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TABLE III
DETECTION AND FALSE ALARM (BRACKETED) RATES IN PERCENT FORLINEAR

CORRELATION-BASED DETECTORS FORSIGNALS IN S�S INTERFERENCE, WITH

� = 1:6 AND AN ERROR IN PARAMETER ESTIMATION, �̂

IV. CONCLUSIONS

The use of correlation detectors for the detection of known signals
in impulsive interference modeled by an S�S process has been inves-
tigated. A number of nonlinear score functions for both correlation
(LSO) detectors, as well as rank correlation detectors (LSOR) have
been developed and their performance compared with the LO, LOR,
matched filter, and Cauchy detectors. Although the linear and Cauchy
detectors are optimal when� =2 and 1, respectively, their performance
deteriorated for other values of�.

The LOR detector has been seen to achieve similar performance to
the LO detector. It also has inherent advantages for on-line detection.
Additionally, the LSOR detector using the triangular rank score func-
tion LSOR-tr has achieved high detection rates: close to those of the LO
and LOR detectors across all values of� tested. This has been achieved
while maintaining computational simplicity and its ability to maintain
a constant false alarm rate and high detection rates when parameter es-
timation errors occur.
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Asymptotic Performance Analysis of DOA Finding
Algorithms with Temporally Correlated Narrowband

Signals

Jean-Pierre Delmas and Yann Meurisse

Abstract—This correspondence focuses on the asymptotic performance
analysis of general direction-of-arrival (DOA) finding algorithms under the
stochastic model assumption in which source and noise signals are possibly
non-Gaussian and possibly temporally correlated. We prove, in particular,
that all the covariance-based DOA estimators are sensitive to the temporal
correlation of the sources when the noise is temporally correlated; other-
wise, most of them are insensitive to the temporal correlation of the sources,
except for the Toeplitzation and the augmentation techniques.

Index Terms—Asymptotic performance analysis, augmentation
technique, covariance-based DOA estimator, DOA finding algorithms,
Toeplitzation technique.

I. INTRODUCTION

Motivated by the popularity of the second-order algorithms in DOA
estimation, many contributions have appeared that aim at establishing
the asymptotic statistical performance of DOA estimators in the
context of narrowband array processing. These studies rest on different
signal models. The deterministic and the stochastic model are the main
models that have appeared in the literature. The deterministic model
assumes the source signals fixed in all realizations and the noise to be
a temporally uncorrelated Gaussian random process. In the stochastic
model, the source and noise signals are generally assumed to be
temporally uncorrelated Gaussian random processes. Many authors
(see [1]–[4] and the reference therein) compared the asymptotic
performance of DOA algorithms with these two models and connected
their performance to the Cramér–Rao bound. In fact, most DOA
estimators have the same asymptotic statistical performance under
these two models [3], [4] and with any distribution of the source
signals in the stochastic model [5]. However, all these contributions
rely on the independence assumption of the successive snapshots.
Consequently, performance analyzes of these algorithms under mild
assumptions remain of current interest.

It is the aim of this correspondence to investigate the performance
of DOA estimators under the general stochastic model assumption
in which both the source and noise signals are possibly temporally
correlated and possibly non-Gaussian random processes. Ordi-
narily, the performance analysis of these second-order algorithms
relies on the distribution of the empirical spatial covariance matrix
RRRx(n)

def
=(1=n) n

t=1
xxxtxxx

H

t . These studies use two approaches. The
first one is based on perturbation calculus induced by its complex
Wishart distribution when the snapshotsxxxt are Gaussian. The second
is based on a continuity theorem (e.g., [6, th., p. 122]), which transfers
the asymptotic normality issued from its complex asymptotic Gaussian
distribution derived from the classical central limit theorem to any
regular function of this covariance. When the snapshotsxxxt are not
independent, the distribution ofRRRx(n) is not complex Wishart in the
Gaussian case for the first approach, and the classical central limit
theorem cannot be applied for the second approach. We adopt, in
this correspondence, the general functional method of [7], in which
the Gaussian asymptotic distribution of the covariance-based DOA
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estimates is derived from the Gaussian asymptotic distribution of
the empirical covariance matrix. This allows us to give closed-form
expressions for the asymptotic covariance matrices of DOA estimates
and to specify the conditions for which these expressions are sensitive
to the distribution and the temporal correlation of the sources.

This correspondence is organized as follows. The model of de-
pendent snapshotsxxxt is defined in Section II. Then, in Section III,
the asymptotic normality ofRRRx(n) is established for these models
of dependence where a central limit theorem is given. A general
functional approach providing a common unifying framework for
asymptotic DOA estimation performance analysis is presented in
Section IV. The case of uniform linear or rectangular arrays with the
Toeplitzation and augmentation techniques are addressed. Finally, in
Section V, some simulations are presented.

II. SIGNAL MODEL

Let an arbitrary array composed ofM sensors receiveK narrow-
band waves. These narrowband signals are assumed to have a common
center frequency and are in the same bandwidthB. Letut; k,�k, and
eee(�k) denote, respectively, for the sourcek, the complex envelope of
the emitted signal by this source at timet, the unknown spatial param-
eters that are referred to as the DOA, and the so-called steering vector
of this source. TheM vector of the observed complex envelopes of the
sensor outputs is typically modeled by

xxxt =

K

k=1

ut; keee(�k) + vvvt:

Here,vvvt represents theM -vector of observed complex envelope of
sensor output additive noise at timet. Ordinarily, severalindependent
measurementsxxxt are made by sampling the complex envelopes at times
t such that(ut; k; vvvt)t=1; ���; n are independent. We suppose, in this
corrrespondence, that the complex envelopes of the sensor outputs are
uniformly sampled at a frequency greater than or equal toB. As a con-
sequence, the observations(xxxt)t=1; ���; n are no longer independent.
vvvt and (ut; k)t=1; ���; n are modeled as zero-mean with finite fourth-
order moments that are not necessarily Gaussian stationary random
processes.vvvt is supposed independent of(ut; k)t=1; ���; n. The spatial
covariance matrixRRRx

def
= E(xxxtxxx

H
t ) reads

RRRx = EEE(�)RRRuEEE
H(�) + �2vCCC

with EEE(�)
def
= [eee(�1); � � � ; eee(�K)], RRRu

def
= E(uuutuuu

H
t ), where

uuut
def
=(ut; 1; � � � ; ut;K)T , andE(vvvtvvv

H
t ) = RRRv = �2vCCC, whereCCC is

a known positive definite matrix. In order to consider the asymptotic
distribution of the estimated spatial covariance matrixRRRx(n), we
consider for simplicity thatut; k are either harmonic random processes
[ut; k = L

l=1 ak; le
i� ei2�f t, where(fk; l)k=1; ���;K; l=1; ���;L

are fixeddistinct positive real numbers in]�1=2; + 1=2[, ak; l are
fixed positive real numbers, and�k; l are random variables uniformly
distributed in[0; 2�] and mutually independent] or complex ARMA
processes with power�2k, power spectral densitySu (f), and power
cross-spectral densityK � K-matrix SSSu(f). If the fourth-order
polyspectrum of theK sourcesut; k for k1; k2; k3; k4 = 1; � � � ; K
is defined as

�k ; k ; k ; k (f; f 0; f 00)
def
=

�; � ; �

Cum(u0; k ; u��; k ; u� ; k ; u�� ; k )

� ei2�(f�+f � +f � ); then

[QQQu]K(j�1)+i;K(l�1)+k

=
+1=2

�1=2

+1=2

�1=2

�i; j; l; k(f; f
0; �f 0)df df 0

denotes theK2�K2 fourth-order cumulant matrix. The same ARMA
assumption and notations are adopted to theM -variatevvvt.

Usually, in the context of narrowband waves, the observations
(xxxt)t=1; ���; n are assumed zero-mean circular Gaussian and indepen-
dent. Therefore, the ensemble averageRRRx(n) is a sufficient statistic,
and consequently, all direction-finding algorithms are based onRRRx(n).
In this context, all the asymptotic performance analyzes are based
on the distribution of n

t=1 xxxtxxx
H
t , i.e., a central complex Wishart

distribution. In this correspondence, we go on using second-order
direction-finding algorithms, but as in our signal model, the obser-
vations (xxxt)t=1; ���; n are no longer independent, and all the results
based on this Wishart distribution are not usable. We need to know the
asymptotic distribution ofRRRx(n).

III. SPATIAL COVARIANCE MATRIX

Covariance-based DOA estimators will turn out to be asymptotically
normal as the numbern of observations goes to infinity. In this section,
we focus on a central limit theorem to be used for establishing DOA
asymptotic normality in the next section. We show that the asymptotic
distribution of the spatial covariance matrixRRRx(n) is very sensitive to
the model of dependence between snapshots. We prove the following
theorem.

Theorem 1:
p
n(Vec(RRRx(n))�Vec(RRRx)) converges in distribution

to the zero-mean complex Gaussian distribution of covarianceCCCR

p
n(Vec(RRRx(n))� Vec(RRRx))

L!N (0; CCCR ; CCCR KKK): (3.1)

Furthermore,E(RRRx(n)) = RRRx and1

lim
n!1

nCov(Vec(RRRx(n))) = CCCR (3.2)

whereCCCR reads

CCCR =(EEE(�)
c EEE(�))CCCR (EEEH(�)
c EEE
H(�)) +CCCR

+ (EEE(�)
c IIIM)CCCR (EEEH(�)
c IIIM )

+ (IIIM 
c EEE(�))CCCR (IIIM 
c EEE
H(�)) (3.3)

withCCCR =
+1=2

�1=2
SSSu(f)
cSSSu(f)df +QQQu in the ARMA case and

CCCR = OOO in the harmonic case,CCCR =
+1=2

�1=2
SSSv(f)
cSSSv(f)df+

QQQv , CCCR = +1
n=�1RRRn

u 
c RRR
n
v , CCCR = +1

n=�1RRRn
v 
c RRR

n
u ,

whereRRRn
u
def
= E(uuutuuu

H
t�n) andRRRn

v
def
= E(vvvtvvv

H
t�n).AAA
cBBB denotes the

block matrix, the(i; j) block element of which isb�i; jAAA, andKKK is
the vec-permutation matrix defined by Vec(AAAT ) = KKKVec(AAA) for any
square matrixAAA.

In (3.1) a complex randomp� 1 vectoryyy has a zero-mean complex
Gaussian distribution specified by ap � p positive definite matrix
�1 and p � p symmetric matrix�2 and denotedN (0; �1; �2)
if the 2p-joint distribution of the real and imaginary part ofyyy is
2p-zero-mean Gaussian, i.e., for any complexp� 1 vectorwww; the real
scalarwwwHyyy + (wwwHyyy)H has a zero-mean Gaussian distribution with
variance2wwwH

�1www + wwwH
�2www

� + wwwT
�
�

2www, whereEyyyyyyH) = �1,
andEyyyyyyT ) = �2.

Equation (3.2) is proved after straightforward but tedious algebric
manipulations. Then, to prove (3.1), we adapt the steps of ([8, Sec.
7.3]) to our problem.

1Cov(Vec(RRR (n))) denotesE(Vec(RRR (n) � RRR )Vec (RRR (n) � RRR )).
We note that Vec(RRR (n) � RRR ) = Vec (RRR (n) � RRR )KKK, and there-
fore, E(Vec(RRR (n) � RRR )Vec (RRR (n) � RRR )) = E(Vec(RRR (n) �
RRR )Vec (RRR (n) � RRR ))KKK . Therefore, the noncircular complex Gaussian
asymptotic distribution ofRRR (n) is characterized byCCC only.
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IV. A SYMPTOTIC DISTRIBUTION OF DOA ESTIMATES

A. Functional Approach

To consider the asymptotic performance of a covariance-based DOA
algorithm, we adopt a functional analysis2 that consists in recognizing
that the whole process of constructing an estimate�(n) of� is equiv-
alent to defining a functional relation linking this estimate�(n) to the
statisticsRRRx(n) from which it is inferred. This functional dependence
is denoted�(n) = alg(RRRx(n)). Clearly,� = alg(RRRx); therefore, the
different algorithms alg(�) constitute distinct extensions of the mapping
RRRx ! � generated by any unstructured Hermitian matrixRRRx(n). In
the following, we consider “regular” algorithms. More specifically, we
assume the conditions given in [5].

1) The function alg(�) is differentiable in a neighborhood ofRRRx,
i.e., if DDDalg

�;RRR denotes theK �M2 matrix of this differential
evaluated at pointRRRx

alg(RRRx + �RRR) = �+DDD
alg
�;RRR Vec(�RRR) + o(�RRR): (4.1)

2) For any� and any positive definite source correlation matrixRRRu

(condition 2a) or for any� and any positive definite diagonal
source correlation matrixRRRu (condition 2b)

alg(EEE(�)RRRuEEE
H(�) + �

2
vCCC) = �: (4.2)

Under appropriate hypotheses on the array manifold, requirements 1
and 2a are met by most of the second-order DOA estimators. Require-
ments 1 and 2b are met by the second-order DOA estimators that sup-
pose the sources spatially uncorrelated. The following lemma (proved
under conditions 1 and 2a in [5]) is used in next section to prove the
invariance of the asymptotic distribution of the DOA’s with respect to
the distribution and the temporal correlation of the sources.

Lemma 1: Under conditions 1 and 2a [resp. conditions 1 and 2b],
one has the constraints onDDDalg

�;RRR

DDD
alg
�;RRR (EEE(�)
c EEE(�)) = OOO

[resp.,DDDalg
�;RRR (eee(�k)
c eee(�k)) = 0

k = 1; � � � ; K]: (4.3)

B. Standard Algorithms

By the regularity condition (4.1), the asymptotic behaviors of�(n)
andRRRx(n) are directly related. The standard result on regular functions
of asymptotically normal statistics (see, e.g., [6, p. 122]) applies:

p
n(�(n)��)

L!N (0; CCC�) (4.4)

with

CCC� = lim
n!1

nE((�(n)��)(�(n)��)T )

=DDD
alg
�;RRR CCCR (DDDalg

�;RRR )H : (4.5)

We can now state our main result.
Theorem 2: For Gaussian or non-Gaussian, ARMA, or harmonic

source signals, the asymptotic covariance of any covariance-based
DOA estimators that do not require the sources spatially uncorrelated
have the common closed-form expression when the noisevvvt is
temporally uncorrelated:

CCC� =DDD
alg
�;RRR (EEE(�)RRRuEEE

H(�)
c �
2
vCCC

+ �
2
vCCC 
c EEE(�)RRRuEEE

H(�)

+ �
4
vCCC 
c CCC +QQQv)(DDD

alg
�;RRR )H : (4.6)

2A similar approach based on the implicit function theorem was introduced
by Xu and Kaveh [9].

Proof: In this situation,RRRn
v = �0; n�

2
vCCC. The closed-form ex-

pression follows by application of (3.3), (4.5), and the first part of
(4.3).

This result extends the result in [5]. We note that if the noise is tem-
porally correlated, the termsCCCR andCCCR of (3.3) do not reduce
to the spatial termsRRRu
cRRRv andRRRv
cRRRu, and therefore, the perfor-
mance of all the covariance-based DOA algorithms are sensitive to the
temporal correlation of the sources when the noise is temporally corre-
lated. In the next subsections, we show that the asymptotic performance
of DOA algorithms that require the sources spatially uncorrelated are
sensitive to the distribution and the coloration of the spectrum of the
sources, even when the noise is temporally uncorrelated.

C. Toeplitzation Techniques

For M -uniform linear array (ULA) [resp.,M1 � M2-uniform
rectangular array (URA)] spatially uncorrelated sources and spatially
white noise,RRRx exhibits a Toeplitz [resp., Toeplitz, block-Toeplitz]
structure. The estimated spatial covariance matrixRRRx(n) accuracy
is significantly improved by averaging along its diagonals [resp., its
subblock diagonals]. The resulting estimateRRRto

x (n) is referred to as
the “Toeplitzed” estimated spatial covariance matrix. Because this
“Toeplitzation,” which is also known as redundancy averaging [10],
operates a linear transform onRRRx(n) thanks to the “Toeplitzation”
projection matrixAAAto (Vec(RRRto

x (n)) = AAAtoVec(RRRx(n))), Theorem
1 is extending toRRRto

x (n) with the asymptotic covariance matrix
CCCto
R = AAAtoCCCR AAAto. By the regularity condition (4.1) of Section

IV-A, the estimated DOA’s are asymptotically normal with asymptotic
covariance:

CCC
to
� = DDD

alg
�;RRR AAAtoCCCR AAAto(DDD

alg
�;RRR )H : (4.7)

In contrast to the classical covariance-based DOA algorithms, we show
in the following that the Toeplitzed covariance-based DOA algorithms
are sensitive to the spectral shape of the spectrum of the sources. More
precisely, the following properties are proved.3

1) The Toeplitzation is not sensitive to the distribution of the
ARMA sources if the sources are not only spatially uncorrelated
but are independent.

Proof: If the sources are independent, the only nonzero
terms of the fourth-order cumulant matrixQQQu are the terms
[QQQu]K(k�1)+k;K(k�1)+k = ck

def
=

+1=2

�1=2

+1=2

�1=2
�k; k; k; k(f;

f 0; �f 0)df df 0, and the fourth-order cumulant term of (3.3)
boils down to K

k=1 ck(eeeM(�k) 
c eeeM(�k))(eee
H
M(�k) 
c

eeeHM(�k)), whereeeeM(�k)
def
=(1; ei� ; e2i� ; � � � ; e(M�1)i� )T .

The DOA algorithms alg(�) applied toRRRto
x (n) define the map-

ping algto(�). This mapping satisfies condition 2b of Lemma 1.
Thus, the second constraint onDDDalg

�;RRR of Lemma 1 establishes
the result.

2) In the single source case, the Toeplitzation is not sensitive to the
temporal correlation of the sources.

Proof: In this case, condition 2a of Lemma1 reduces to condi-
tion 2b. The expressions ofDDDalg

�;RRR AAAtoCCCR AAAtoDDD
alg
�;RRR

H

coincide for the ARMA and harmonic sources with
DDD

alg
�;RRR AAAto(�

2
1eeeM(�1)eee

H
M(�1) 
c �2vIIIM + �2vIIIM 
c

�21eeeM(�1)eee
H
M(�1) + �4vIIIM )AAAto(DDD

alg
�;RRR )H .

3) In the case of several sources, the Toeplitzation is sensitive to the
temporal correlation of the sources.

Proof: Because eeeM(�k)eee
H
M(�l), k 6= l does not

have a Toeplitz structure, and the column space of
AAAto(EEE(�) 
c EEE(�)) does not belong to the column space of
EEE(�) 
c EEE(�). Condition 2a of Lemma 1 is generally not

3The following properties are proved for ULA; the proofs can be extended to
URA along the same lines.
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satisfied. Therefore, the associated terms in (4.7) do not vanish,
contrary to the single source case. Therefore, the extra term

AAAto

1�l 6=k�K

+1=2

�1=2

Su (f)Su (f)df

�eeeM(�k)eee
H
M(�k)
c eeeM(�l)eee

H
M(�l) AAAto (4.8)

that appears for ARMA sources does not vanish inCCCto
� . We

note that the performance of the ARMA sources case and the
harmonic source case coincides when the spectrums of the
ARMA sources tend to be disjoint. At low SNR,CCCR can be
approximated by�4vIII , and the Toeplitzation becomes insensitive
to the temporal correlation of the sources. Furthermore, the
closed-form expressions given for two closely spaced sources
at low SNR in ([11, rel. 9.118 and 9.119]) and in [12] remains
valid for colored sources. At high SNR, the term (4.8) becomes
dominant inCCCR , and the Toeplitzation becomes very sensi-
tive to the temporal correlation of the sources, which will be
confirmed in Section V.

D. Augmention Techniques

The linear or planar sparse arrays attract considerable attention as
they lead to significantly improved performance [13] for spatially un-
correlated and white sources.4 To show that these techniques are sen-
sitive to the temporal correlation of the sources, we consider only the
standard method utilizing the direct augmentation approach [15]. To
fix notations, consider a planar grid (a half wavelengh of the incident
radiation equispaced). Let� be the array characteristic function

�(x; y) =
1; if a sensor is in position(x; y)
0; elsewhere.

Let �(dx; dy) be the autocorrelation function of the array character-
istic function� [�(dx; dy) represents the number of times the lag
(dx; dy) is present in the sparse array.]RRRx(n) andRRRau

x (n) denote
the spatial covariance matrices associated with the fictitiousM 0

1 �

M 0
2-URA and theM1 � M2 augmented array, respectively.5 Then,

the direct augmentation approach [15] operates a linear transform on
RRRx(n)6 thanks to the augmentation operatorM2

1M
2
2 �M 02

1 M 02
2 ma-

trix AAAau: (Vec(RRRau
x (n)) = AAAauVec(RRRx(n))).7

[AAAau] (h�1)M M +(j�1)M M +(g�1)M +i;

(f�1)M M +(l�1)M M +(e�1)M +k

=

�(k � 1; e� 1)�(l� 1; f � 1)

�(l� k; f � e)
; if

l� k = j � i

f � e = h� g

0; elsewhere.
(4.9)

Theorem 1 extends toRRRau
x (n) with the asymptotic covariance matrix

CCCau
R = AAAauCCCR AAAT

au. By the regularity condition (4.1) of Section

4An improvement of the performance of DOA algorithms when the sources
are spatially correlated was proposed by using the redundancy averaging tech-
niques. Under these conditions, these techniques lead to asymptotical inconsis-
tent and biased estimates [14].

5M = M andM = M for restricted redundancy andM < M and
M < M for unrestricted redundancy [13].

6We note that this linear transform is defined only for analysis purpose as
RRR (n) is not observed.

7In the case of linear arrays,e = f = g = h = 1, and (4.9) reads

[AAAau](j�1)M+i; (l�1)M +k

=
�(k� 1)�(l� 1)

�(l� k)
; if l� k = j � i

0; elsewhere.

Fig. 1. Theoretical and estimated MSE of� (n) versus the SNR for,
respectively, white(o), colored (+), and harmonic(�) signals for a 10–ULA
array,n = 100 after Toeplitzation (—) and without Toeplitzation (- - -).

Fig. 2. Theoretical MSE of� (n) versus the sources bandwidth for a 10–ULA
array, SNR=20 dB after Toeplitzation.

Fig. 3. Theoretical and estimated MSE of� (n) versus the number of sensors
of an ULA array, SNR=20 dB,n = 100 for white(o), colored (+) and harmonic
(�) signals after Toeplitzation.

IV-A, the estimated DOA’s are asymptotically normal with asymptotic
covariance

CCC
au
� = DDD

alg
�;RRR AAAauCCCR AAA

T
au(DDD

alg
�;RRR )H : (4.10)
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Fig. 4. Theoretical and estimated MSE of� (n) and� (n) versus the SNR for, respectively, white (either Gaussian or discrete)(o), colored (+), and harmonic
(�) signals for a 12-Greene and Wood array,n = 100 after standard augmentation technique (—) and without augmentation (- - -).

We note that Lemma 1 does not apply to this situation because the
mapping algau(�) is not defined onRRRx(n) but on some terms ofRRRx(n)
only. Consequently, the insensitivity of the augmentation techniques
to the distribution and the temporal correlation of the sources is not
assured.

V. SIMULATIONS

We consider throughout this section two sources of equal power
(�2k)k=1; 2. The SNR is defined as the ratio((�21+�

2

2)=�
2

v). The DOA’s
are estimated by the standard MUSIC algorithm, and the number of
Monte Carlo runs is 500. These sources are issued from the DOA’s
�k = � sin �0

k with �0

1 = 30�, �02 = 20� for the ULA and from the
DOA’s �k = � sin �0k sin�

0

k, �k = � cos �0k sin�
0

k with �01 = 30�

�02 = 20� and�0

1 = 10� �0

2 = 40� for the URA.
The first experiment presents the case of two sources that are both

spatially uncorrelated, white Gaussian, ARMA Gaussian [generated by
a (10,10) Butterworth filter driven by a white Gaussian noise], or har-
monic. The centered frequencies of the ARMA and the frequencies of
the harmonics are�0.25 and 0.25. Fig. 1 plots the theoretical MSE
of �k (1=n)[CCC�]k; k and the estimated MSEEk�k(n) � �kk

2

Fro as a
function of the SNR for an 10–ULA (the bandwidth is fixed to 0.5 for
ARMA signals) after Toeplitzation. We observe that these estimated
MSE’s are in good agreement with the theoretical MSE’s but are very
sensitive to the temporal correlation of the sources. Fig. 2 plots the
theoretical MSE of�k (1=n)[CCC�]k; k for the ARMA Gaussian spa-
tially uncorrelated sources as a function of the sources bandwidth for
a 10–ULA. We observe that these theoretical MSE’s increase with this
bandwidth and begin increasing from the bandwidth 0.45, which is
associated with the overlapping of the spectrum of the two sources.
These MSE’s increase from the value associated with two harmonic
sources to the value associated with two white sources. The “satu-
ration” phenomena observed in [10] disappears when the spectrum
of the two sources are not overlapping. Note that the common ex-
pression of the MSE’s obtained without Toeplitzation is close to the
MSE’s obtained after Toeplitzation for nonoverlapping spectra. Fig. 3
plots the theoretical MSE of�k (1=n)[CCC�]k; k and the estimated MSE
Ek�k(n)� �kk

2

Fro as a function of the number of sensors for an ULA
for SNR=20 dB. We observe that these estimated MSE’s are in good
agreement with the theoretical MSE, but these MSE’s are very sensi-

tive to the temporal correlation of the sources (the bandwidth is fixed to
0.5 for ARMA signals). These MSE’s are decreasing with the number
of sensors except for the case of overlapping spectrums where the “sat-
uration” phenomena can lead to a degradation of the MSE.

The second experiment presents the case of two sources with the
same temporal parameters (for white source signals, the distribution is
either Gaussian or discretef�1; +1g) as in the first experiment but
are impinging on a 12–Greene and Wood array [16] utilizing the direct
augmentation approach [15]. Fig. 4 plots the theoretical MSE and the
estimated MSE of the angles�k and�k as a function of the SNR. The
behavior of these MSE’s is similar to those of the MSE’s obtained for
the ULA Toeplitzation situation.

VI. CONCLUSION

In this correspondence, we have presented an asymptotic perfor-
mance analysis of DOA finding algorithms using the stochastic model
assumption in which both source and noise signals are possibly non-
Gaussian and possibly temporally correlated. We have shown that the
asymptotic statistical performance of the second-order DOA finding
algorithms generally depend on the temporal correlation of the source
and noise signals, but when the noise is supposed temporally uncor-
related, it is proved that the covariance-based DOA estimators that do
not require the sources to be spatially uncorrelated are insensitive to the
distribution and the temporal correlation of the source signals, unlike
the Toeplitzation and the augmentation techniques that are very sensi-
tive.
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Blind Identification of Multichannel FIR Systems Based
on Linear Prediction

Yifeng Zhou, Henry Leung, and Patrick Yip

Abstract—In this correspondence, a blind identification algorithm for
multichannel FIR systems is proposed. In the approach, the identification of
each channel is decoupled, and channel responses are estimated separately
without having to solve for the augmented channel responses. The algo-
rithm can be implemented using linear prediction techniques. It is compu-
tationally efficient and suitable for real-time applications. Computer simu-
lations are used to demonstrate the effectiveness of the proposed algorithm.

Index Terms—Communication channels, FIR digital filter, identification,
least squares method, parameter estimation, transforms.

I. INTRODUCTION

The problem of blind channel identification has been extensively
studied by researchers since the pioneering work by Sato [1]. It has
received considerable attention in communications and signal pro-
cessing society [2]. Blind identification refers to the process in which
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the channel responses are estimated based on the channel outputs
without using training sequences. Most of the earlier approaches to
blind identification are based on the use of higher order statistics,
which are known to suffer from many drawbacks. They usually
require a large number of data samples and a heavy computational
burden, making them unattractive for practical applications. A recent
major progress is made by Tonget al. [3] in which they explored the
cyclostationary properties of an oversampled communications signal
and proposed an approach for estimating the channel responses based
on the second-order statistics of the channel outputs. Since then, many
techniques have been developed including the eigenstructure-based
methods [4], [5] and the least squares (LS) method [6]. The LS method
has the advantage of not requiring the explicit statistical knowledge of
the channel input. This is important for many practical applications
where such information is not available. The LS method uses a cross
relationship between each pair of sensor outputs to estimate the
augmented channel responses, i.e., the channel responses formed by
appending one channel response vector to another. In applications
where the channel orders are is relatively small, the computation cost
of the LS method may be affordable. However, for applications such
as speech dereverberation and echo cancellation, where each channel
may have an order at the level of several hundreds, the computational
burden of the LS method may increase significantly due to the
increased dimension of the augmented channel responses, making it
difficult for real-time implementations.

In this correspondence, an efficient blind identification algorithm for
multichannel FIR systems is proposed based on a deterministic mod-
eling for the channel inputs. The approach uses a relationship between
a pair of channel outputs in thez-plane. In thez domain, uniformly
distributed sampling points on the unit circle are used to interpolate the
z-transforms of the channel impulse responses. In the time domain, we
show that each channel response vector forms a linear prediction re-
lationship among the data sequence obtained from the inverse Fourier
transforms of a ratio function between thez-transforms of the pair of
channel outputs at interpolation points on thez-plane. The channel re-
sponses are then estimated by solving a set of linear prediction equa-
tions. The proposed algorithm decouples the estimation of each channel
impulse responses. Unlike the LS method, which requires a solution
for an augmented channel impulse response vector of an increased di-
mension, the proposed algorithm estimates each individual channel re-
sponses separately. The decoupling of the estimation process can re-
duce the computational complexity of the algorithm. In addition, since
the proposed algorithm is a linear prediction process, many existing
fast algorithms can be applied, making it practical for real-time appli-
cations. This correspondence is organized as follows. In Section II, we
formulate the multiple FIR channel data model. Section III is devoted
to the development of the new blind channel identification algorithm.
In Section IV, we discuss the implementations and computational com-
plexity of the algorithm. Finally, in Section V, computer simulations are
used to demonstrate the effectiveness of the proposed algorithm.

II. PROBLEM FORMULATION

Consider the single-input/multiple-output (SIMO) system shown
in Fig. 1. Each channel is assumed to be a unknown finite impulse
responses (FIR) system. The multiple sensor model can be found to
be useful for many practical applications. For example, in mobile
communications systems and multisensor data fusion, multiple sensors
are usually deployed to achieve optimum performance and to reduce
the data uncertainties. It can also be used for single receiver systems
where virtual receivers are formulated by temporally oversampling
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