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Blind Channel Approximation:
Effective Channel Order Determination

Athanasios P. Liavasviember, IEEE Phillip A. Regalia,Senior Member, IEEEand Jean-Pierre Delmas

Abstract—A common assumption of blind channel identifica- The development of information theoretic criteria is based
tion methods is that the order of the true channel is known. This gn the assumptions that successive data vectors are i.i.d. zero-
information is not available in practice, and we are obliged to mean Gaussian random vectors and that the noise is white

estimate the channel order by applying a rank detection proce- G . d lated f th . L Th
dure to an “overmodeled” data covariance matrix. Information ~>@usSian and uncorreiated irom the signal. 1hese assump-

theoretic criteria have been widely suggested approaches for this tions seem realistic in some applications, such as directions
task. We check the quality of their estimates in the context of of arrival, but in other applications, such as blind channel
order estimation of measured microwave radio channels and identification, they do not seem the most appropriate. First,
confirm that they are very sensitive to variations in the SNR iy pling channel identification, the data covariance matrix is
and the number of data samples. This fact has prohibited their built from vectors that exhibit the so-called “shift property:”
successful application for channel order estimation and has cre- ) C 8 property;
ated some confusion concerning the classification into under- thus, successive data vectors am statistically independent.
and over-modeled cases. Recently, it has been shown that blindFurthermore, existence of “colored noise” due to the influence
channel approximation methods should attempt to model only the of |ong tails of “small” leading and/or trailing impulse re-
significant part of the channel composed of the *large” impulse - gonse terms, is practically inevitable. These terms shootid
response terms because efforts toward modeling 'small” leading .- 040104 because the quality of our estimate may degrade
and/or trailing terms lead to effective overmodeling, which is . q Y . € may 9
generically ill-conditioned and, thus, should be avoided. This dramatically [6], [7], and thus, we consider their influence on
can be achieved by applying blind identification methods with the data covariance matrix as “colored noise.”

model order equal to thg order of the significant part of the.true Hence, the assumptions on which information theoretic
channel called the effective channel order. Toward developing an itaria are based daot hold true in the blind channel

efficient approach for the detection of the effective channel order, identificati text. Th tural fi B0
we use numerical analysis arguments. The derived criterion ' ent 'Cf_i lon con E_’X' ) L_JS' a r_1a ur_a ques |o_n arseso
provides a ”maxima”y stable” decomposition of the range space |nf0rmat|0n theore“c Criteria pr0V|dml|ab|eeffeCt|Ve Channel
of an “overmodeled” data covariance matrix into signal and order estimates? We check the quality of their estimates
noise subspaces. It is shown to be robust to variations in the jn the context of order estimation of measured microwave
SNR and the number of data samples. Furthermore, it provides 45 channels. We observe that they are very sensitive to
useful effective channel order estimates, leading to sufficiently iati in the SNR and th b f dat | Thi
good blind approximation/equalization of measured real-world variations 1n the an € number of data samples. 1his
microwave radio channels. fact has prohibited their successful application for effective
channel order estimation and has created, arguably, some
confusion concerning the classification into under- and over-
modeled cases. This, in turn, has created confusion regarding
OLLOWING the work of Tonget al. [1], many methods the robustness and applicability of blind channel identification
have been proposed recently that claim blind singleaethods under realistic conditions.
input/multi-output channel identification under the so-called In order to overcome the shortcomings of information theo-
length and zero conditions [2]-[4]. A common assumption ifetic criteria, we propose a new approach based on numerical
all these works is that the order of the true channel is knowanalysis arguments. Using the concept of canonical angles
Of course, such information is not available in practice, arsetween subspaces and invariant subspace perturbation results,
we are thus obliged to estimate the channel order by applyingia develop a criterion that provides a “maximally stable”
rank detection procedure to an “overmodeled” data covariangecomposition of the range space of an “overmodeled” data
matrix. The use of information theoretic criteria, as proposesbvariance matrix into signal and noise subspaces. When used
in [5], has become the standard first step of many metho@s the effective channel order determination of measured
that treat the blind channel identification problem. microwave radio channels, the proposed criterion is shown
. . . , to be insensitive to variations in the SNR and the number
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Il. EFFECTIVE CHANNEL ORDER DETERMINATION a parameter vecto®, and & is the number of free adjusted
USING INFORMATION THEORETIC CRITERIA parameters ir9.
In this section, we recall the information theoretic criteria 1"€ Minimum description length (MDL) criterion [10] se-
[5], [9], [10], and we apply them to the effective channel orddfCtS the model that instead minimizes
determination problem. MDL = —log f(x(1),---,x(N)|®) + iklog N.

In the estimated data covariance matrix case described by (1),

_ _ assuming that the observed vectésgn)}Y_, are zero-mean
Let us assume that we measure a sequenpedahensional jj 4 Gaussian random vectors, one may show that [5]
data vector{x(n)}_;, which obey the model

A. Information Theoretic Criteria

p (p—k)N
x(n) = As(n) + w(n). [T A/«
i=k+1
A is ap x ¢ full-column rank matrix(q <p). {s(n)} is a AIC(k) =—-2log | ———F—— + 2k(2p — k)
sequence of zero-mean stationary ergodic circular complex - Z by
Gaussiam-dimensional random vectors with nonsingular co- p—k ikl
variance matrix and
S 2 E{s(n)sf(n)} » (k)N
H PA )

where superscript! denotes Hermitian transposéw(n)} i ‘
is a sequence of zero-mean stationary ergodic circular com- MDL (k) = —log . m
plex Gaussiap-dimensional random vectors with covariance i Z X
matrix p—k imht1

/ 1

W 2 E{w(n)w(n)} = o°T + 5 k(2p— k) log N

whereI denotes the identity matrix, (its dimension becomeshere \; > X, > --- > X, denote the eigenvalues &.
clear from the context); furthermorgs(n)} and {w(n)} are The dimension of the signal subspace is taken to be the value
uncorrelated. Under these assumptions, the covariance madfix: € {0,1---,p — 1} for which either AIG%) or MDL (k)

of x(n) is is minimized. The MDL criterion is shown to be asymptoti-
cally consistent, whereas the AIC tends to overestimate the
dimension of the signal subspace [5]. Taking into account
the sensitivity of blind channel identification methods, with
respect to effective channel overmodeling, the MDL criterion

' has often been favored over the AIC.

R 2 E{x(n)x"(n)} = ASAY +°1

whereA S A¥ is a rankg matrix. Theg-dimensional subspace
spanned by the columns &f is usually callecsignalsubspace
whereas its orthogonal complement is caliedisesubspace.
A very important problem arising in many application areas o . ) .
is the determination of the dimension of the signal subspac, APPlication of Information Theoretic Criteria for
Denoting the eigenvalues & asA,(R) > Mo(R) > --- > Effective Channel Order Determination
Ap(R), we obtain that thép — ¢) smallest eigenvalues 6 A very important application area requiring the determina-
are equal tos?, i.e., tion of a subspace dimension is blind channel identification.
In Fig. 1, we present the one-input/two-output channel setting
Ag41(R) = Agia(R) = - = Ap(R) = 0”. that is derived either by channel oversampling by a factor of

Hence, in theory, we can determine the dimension of the sigrfaP! Py using two sensors at the receiver. Although, in the
subspace from the multiplicity of the smallest eigenvalue §€duel, we present the one-input/two-output case, the results
R. However, in practice, we do not have access to the trGan be trivially extended to the one-ingutiutput case, with
data covariance matrix but to its finite data sample estimat& > 2- . )
N If the true channel order i844, and the channel impulse
R- 1 Z x(n)x" (n) (1) response is denoted fyy, = [h}Z7h27|7, where superscript
N &~ ' T denotes transpose, then the data vestp(n) composed
of the (L + 1) most recent samples of each subchannel, i.e.,

In this case, the smallest eigenvaluesRfare all different (n) A [xgll) ___szL xg)___ng]T’ can be expressed as

with high probability, thus complicating the determination o
the dimension of the signal subspace. xr(n) =yr(n) +wr(n) = Hr(ha)spya(n) +wr(n)
Akaike’s information theoretic criterion (AIC) [9] selects

N where
the model that minimizes

A (L n @ (2) T
N n) = WUp' Y lpUn Yl
AIC = —2log F(x(1),-- -, x(N)[®) + 2% yL(n) N [ L ]
wi(n) 2 [ w w7

where f(x(1), -, x(V)|©) is a parametrized family of prob-

T
ability densities,® is the maximum likelihood estimate of sp4m(n) = [sn- - snop—ml”
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Fig. 1. One-input/two-output channel setting.

The convolution matrixH,(hy,) is defined as

Pt 2 (738

with the (L + 1) x (L + M + 1) matrix Fr(h%,) given by
NG i
Fr(hy) =

p )

The input {s,,} is assumed zero-mean unit-variance white
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trailing terms. Notationally, this partitioning can be expressed
for 0 < my<mp = my +m < M as [6]-[8]

h]\{ = hfnl,rnz + dfnl,rnz
where superscript means “appropriately zero-padded” and
hfnl,rnz = |:hz217 2:|7 dfnl,rnz = |:dz217 2:|
M ,Ma my,msa
with
mi m—+1 M—mo
fle,mz = [héj) Tt hgrjl)lfl Q- 0,]7’57]1)2+1 T hg\Jf)]T
—_——
mi m+l M—mo
1=1,2
and
7, e ll2 << [[Bar 2. 2
With h,,,, »,, we denote the truncated significant part of the
channel
A [ht
h : = |: 7271177"2 :|
e hrnl,rnz
ﬁnl,rnz = [h’grjl)l T hgrjzg]T’ J= 1a 2.

noise, whereas the additive channel noise is assumed teéfthis case, the data covariance matrix is

porally and spatially white, i.e.,

E{wr())wi ()} = 80" L

Ry =Hr(ha ) HE (hpy) + 071

= HL (hfnq ,Mo + dfnq ,mo )H%{(hfrn ,mo + dfnq 7777,2)
+ 621

Furthermore, the input and the additive channel noise are

assumed to be uncorrelated.
If L > M — 1 and subchannela},, h?, do not share
common zeros, thef(;(hy,) is of full-column rank, i.e.,

rank(HL(h]\/[)) =L+ M+1.
Thus, the data covariance matrix

Ri = E{xp(n)x¥(n)} = Hr(an) HE () + 021
=Ry +o’1
is the sum of a rankL + A + 1) matrix and a multiple of

the identity. By determining the rank ®, we can estimate
the order of the channel/ as

M =ranKR;) - L — 1.

={Hr(b}, ,.,) +He(d,, )b

AHE (W, ) +HE (S, )} + 07T
= Hrl(hfnhmz) Hf(hfnhmz) +E;, +0°T
=Ry +E; +0°I

where R ;, denotes the covariance matrix associated with the
significant part of the channel, aidtl, expresses the influence
of the tails. Due to (2)[E;, is assumed to be “small” with
respect toR 1,; o2 is also assumed to be “small.”

As shown in [6] and [7], blind channel identification meth-
ods should attempt to model only the significant part of
the channel because efforts toward modeling “small” leading
and/or trailing terms lead to effective overmodeling, which is
generically ill-conditioned and thus should be avoided. This
can be achieved by applying blind identification methods with
model order equal to the effective channel order. Thus, the

However, in reality, the situation is somewhat different. Thgeyelopment of efficient approaches for the determination of
true impulse responshy, is often very long [11], that is, the effective channel order is of great importance.
usually M > L, and it can be partitioned into the significant sjnce the significant part of the channel,, ..., has order

part and the tails. Bgignificant part we mean the part that is ,;, it 1, > ;u—1 and subchannelst

h2

M ,MmMo

do not share

m,me?

usually found near the middle of the true impulse response a8&¥hmon zeros thet, (h ) is of full-column rank, i.e
. . . . . ’ M, Mo y G
contains the “large” terms; it may contain some intermediate

“small” terms as well. Its order, callegffective channel order
is denoted by (the unknown integer). By tails we mean

the part of the true channel that is complementary to the

rankHr(hy, m,)) =L +m+ 1.

It can be verified easily that

significant part; it is composed of “small” leading and/or Hﬁ(hfnhmz)Hf(hfnhmz) :Hﬁ(hmhmz)Hf(hmhmz)
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Fig. 2. Portion of the real part of subchannels.
yielding channels found at this site, is that the estimates of information

- theoretic criteria are very sensitive to variations in the SNR
rankRr) = rankHz (B, my)) = L+m+1. (3 ang the number of data samples. For high SNR (SNR
This means that the estimate@l +1) x 2(L + 1) covariance dB) and/or many data sampléy > 300), they usually lead to
matrix Rz, is “close” to the rankiL + m + 1) matrix Ry effective overmodeling. Such estimates are practically use_less

By computing the rank oz, we can deduce the effectivel®l: [7]. For low SNR and few data samples, they may provide
channel order. Now, however, our problem is more demangduseful estimates, leading to sufficiently good blind channel
ing than that attacked in the previous subsection because @,p@roximatiqn/equalization. However, their high sensitivity i;
perturbation onto the “ideal” matrik . is no longer a multiple céarly ulnsatlsfactory and has _a.rgugbly.created some confusion
of the identity. Despite this difference, the only methods th§Pnceming the correct classification into under- and over-
have been suggested for channel order estimation are #@deled cases. This, in turn, has created confusion regarding
information theoretic criteria, as proposed in [5]. Thereford€ robustness and applicability of blind channel identification
their behavior in realistic cases is of great importance. ~ Methods in realistic cases.

In Fig. 2, we plot a portion of the real part of the two In the sequel, we provide an entirely different approach,
subchannels constructed by the Comp|ex_va|ued Oversampwed on numerical analySiS argumentS. The derived criterion
by a factor of 2, FIR microwave radio channgian10.mat appears to be much more robust than information theoretic
which is found at http://spib.rice.edu/spib/microwave.htmgriteria and its estimates much more useful, as validated in
The partitioning into the significant part and the tails is cleaflany simulations.

Intuitively satisfying effective channel order estimates are two
or three, that is, three or four taps, for each subchannel.

In order to estimate the effective channel order, we performLet us consider the(L + 1)-dimensional estimated data
the following experiment: We put as input to the channelovariance matrixRy, which is assumed to be the sum of
N = 200 independent samples from a 4-QAM constellatiothe unknown *“ideal” ranky matrix R; and the unknown
At the channel output, we add spatially and temporally whitgerturbation” matrixE;, i.e.,
noise, with SNR= 90, 70, 50, and 30 dB. The SNR is defined

lll. A NEw RANK DETECTION CRITERION

as R, =R, +E;
2 whereq = L +m + 1, with m being the assumed effective
ZE“%@J’)F} channel ordery and, thus,» remain to be determined. The
=1 “ideal” matrix R denotes the exact statistics covariance
SNR= 10logy, 2,2 matrix associated with the significant part of the channel, i.e.,
where o2 is the variance of the circular complex additive Rr 2 Hr (b, 7,,,,2)711}71[(h,,,1 s )-

white subchannel noise. Then, we compute the “overmodeled” : . : .
P ePhe “perturbation” matrixEy, incorporates the influence of

variance matrix of the noi hannel pRL (with . . o . .
covariance matrix of the noisy channel outpBby (with o tails, the influence of the additive, not necessarily white,
dimensions42 x 42). In Fig. 3, we plot the Akaike criterion, ) . . .

channel noise, and the influence of the estimated, inexact

that is, AIQk) versusk, for the various SNR’s. The estimatest tistics By | d 10 be * I with ey
of the rank ofR, i.e., thek’s for which AIC(%) is minimized, S "’Il_'st'cs’d’* |stastium§ ° Ie sr%? With respect kor..
are 40, 41, 30, and 23, respectively. Using (3), we compute et us denote the eigenvaiues &, as

the corresponding effective channel order estimates as 19, 20, MRL)> > )\q(ﬁ,L) >

9, and 2. The application of the MDL criterion is illustrated N () = oo =\ RBY=0

in Fig. 4, the effective channel order estimates are 19, 19, 9, a+i(Re) Q(Lfl)( L)N ’

and 2. The smallest nonzero eigenvalue Bf,, A,(R 1), being the

The most striking observation in the cases presented distance, in the matrix 2-norm 6%, from the matrices with
Figs. 3 and 4, and in extensive studies using all the measuradk (¢ — 1) measures “how well” fulfilled our assumption
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Fig. 3. AIC(k) versusk, for SNR = 90, 70, 50, and 30 dB.
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Fig. 4. MDL(k) versusk, for SNR = 90, 70, 50, and 30 dB.

concerning rankRy) is. Since
)‘q(ﬁL) = Ug(HL(hrm ,mz))

with o;(.A) being theith singular value of matrix4, we may
consideri,(Rr,) as a measure afiversityof channeh,,,, ,,, .

Let the spectral decomposition &t;, be

(4)

2(L+1)
RL = Z )\7 u; uf{
=1
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The “ideal” signal subspace is thenknown g-dimensional angles [12, p. 43] [13]

subspace spanned by the columns7f, denotedR(R ). . N
Howgver, inppractice,ywe consid@ncorrectly as signgl szlb- [[sin Z(R(Sq), B(Sq))ll2
space the “perturbed” subspaBeS, ), whereS, is the matrix = ||PR(gq) —Presyll2
associated with the largest eigenpairs oRp, i.e., = |Prs,)- PR(gq)HQ (9)
s, A zq: A wp uf where Pr4y is the orthogonal projector ontdi(.A), :imd
= ‘ R(A)* is the orthogonal complement @#(.4). Since R(S,)

) ] _and R(S,) are related through the perturbatiéi, we can
and noise subspace as its orthogonal complement, which:inpute an upper bound for this distance using invariant

spanned by the columns &, defined as subspace perturbation results. It turns out [13] that the distance
2(L+1) betweeni(S,) andR(S,) is determined by the size &f, and
N, EN Z Awul, (5) theseparationbetween the eigenvalues associated (S, )
i and R(N,), which is defined as
~ A2
The assumption thak . is of rank ¢ implies that 6= Mg — Agyr- (10)
IELll2 > Agr (6) As we are going to see shortly, we us®nly in the cases in

which its positivity is guaranteed.
which means that the unknown “ideal” and the estimated Denoting byéfl the Moore—Penrose generalized inverse of
“perturbed” subspace®(R ;) and R(S,), respectively, are gq, we obtain
related through a perturbation whose size, as measured by oAl
the matrix 2-norm, is greater than or equalXg,;. Hence, Pres,) =S¢5
assuming that rarfiR ;) = ¢, (6) is theonly information we ;
may deduce for the perturbatidd;,. , Then, (9) )ilelds [12, p. 268], [13]
Since E;, is assumed to be “small” with respect ©, |sin Z(R(Sy), R(S))|l2
we would like R(S,) to be “close” toR(R ). However, (6)

e ; ~ = IPas,)+ Pres,ll2 = [P rs,)- Sq Sl
is insufficient to calculate the distance betweg(R ;) and " RSy (Sa)= 717

R(S,). We can, however, examine the sensitivity &fS,) = [IPrs,)+ (Sq + Ny + & — Ng) S|l

with respect to “small” perturbations. To this end, we shall = ||(pR(Sq)L Er PR(S ) + N, Pges, ). PR(S ))S§||2~

compute how farR(S,) may be moved by a perturbation, ! ! (11)

which is denoted;,, whose 2-norm is the smallest that the

actual perturbatio®;, may have, that is Defining 7 2 || sin Z(R(S,), R(S,))||2 and using (5), (8) and
€Ll = Mg 7) (10), we obtain from (11)

T < (l€cllz + IINGll2 7) 1S3 112
[€ella + A1 T _ Agri + A1 T

If R(Sq)w is insensitive tofy,, then we have reason to believe
that R(R ) and R(S,) are close each other. If, on the other =

hand, R(S,) is sensitive tof;, then R(R 1) and R(S,) may Ag At +0
be far from each other. which simplifies to
We shall then take our rank estimate as the indgex \ \
for which R(S,) is the least-sensitive, with respect to all T latt o datl
perturbationst, with ||€¢||2 = A;4+1, over all g. 6 Ag = Agt
Thus, let us consider Using standard eigenvalue perturbation results [15, p. 411],
R, =R, +£, we have further that

A > A —lEolla = A — A
with spectral decomposition a2 A ~lIEellz = A = Aaa

giving that if A\,+1 < (A,/3), thené§ >0 and

2(L+1)
R,= Y  Awaf Fe  Heri
=1 T A= 2An

The eigenpartitionings defined analogously S and N,  Otherwise, our upper bound is equal to 1. Thus, we have
become A \
a ) —fel i <2
N T N . T<r()) =9 A — 2011 =" (12

S, = > A, N2 Y Awafl.  (8) 1, otherwise.
=1 1=qg+1

(1L

Relation (12) reveals that the sensitivity &f(S,), with
A distance measure between two linear subspaces, commamlgpect to perturbations satisfying (7), is governed by the
employed in numerical analysis, is the sine of theinonical separation of the eigenvalueg and A ;.
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If 7(¢) <« 1, meaning thak,; < A, then the “estimated” The measures of diversity in these cases are not identi-
signal subspac&(S,) is insensitive to perturbations with sizecal. In the subspace decomposition problem, the measure is
Ag+1, lending credence to its proximity to the unknown “ideal’s 1,41 (H (b, 1w, ), Whereas in the blind channel approx-
signal subspaceR(Ry). Furthermore, from an eigenvalueimation problem, it iszas,11 (Hs (b, 5, ))- These quantities
point of view, sincel, 41 < A,, it does not seem plausibleare not orderable, in general, that is, one is not always larger
that the “perturbed” eigenvalues, and A,y;, which have than the other. However, since they measure the distance
been associated with different subspaces, come from the saheH (hy, m,) and Hy(hg, 5,), respectively, from the
multiple “ideal” eigenvalue), (R ). matrices with rank one less than the assumed rank, we expect

If, on the other handy(g) ~ 1, meaning that\;, = A\;4;, thatif one measure is “large” (resp. “small”) then the other will
then the “estimated” signal subspad¢¥S,) may be very be “large” (resp. “small”), as well. Extensive simulations have
sensitive to perturbations with si2¢, casting serious doubt revealed that they are reasonably close. Thus, we should expect
as to its proximity to the unknown “ideal” signal subspaca close relationship between the stability of the decomposition
R(Rp). Furthermore, since\, ~ )\ 1, it seems plausible of the data covariance matrix into signal and noise subspaces
that A, and A,41, which have been associated with differenand the stability of the approximation of unknown channels
subspaces, come from the same multiple “ideal” eigenvall®y, blind channel identification methods.
for example,\.(Rr) = 0.

Our rank estimate fofR; will be taken as the integef,
leading to the effective channel order estimati@n which
minimizes r(q).

B. Determination of the Effective Channel
Order with the Proposed Criterion

Thus, our criterion becomes In Fig. 5, we plot the inverse of the rank detection criterion
(13), i.e., 1/r(q) versusgq, for the data set used for the
§ = arg minr(q). (13) computation of AIGk) and MDL(k), shown in Figs. 3 and
q

4. We observe that the proposed criterion is insensitive to
variations in the SNR. In all cases, the minimum )
appears at the position 23, giving 2 as the effective channel
rder estimate, that is, three taps for each subchannel. In all
ases, there exists a gap between two consecutive eigenvalues
of the estimated data covariance matrix, namaby, and Aoy,

aBd }E](N‘i)]; stal:r)lle or wel:-copdlﬂolner?q Orr11 tht(:] ?ttflherr hadnd, making us consider the signal-noise subspace decomposition
absence of such a gap, .e(g_) ~ - means that Tere does, yhlem stable. Furthermore, in all cases, the first-order “zero-
not exist a clear-cut separation between the signal and the

noise, making us consider the problem of decomposition int cing” or Wiener equalizers, which are computed by the
N 9 P : . P ||%pulse responses estimated by the second-order subspace
signal and noise subspacesstableor ill-conditioned

method, can open the eye. In Fig. 6, we plot the output of
the first-order Wiener equalizer for the SNR30 dB case.
A. Connections with the Blind Channel Approximation Problem |n extensive simulations, we have observed that the pro-

In order to give a physica| interpreta’[ion to our results, V@SQd criterion is insensitive to variations in the number of

may say that if the diversity of théth-order significant part of data samples.

the true channel, which is denoted by, ,,, is sufficiently ~ Two quite dissapointing facts concerning the behavior of
large with respect to the size of the “noise”—here, “noisdnformation theoretic criteria are that, as shown in Figs. 3-5,

is a generic term that incorporates the influence of the tail§, many cases
the additive, not necessarily white, channel noise and thel) theycannotdetect a gap of about two orders of mag-

If (§) < 1, then there is agap between); and A;;:.

Subspacedi(S;) and R(IN;) are insensitive to perturbations
with size Aj4;. This fact makes us consider the problem og
decomposition into signal and noise subspaces, namfiéh;)

estimated, inexact statistics—expressed as [recall (4)] nitude between two consecutive data covariance matrix
eigenvalues;
M(RL) > ||EL]2 2) they associategrroneously “close” eigenvalues with
different subspaces.
then This means that their estimates may be poor even in cases
~ considered stable. This is a characteristic of unstable numerical
A 2 A(Re) = [|[ELll2 > [|ELll2 > Ag+1 procedures, and clearly, it is unsatisfactory.

In some cases, there doe®t exist a big gap between
which means that there will exist a gap between two cotwo consecutive eigenvalues @& ,. This is the case, for
secutive eigenvalues of the estimated data covariance matexample, ofchan3.matfound at the same website. We com-
making us consider the decomposition into signal and noipate r(¢) using noiseless data obtained at the output of
subspaces stable. this channel. In Fig. 7, we plot/r(q) versusg, where it

As shown in the blind channel identification context [6], ifeems that there iso clear-cut separation between the signal
the diversity of themnth-order significant part of the channeland the noise, making us consider the signal-noise subspace
is sufficiently large with respect to the size of the tails, thetlecomposition problem unstable. This fact implies that there
the mmth-order subspace method can approximate the unknodwes not exist an m such that the diversity of thenth-
channel sufficiently well. order significant part of this channel is sufficiently large, with
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Fig. 5. Inverse of the proposed criterion, i.@/r(¢) versusq for SNR = 90, 70, 50, and 30 dB.
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Fig. 6. Best case output of first-order Wiener equalizer (del@ycomputed ©19- 7- Inverse of the proposed criterion, i.8/rr(¢) versusq for noiseless
using the impulse response “identified” by the second-order subspace metfiBift oPtained byhan3.mat
(SNR = 30 dB).

IV. CONCLUSIONS

respect to the “noise.” Consequently, we may anticipate thatggrective channel order determination is critical to the

|th|s dlffllcul';f'to' agproxTalte and SUbSﬁ qufently iqﬁ.a|LZZLh§Jccessful application of blind channel identification proce-
channel sutficiently well. In some realizations of figh - ures. We considered the performance of information theoretic
(SNR> 40 dB), it is possible to open the eye using the Wiener

equalizers corresponding to the estimates of the subspggctae”a for this task. It turns out that they are very sensitive

method with order the estimated by the proposed criteri(g?l vananon;i in the SNR and the number of data samples.
effective channel order, i.e., 1. However, for SNRO dB, More specificaly, for high SNR and/or many data samples,

it seems difficult to approximatehan3.matsufficiently well, they usually lead to effective overmodeling. Such estimates are
using blind channel identification methods. Thus, the value Bfactically useless. For low SNR and few data samples, they
(¢) may provide useful information not only for the stabilitymay lead to useful effective channel order estimates. However,
of the decomposition of the data covariance matrix into signéleir high sensitivity is unsatisfactory and has impeded their
and noise subspaces but also for the stability of the blisticcessfull application to the channel order determination
channel approximation problem. problem. Furthermore, it has contributed to the creation of
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some confusion concerning the classification into under- ang] , “Blind channel approximation: Effective channel length deter-
over-modeled cases and the applicability of blind channel mination,”inProc. 32nd Asilomar Conf. Signals, Syst., Comeacific
id if X hods i listi Grove, CA, Nov. 1998, pp. 1153-1157.

identification methods In realistic cases. [9] H. Akaike, “A new look at the statistical model identificationEEE

In order to avoid these shortcomings, we proposed a new Trans. Automat. Contrvol. AC-19, pp. 716-723, Dec. 1974.

S ; ; ; ] J. Rissanen, “Modeling by shortest data descriptigkytomatica vol.
criterion based on numerical analysis arguments. Using tHa 14, pp. 465471, 1978.

concept of canonical angles between subspaces and invarigit J. R. Treichler, 1. Fijalkow, and C. R. Johnson, Jr., “Fractionally spaced
subspace perturbation results, we provided a “maximally sta- equalizers. How long should they really beTEEE Signal Processing

. L. - Mag. pp. 65-81, May 1996.
ble decomposmon of the range space of the data covanarﬁg] G. Stewart and J. SuMatrix Perturbation Theory New York: Aca-

matrix into signal and noise subspaces. Simulations with "~ demic, 1990.
realistic data have shown this criterion to be insensitive 1831 P- A. Wedin, “Perturbation bounds in connection with singular value

.. . decomposition,”BIT, vol. 12, pp. 99-111, 1972.
variations in the SNR and the number of data samples.  [14] . w. Stewart, “Error and perturbation bounds for subspaces associated

Existence of a gap between two consecutive eigenvalues of with certain eigenvalue problems3IAM Rev,. vol. 15, no. 4, pp.

i i ; ; 727-764, Oct. 1973.
the estimated data covariance matrix makes us consider G. Golub and C. V. LoanMatrix Computations2nd ed. Baltimore,

subspace decomposition problem stable and gives reason tO mp: Johns Hopkins Univ. Press, 1991.
believe that the blind channel approximation problem is stable

as well. On the other hand, absence of such a gap makes us

consider both problems unstable. In the stable cases, our crite-

rion provides useful effective channel order estimates, leadin
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