z hikoza(n — k) + Z hi1z1(n — k) 8)
k=1 k=0
in order to estimate a by means of a stochastic gradient
algorithm. Indeed, the above functional does not admit any
spurious minima. Moreover, as was shown previously, it is
minimum when
his
hi2

E

=—aqa Vk=10,---,N (weput hpz2=1). (9)

Note that the parameter ¢ that arises via (9) from any vector
h that minimizes the Hermitian form (8) is unique when the
number of sinusoids is known or overestimated (N > P).

To summarize, the following scheme holds for estimating
a: adapt h = [hg2, k12, hn2,ho1, -, hna]? by a
stochastic gradient algorithm corresponding to the Hermitian
form E|hTz(n)|?> and estimate a as the L.S. solution to
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min, T |hk1 + ahi2|? given by:

N N

2

a=-=> hiihis [ Y ol
k=0 k=0

This yields a consistent series a(n) of estimates of a.
The signal w(n) 2 zo(n) — a(n)zi1(n) “converges” to
zo(n) — az1(n) which can be written as

P
w(n) = Z Melap — a)e™*,
k=1

Therefore, if a # ax,Vk = 1,---, P,w(n) contains all the
harmonic components of y(n). This suggests that x can
be estimated by following the classical canceling approach
developed by Widrow [16]. We thus propose to minimize the

following with respect to ¢ 2 (co,---,epr—1)T (with M > P).

M-1 2
min F|z1(n) + Z crw(n — k)| . (10)
¢ k=0
The solution of this minimization is unique only if M is equal
to the number P of distinct frequencies.

Finally, the desired signal z(n) = 21(n) + cT (n)w(n) can
be estimated by way of the following adaptive scheme, with
h7(n) = [1,h{ (n)] and 27 (n) = [z2(n), 2] (n)].

The above explanation is only intended to describe a gen-
eral outline in which the solution is obtained by solving a
succession of two steps. These steps, however, can be merged
into the following adaptive scheme denoted Unstructured MSE
algorithm.

hi (n+ 1) =h§ (n) — pufz2(n) + h (n)ze(n)]zg (n) (1)

N N
a(n) == hea()hia(n) [ Y lhea(@)?  (11b)
k=0 k=0

w(n — k) =z2(n - k) —a(n)z1(n—k),k=0,---,M—1
w(n) =[w(n),win —1), -, wn - M+ 1)]*
cT(n+1) =ct(n) — wolzr(n) + T (n)w(n))w(n) (11c)

We now discuss the convergence of this scheme. We note
that the parameter a(n) is injected from (lla)-(11c) via
(11b), which is a function of the parameter h. Therefore,
we obtain two coupled stochastic gradient algorithms, and the
convergence of the algorithm is not obvious.

The solution cannot be written out analytically. However,
in a stationary situation, it is well known that studying the
asymptotic behavior of a stochastic algorithm is tantamount
to studying the stability of a certain associated ordinary
differential equation (ODE), a tool introduced by Ljung [10].
More precisely, results concerning the evolution of the es-
timates a(n) and c(n) as well as the convergence of the
global stochastic algorithm (11) can be given in case the gain
sequences p1(n) and p2(n) tend to zero (and X, p;(n) =
+o00). This technical point is solved in the Appendix.

Unfortunately, these results cannot be applied in a strict
sense to our problem at hand, since the necessary hypotheses
are unrealistic in this context. The gain sequences must be
reduced to constant “small” steps p; and po if we want the
algorithm to be able to track the variations of the parameters
in nonstationary environments. In this situation, the algorithm
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ai 1
Fig. 1. Spurious local minima of the function ¥(a) = o?la —
4 4 4 4
2 vilar—«| 2 12 a*la—al
e ]
o[l + a2|a—a\2+71|a1—a|2] +7ilar —af [021a—a|2+~,1|a1—oﬂ]

does not converge almost surely any longer. However, it is
often conjectured [2], [10] that for n large enough, the adaptive
algorithms will oscillate around the theoretical limit of the
decreasing step scheme.

However, a simplified analysis can be made when N =
M = P with constant small gains. In that case, if we denote
by [1,h%,]7 the unique solution of minimization (7) and (11a)
gives:

h{ (n+1)~h{, = [bg (n) = h{, ][Iy —mzo(n)zg (n)]. (12)

Therefore the algorithm (11a) is a homogeneous least mean
square (LMS) algorithm and so has only a transient behavior
with no asymptotic fluctuation. We can apply the results of Bit-
mead [3] about the transient behavior of the LMS algorithm:
There exists A >0 such that e*"[ho(n) — hg,] — 0 almost
surely or in the mean square sense. So we can show from (11b)
that there exists A’ >0 such that e* ™[a(n) — a] — 0 in the
same senses. Unfortunately, we cannot say anything about the
constant A and so the evaluation of the speed of convergence of
this first algorithm is not possible. As for the second algorithm
(11c), if we make the classical “independence assumption”
that here is far from being true but nevertheless in agree-
ment with the simulations, the classical asymptotical excess
mean squared error [6] (MSE) (provided 2 is small enough)
becomes once the first algorithm has “converged”

P
. P
Eli(n) — o(n)]* = 5p20" Y flax —al*  (13)
k=1

where Z(n) is the estimation of z(n) given by (3) with
the filter C'(z) issued from (11c).

IV. THE CASE OF NOISY OBSERVATIONS

Here, we consider the important case where the received
signals z1(n) and z2(n) are corrupted by two uncorrelated

additive white noises b;(n) and by(n) of same variance? o7.

2 This restriction can be removed if it is possible to have a noise reference by
using a calibration of the receivers acting upon the factors a and (@ )x=1.....P
of the model (1).
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In this case, we indicate how it is possible to modify the
minimization (2) in order to obtain a series of estimates of
a and we present two different criteria in order to reconstruct
z from z;(n) and w(n) E za(n) — a(n)z1(n).

In order to extend the results of Section III, it is sufficient to
replace the vector h, defined in Section III, by the eigenvector
associated with the smallest eigenvalue of of R,. Thus, the
vector h is solution of the minimization problem:

" hfR,h
min ————
R |[h]?
Since h still has the structure (6), the parameter a is determined
by (9) from any solution of (14).

Let us now discuss the canceling approach. In this noisy
case, the signal w(n) can be written as

(14)

P
n) = Z Mie(ax — a)e™ % + by(n) — aby(n).

k=1

15)

Therefore, w(n) coincides with a purely harmonic signal
corrupted by a white noise. It turns out that the signal z
cannot be exactly reconstructed by the canceling approach
described previously. However, depending on the context,
several reconstruction criteria can be considered.

a) When it is desirable to cancel the residual filtered si-
nusoidal component (sinusoidal canceling criteria) in the es-
timation Z(n) of z(n), the vector ¢ can be estimated as the
solution of the minimization problem derived from (4)

min hZ [R, — 6ZLn]h, . (16)
c

with h, . = [co,c1,- -+ epm—1,1—aco, —acy, - -+, —acpr—1)7.
In this context, the solution c is not unique when the number of
sinusoids is overestimated (M > P), which is usually the case.

We can deduce an adaptive scheme that we denote Pis-
arenko MSE. It is composed of two stochastic gradient algo-
rithms that are coupled, since a(n) and o2(n) are injected
from the first part to the second part of the algorithm.

e(n) =B (n)a(n) ~
h'(n + 1) =hT(n) — pre(n)[z*(n) — e*(n)hT(n)] (17a)
n h(n +1)
hin+) = i+ 1] )
a(n) = th 1(n)h} o Z |h,2(n)® (17¢)
op(n) = le( )I2 (17d)
cf(n+1) =c"(n) - poh] (n)[z(n)z" (n)
1
— ag(n)le} [_a* (JZ)IM J
&(n) =z1(n) + cT(n)[22(n) — a(n)z1(n)] (17e)
where
2} (n) £ (25 (n),2{ (n))
with

z?(n)é[zi(n),zi(n—l),u-,zi(n—M—l-l)]T for i=1,2.

To get the normalized eigenvector h(n), note that we
have used in (17a) and (17b) the adaptive estimation method
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presented in [12]. We can also use an extension to the complex
case [4] of a parametrization proposed by Regalia in [13].

The estimate #(n) of x(n) can be written as &(n) =
z(n) + bg(n), in which by(n) represents the part of the input
signal that comes from the observation noise.

Although the solution c is not unique, the solution that
minimizes the power of bs(n) is that of minimum norm. This
minimum power can be computed explicitly when P = 1:

Elbs(n))* = 05(1 - (18)

2
Mla — a1 ]2 ) '

It is interesting to note that the power of this residual error
is independent of the power of = and y. It decreases with the
order M of the canceling filter, and also with the distance
between a and ai, i.e., with the difference of DOA of the
desired signal and the jammer.

b) On the other hand, if we prefer to use a MSE criteria
for the estimation Z(n) of z(n), we can keep (17a)-(17¢) and
replace (17e) by (11c). We obtain the adaptive scheme that we
denote Pisarenko Sinusoidal Canceling algorithm:

e(n) = (n)a(n) ~
h%(n + 1) =hT(n) — pre(n)[z7 (n) — e*(n)hT (n)] (19a)
‘h(n+1)
h(n+1) = Thin s DI (19b)
N
Z n)hj o Zlhk 2(n)> (19)
w(m) = [wln) o — D)o~ M+ 1) "
cf(n+1)=c(n) - uz[zl(n) +cT(nyw(n)lwh (n). (19d)

In this new context, the solution ¢ is unique. We obtain an
estimate that can be written as Z(n) = z(n) + bs(n) + ys(n),
where b¢(n) and ys(n) are, respectively, a filtered observation
noise component and a residual filtered sinusoidal component.
Their powers can be computed explicitly when P = 1 as

2Mp?la — a1]?
E 2 _ 52 20
|bf(n)| o} (1+ [2+Mp|a—a1|2]2 (20a)
and
2u2
2 = L 20b

with p % /o?. These powers are independent of the power of
z. They decrease with the order M of the canceling filter and
with the distance between a and a;. The larger the sinusoidal
noise ratio p, the weaker the residual filtered sinusoidal
component powers, which is typical in adaptive line enhancers.

As in Section III, the two schemes so introduced are
also coupled stochastic gradient algorithms. The intermediate
quantity that is injected from the first part to the second part
of the algorithm is now a(n) and o2(n) (resp. a(n)) for the
first (resp. second) algorithm.

The problem of their convergence is equivalent to the prob-
lem stated in Section III. We obtain the same results in case the
gain sequences p;(n) tend to zero (and ¥,, p1;(n) = 400). This
is also proved in the Appendix. For the same reasons, these
results cannot be applied in a nonstationary context. In case
of constant small gains, the analysis is much more involved
and therefore will not be developed in this paper.
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Fig. 2. (a) Learning curves of the first part of the adaptive algorithms, noise

free-case. (b) Learning curves of the second part of the adaptive algorithms,
noise-free case.

V. SIMULATION RESULTS

e The first simulation corresponds to the noise-free case
where P = N = M = 1,a = ¥ and a; = ¢ with
f = =31° and 6; = 61°,f; = 021,72 = 2,0% = 1,
and o7 = 10™%. Fig. 2(a) and (b) shows the learning curves
corresponding, respectively, to Ela(n) — a|? and E|2(n) —
z(n)|?, averaged over 200 runs. We present the unstructured
MSE algorithm (11) with g3 = 0.05 and ps = 0.002. The
asymptotic MSE on the signal z, the value of which is 0.004,
is in accordance with those given by (13) despite 07 = 1074

e The second simulation corresponds to the same values of
the parameters of the first simulation but with: N = M = 2.
We see in Fig. 2(a) and (b) that with the same values of x; and
#2, the asymptotic MSE on the parameter ¢ and on the signal x
are roughly doubled but the speed of convergence is improved.

e The third simulation corresponds to the case of noisy
observations with the same values of the parameters of the
first simulation but with A} = 4 and ¢} = 0.1. Fig. 3(a)
and (b) shows the learning curves corresponding, respectively,
to Ela(n) — a|* and E|2(n) — x(n)|?, averaged over 200
runs. We use the Pisarenko MSE algorithm (17) and Pisarenko
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Fig. 3. (a) Learning curves of the first part of the adaptive algorithms, noisy
case. (b) Learning curves of the second part of the adaptive algorithms, noisy
case.

Sinusoidal Canceling algorithm (19) with py = 0.004 and
p2 = 0.004, which in this case give very close results. The
sinusoidal component in Z(n) is negligible, as the 512-point
periodogram spectral estimate of z;(n) and Z(n) shows (see
Fig. 4). These results are in accordance with relation (18),
which gives E|bs(n)|? = 0.20 and with relation (20a), (20b),
which gives E|bs(n)|? = 0.20 and Elys(n)|? = 1.2 x 1074
The difference between 0.20 and the observed asymptotic
mean square value of 0.22 is explained by an excess MSE
induced by the constant gain adaptive algorithm.

e The fourth simulation corresponds to the same values of
the parameters of the third simulation but with N = M = 2.
We see in Fig. 3(a) and (b) that with the same values of p;
and po, the speed of convergence and the asymptotic MSE
on the parameter a and the signal = are improved. This latter
result is also in accordance with relation (18), which gives
Elbs(n)|? = 0.15 and with relation (20a), (20b), which gives
Elbs(n)|? = 0.15 and Elys(n)|? = 3.1x10~%. The difference
between 0.15 and the observed asymptotic mean square value
of 0.17 is also explained by an excess MSE induced by the
use of a constant adaptive gain.
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power spectral density estimation of the estimated signal x(n)
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Fig. 4. 512-point periodogram spectral estimate of z;(n) and Z(n).

Although the functional (2) can have local spurious minima,
we also propose two other algorithms (in the noise-free case,
as well as in the case of noisy observations) that use the
parameterization (6) of h because the speed of convergence
of these algorithms is faster.

e In the noise-free case, the first algorithm, denoted struc-
tured MSE, is a stochastic gradient algorithm associated with
the minimization of E|[(1,by,---,bn)®(1, —a)]z(n)|?, where
(11a) and (11b) are replaced by

[g]nﬂ = [ﬁ} . — p1Ha b (n)z*(n)2zT (n)h, p(n)

where

b2 (1,b,-,by)7,
ha,b é [lablv"'vbN]T®[1a_a]T
A [0 oT 1 bH
Hap = [0 In 0 —a*ly

With the parameters of the second simulation, we note in
Fig. 5(a) and (b) that if we choose p; = 0.15 and po = 0.002
in order to have the same MSE on the parameter a and on the
signal z, the speed of convergence is improved when com-
pared to the previous algorithm, but the speed of convergence
of the second part of the algorithm is hardly modified because
the precision given by the first part is adequate.

Then, in order to further increase the speed of convergence
we use a pseudo-recursive least squares algorithm denoted
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Fig. 5. (a) Learning curves of the first part of the adaptive algorithms, noise

free-case. (b) Learning curves of the second part of the adaptive algorithms,
noise free-case.

structured pseudo RLS. In this approach, we minimize the
classical expression with respect to a and b:

2
n N

DA z(n) - az(n) + Y bilza(n — i) — azi(n — i)
k=1 i=1

and this expression with respect to c:

n M-1 2
Z ARz (n) + Z ¢i[za(n — %) — az1(n — )]
k=1 i=0

Using the classical matrix inversion lemma for the pa-
rameters a,b and then for ¢, we can develop three cou-
pled recursive algorithms by introducing internal variables
Da, ka, Pb, kb, Pe, ke ([6, p. 480]). Then, we can derive a
global suboptimal recursive algorithm:

(- ()
Kel) = T (g — Ly ()
Pa(n) = A pa(n — 1) = A" Vka ()i (mpa(n ~ 1)
a(n) = a(n — 1) + ka(n)gs(n) — uj(n)a(n ~ 1)
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where

up(n) 2 [1,b7 (n))z%(n), gn(n) = [1,b7(n)]z2(n)

and
A [z2(n)
z(n) = L?(")]
k(1) AP (n — Du,(n)

1+ A~laf (n)Py(n — u,(n)
Pb(n) = )\-IPb(TL - 1) - )\_lkb(n)uf(n)Pb(n - 1)
b(n) =b(n — 1) — ke (n)[w(n) + ug (n)b(n — 1)]

where u,(n) 2 w*(n — 1).
A7IP.(n — ue(n)
1+ A" TuE (n)Pe(n — 1)ue(n)
Po(n) = A7 1P(n — 1) =27 ke(n)uf (n)Pe(n — 1)
c(n) =c(n — 1) = ke(n)[z1(n) + ug (n)e(n — 1)].

In the simulations, the choice A = 1,p, = ppb = p. = 100 was
made in order to yield roughly the same MSE on the parameter
a and on the signal . We see in Fig. 5(a) and (b) that the speed
of convergence is improved with respect to the previous two
algorithms but, just as in the case of structured MSE algorithm,
the speed of convergence of the second part of the algorithm
is hardly modified because the precision furnished by the first
part is adequate.

e In the case of noisy observations, we can use the
parametrization (6) of h in two other algorithms. We use a
stochastic gradient algorithm associated with the minimization
of the Rayleigh quotient

E|[(17b17 o '7bN) ® (17 —a)]z(n)|2
“(lvblv“'vbN)®(1’_a)“2 .

We derive readily an algorithm denoted structured Pis-
arenko MSE:

ke(n) =

bl =], e

{ro T )

where

o T ()z(n)
" = Ty (ol

With the parameters of the fourth simulation, for the MSE
criteria with g1 = 0.015 and po = 0.004, we obtain the same
MSE on the parameter ¢ and on the signal x. We note in
Fig. 6(a) and (b) that the speed of convergence is improved
when compared to the Pisarenko MSE algorithm.

Then, in order to simplify the previous algorithm, and in
particular to avoid divisions, we can write the Rayleigh ratio
under the normalized form: E|(hy, ® h,)z(n)|? where the unit
norm vectors

A (17b15"'7bN)T

hy, =
”(Lbl""vbN)“

an 2 —————(1’ _a)T
R TGwpenY
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Fig. 6. (a) Learning curves of the first part of the adaptive algorithms, noisy
case. (b) Learning curves of the second part of the adaptive algorithms, noisy
case.

are taken as the last column of an unitary matrix parameterized
by complex Givens rotations [4]. We can deduce a stochastic
gradient algorithm [4] that we denote Rotational structured
Pisarenko MSE with the MSE criteria. With p; = 0.01 and
po = 0.004 we obtain the same MSE on the parameter a and
on the signal x. This algorithm presents the same speed of
convergence as the structured Pisarenko MSE algorithm.

VI. CONCLUSION

In this paper, we present a new adaptive harmonic jammer
canceler, based on the use of two receivers, in order to recon-
struct by an adaptive algorithm a desired signal corrupted by
purely harmonic jammers with unknown frequencies. We pro-
pose some adaptive schemes that reconstruct the desired signal
in the noise-free case and in the case of noisy observations. In
the latter case, we consider several reconstruction criteria. We
discuss the convergence of the coupled introduced algorithms
for small constant gains and for decreasing gains. Furthermore,
in spite of possible local minima, we present several structural
schemes that possess an improved speed of convergence.



2330

APPENDIX

The convergence of the stochastic algorithms presented
previously are derived with the aid of the following Lemma:

A. Lemma

Consider the system of differential equations:

N L0) 21a)
% — A[h(t)]e(t) + bh(t)] 21b)

where we assume that:
* any solution h(¢) of (21a) admits a limit h, depending
on the initial conditions.
¢ A and b are analytic functions of h.
* Afh,] and b[h,] are invariant if h, belongs to the set of
attractors of (21a).
* there exists a positive real-valued function W (h,c) for
which
A(h)c+b(h) = -V .W(h,c).
Then, the stationary points ¢, of de/dt = A[h.]c(t)+bh,]
are globally asymptotically stable for (21a) and (21b).

B. Proof of the Lemma

Since h, belongs to the set of attractors of (18a), we have
by linearizing (21a) around h, for ¢ large enough:

n(t) — h,|| < ket and

dh
— || < koe?! wi
o H < kqe™?t with

A1 and A > 0. (22)
Consider the Lyapounov function ¢(t) 2 W(h,c) > 0.
dé dhT” dcT
W0 D uW (1), e(0) + 2 9w (1) (1),

By hypothesis of (21b) we have

de”

S [VeW (n(), e(h)] = ~ [ VW (b(8),c(0)]

and if we prove that c(t) is bounded ||V, W (h(t), c(¢)|| is also
bounded because this gradient is analytic in h and quadratic
in c. So

A W (h().

<(t)

“ H”V“W (h(t), c(t))]| < kge™ 2!

thanks to (22).
Consequently
do(t
00 < kgt |9 (1), )
Then, ¢(t) + (k3/A2)e™ 2t is a decreasing function of ¢, so
lim; o, ¢(¢) exists, which in turn implies that

L d(t)

t—oo d

=0 and lim [VeW(h(t),c(t))|* = 0.
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Therefore, the stationary points c. of (21b) are globally
asymptotically stable for (21a) and (21b).

We must now prove that ¢(t) is bounded. We can consider
(21b) as an almost-constant linear equation that we can rewrite
as:

dc

e =[A+A'(t)]c(t)+ [b+b(t)]

(23)

with A 2 A(h,),b = b(h,). We have for ¢ large enough

A/ ()]l < ke it and |[b/(1)]]| < k7e™t with
A} and A] > 0. (24)
The differential equation dc/dt = Ac(t) + b can be
written dc/dt = —V.Wlh,,c(t)], since Ac(t) + b =
~V.Wih,,c(t)]. Then, A is stable and their solutions c;(t)
converge to the stationary points of this equation. These
solutions are bounded; so that the solutions of dc/dt = Ac(t)
are also bounded.

Let cy(t) the solution of dc/dt = Ac(t). so that c2(0) =

c(0) — ¢1(0), where c(t) is a solution of (23), and let
u(t) E c(t) — c1(¢). u(t) is solution of:
T Au(r) + [A()e(t) + b1,

Due to a result of [1, relation (9), p. 14], we have

u(t) = cot) + /0 Cy(t — 7)[A/(T)e(r) + b(7)] dr

in which Cs(t) is solution of dCy/dt = AC,(t) with
C5(0) = 1. Then

()] < llea(t)]) + /0 1Ca(t — PIIIA () [lu(r)
Fel dr+ / 1Calt — DIlIIb (1) dr.

Since [7 |[A/(7)|| dr and [ ||b'(7)|| dr are bounded by
(24), we have:

[a(®)l] < k1 + k2/0 A" () llla(m)]l dr.

By the Gronwall Lemma ([1, p. 35]), we have

¢
ol < e [k [ 1A' o]

0
and therefore, u(t), and then, c(t) are bounded.

C. Convergence of the Stochastic Algorithms

Now, we show that the three different versions of coupled
stochastic gradient algorithms that we have presented in Sec-
tions III and IV have an associated ODE of the form (21a),
(21b).

The coupled stochastic gradient algorithm can be written
under this form:

o] = o] ok ] e
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and the associate ODE is

dh”

- = ~E[VEVi(t)] (26a)
T

ddit = —E[V"Vpe(1)] (26b)

where V. V' denotes the vector of components 1/2[(0V/dz) —
i(AV/)dy)] with z £ z + 1y.
We have, according to the algorithms

[h” (n)z(n)|?

V() = lzz(m) + B (mao(m)* or =T

and
Vh,e(n) = |21(n)

+cT(n)w(n)? or
ho(n)[z(n)z” (n) — 07 (n)2(n)*Laa g, (n).

¢ Since VyVi(t) is the derivative of a positive gradient
field, the set of all stationary points of (26a) are globally
asymptotically stable for that equation. When N = P, there is
an unique stationary point h, that is globally asymptotically
stable, but when N > P, we can prove that any solution h(¢) of
(26a) converges to one point h, among the stationary points
of (26a).

In the noise-free case, this is based on the following
property:

Let R be a n x n singular covariance matrix and of rank
strictly less than n — 1. Consider the ODE associated with the
stochastic gradient algorithm derived from the minimization
of h” Rh with respect to h, with the constraint that the first
component of h is one. The solution of this ODE converges
exponentially to one point h, among the set of the stationary
points.

In addition, in the noisy case, this is based on the following
property. Consider the same covariance matrix R and the
ODE associated with the stochastic gradient algorithm derived
from the minimization of h¥ Rh w.r.t h, with the constraint
bl = 1.

dh H )
i —[R — (hW"Rh)I]h with ||h(0)|| = 1.

The solution of this ODE also converges exponentially to
one point h, among the set of the stationary points.

e Equation (26b) is a first-order linear inhomogeneous
differential equation where the coefficients depend on h(t)
in an analytical manner.

e Since

N N
a(t) = =Y " he1(t)hy 5(1) D k(B
k=0 k=0

and |h”()z(t)|* = o}(t), A[h.] and b[h,] are invariant if h,
belongs to the set of attractors of (26a).

e Equation (21b) is of the form dc/dt = —V W h(t), ()]
with W(h,c) = E(V, ).

Since the associated ODE admits a globally asymptotically
stable set of attractors c,, the stochastic algorithms (11), (17),
and (19) converge almost surely to one of its points, provided
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we are in the stationary situation with decreasing sequence
gains [9].
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