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IV. CONCLUSIONS |. INTRODUCTION

The use of correlation detectors for the detection of known signalsMotivated by the popularity of the second-order algorithms in DOA
in impulsive interference modeled by an'S process has been inves-estimation, many contributions have appeared that aim at establishing
tigated. A number of nonlinear score functions for both correlatidhe asymptotic statistical performance of DOA estimators in the
(LSO) detectors, as well as rank correlation detectors (LSOR) ha&@ntext of narrowband array processing. These studies rest on different
been developed and their performance compared with the LO, Lotignal models. The deterministic and the stochastic model are the main
matched filter, and Cauchy detectors. Although the linear and Caudﬁ?dds that have appeared in the literature. The deterministic model
detectors are optimal when=2 and 1, respectively, their performance?SSUmes the source signals fixed in all realizations and the noise to be
deteriorated for other values of a temporally uncorrelated Gaussian random process. In the stochastic

The LOR detector has been seen to achieve similar performanc&gde!: tﬁ'e sourcel an(é gmse _5|gna|sdare generally asl\jumed t(;] be
the LO detector. It also has inherent advantages for on-line detection. porally uncorrelated Gaussian random processes. Many authors

" . : see [1]-[4] and the reference therein) compared the asymptotic
Additionally, the LSOR detector using the triangular rank score fun Srformance of DOA algorithms with these two models and connected

tion LSOR-tr has achieved high detection rates: close to those of the .
. . eir performance to the Cramér—Rao bound. In fact, most DOA
and LOR detectors across all valuesdested. This has been achieved._ . . -
estimators have the same asymptotic statistical performance under

while maintaining computational simplicity and its ability to maintair}hese two models [3], [4] and with any distribution of the source

a constant false alarm rate and high detection rates when parameteg@%-als in the stochastic model [5]. However, all these contributions

timation errors occur. rely on the independence assumption of the successive snapshots.
Consequently, performance analyzes of these algorithms under mild
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the empirical covariance matrix. This allows us to give closed-form - —1y2 J-12
expressions for the asymptotic covariance matrices of DOA estimates - . ]
and to specify the conditions for which these expressions are sensifi@gotes théi ™ x K~ fourth-order cumulant matrix. The same ARMA

. . . . . o +1/2  pt+1/2
estimates is derived from the Gaussian asymptotic distribution of / piinlf £ =) df df'

to the distribution and the temporal correlation of the sources. assumption and notations are adopted ta¥theariatev. . _
This correspondence is organized as follows. The model of de-Usually, in the context of narrowband waves, the observations
pendent snapshots is defined in Section Il. Then, in Section Ill, (z¢):=1,...,» are assumed zero-mean circular Gaussian and indepen-

the asymptotic normality of?.(n) is established for these modelsdent. Therefore, the ensemble aver®gn) is a sufficient statistic,
of dependence where a central limit theorem is given. A genemahd consequently, all direction-finding algorithms are baseR.om ).
functional approach providing a common unifying framework fom this context, all the asymptotic performance analyzes are based
asymptotic DOA estimation performance analysis is presented dn the distribution ofy_}._, z,z’, i.e., a central complex Wishart
Section IV. The case of uniform linear or rectangular arrays with thfistribution. In this correspondence, we go on using second-order
Toeplitzation and augmentation techniques are addressed. Finallygdifection-finding algorithms, but as in our signal model, the obser-
Section V, some simulations are presented. vations (z:).—,...,, are no longer independent, and all the results
based on this Wishart distribution are not usable. We need to know the

asymptotic distribution of2..(n).
Il. SIGNAL MODEL

Let an arbitrary array composed 8f sensors receiv& narrow- 1. SPATIAL COVARIANCE MATRIX

band waves. These narrowband signals are assumed to have & COMMERyariance-based DOA estimators will turn out to be asymptotically
center frequency and are in the same bandwigithetu, ., ®x, and  normal as the number of observations goes to infinity. In this section,
e(®;) denote, respectively, for the sourethe complex envelope of \ye focus on a central limit theorem to be used for establishing DOA
the emitted signal by this source at timehe unknown spatial param- 5symptotic normality in the next section. We show that the asymptotic
eters that are referred to as the DOA, and the so-called steering vegigfribution of the spatial covariance mati (n) is very sensitive to

of this source. Thé{ vector of the observed complex envelopes of thg,e model of dependence between snapshots. We prove the following

sensor outputs is typically modeled by theorem.
1 Theorem 1: v/n(Vec(R,(n))—Ved R.,)) converges in distribution
T, = Z ur ve(®) + vy to the zero-mean complex Gaussian distribution of covariéhee
k=1

Vi(Veo(R, (1)) — Veo(R..)) 5 N'(0, Cr,., Cr,K).  (3.1)
Here,v; represents thé/-vector of observed complex envelope of

sensor output additive noise at timeOrdinarily, severaindependent FurthermoreE(R.(n)) = R, and

measurements, are made by sampling the complex envelopes at times . .

t such that(us x. v.)i—1,..,. are independent. We suppose, in this Jimy nCOUVeA B (1)) = Ce, (32)
corrrespondence, that the complex envelopes of the sensor outputsv\ﬂ,{greCR
uniformly sampled at a frequency greater than or equél.tds a con- N
sequence, the observatiof ).=1, ... are no longer independent.  Cpr, = (E(®)®. E(@))CRU(EH((B) Qe E.H(@)) +Cr,

reads

vy and (u¢, k)¢=1,...,» are modeled as zero-mean with fi_nite fourth- + (E(®) 9 11)Ce.. (EY(©) 0. L)
order moments that are not necessarily Gaussian stationary random - o
processesu; is supposed independent @f;,+):=1, ..., ». The spatial + (I ©c E(©))Cr,, ., (Inr ©c E7(O)) (3.3)
. . d_ef H .
covariance matri®, = E(x,x; ) reads withCr, = f:l//; Su(f)©eSu(f)df +Q, inthe ARMA case and
R, = E(®)R,E"(®)+0,C Cr, = Ointhe harmonic cas€ z, = ffll//f So(£)@eSu(f)df +

, , Q,Cr,,=%!" R:®R!Cgr,,=3>'"_ R, R},
with E(©)%[e(®1), -+, e(®x)], R.< E(uwa!’), where whereR" < E(u,ul’ ) andR? = E(vivf.,,). A . B denotes the
w S (w o, w k)", andE(viw!f’) = R, = ¢2C, whereC is  block matrix, the(i, j) block element of which i$; ;A, andK is

a known positive definite matrix. In order to consider the asymptotitie vec-permutation matrix defined by Vet” ) = KVec(A) for any
distribution of the estimated spatial covariance maf#lx(n), we square matrixA.

consider for simplicity that, , are either harmonic random processes In (3.1) a complex random x 1 vectory has a zero-mean complex
[ue, & = S0k ar, ek e fett where(fi )1, ... 1,i=1, .1, Gaussian distribution specified byyax p positive definite matrix
are fixeddistinct positive real numbers ih-1/2, + 1/2[, ax,; are X; andp x p symmetric matrix2, and denoted\'(0, 3, X>)
fixed positive real numbers, and.,; are random variables uniformly if the 2p-joint distribution of the real and imaginary part of is
distributed in[0, 27] and mutually independent] or complex ARMA 2p-zero-mean Gaussian, i.e., for any complex 1 vectorw; the real
processes with power;, power spectral densit§.., (f), and power scalarw™y + (w*y)” has a zero-mean Gaussian distribution with
cross-spectral densityy’ x K-matrix S.(f). If the fourth-order variance2w” B 1w + w' Zow* + w’ iw, WhereEyy") =3,

polyspectrum of thd( sourcesu,, i for k1, ko, ks, ks = 1, ---, K andEyy’) = .
is defined as Equation (3.2) is proved after straightforward but tedious algebric
manipulations. Then, to prove (3.1), we adapt the steps of ([8, Sec.
Phy, ko ks ks (s F1o f7) 7.3]) to our problem.
= Z CUM(to, ks Ur kys Wrt ks Urrt k) ICov(Ved(R.,(n))) denotesE(Ved( R, (n) — R, )Vec” (R.(n) — R..)).
ool T We note that VE€(R,.(n) — R,) = Vec”(R.(n) — R,)K, and there-
2T+ 1) inen fore, E(Vec(R.(n) — R.)Vec'(R.(n) — R,)) = E(Ved(R.(n) —

R.)Vec” (R.(n) — R.))K. Therefore, the noncircular complex Gaussian
[Qu,]l((jfl)Jri, K(l—1)+k asymptotic distribution oR,, (n) is characterized b¢' ., only.
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IV. AsSYMPTOTIC DISTRIBUTION OF DOA ESTIMATES Proof: In this situation,R” = &, .o2C. The closed-form ex-
pression follows by application of (3.3), (4.5), and the first part of
(4.3). ]

To consider the asymptotic performance of a covariance-based DOAThjs result extends the result in [5]. We note that if the noise is tem-
algorithm, we adopt a functional analysihat consists in recognizing porally correlated, the terGr, , andCr, , of (3.3) do not reduce
that the whole process of constructing an estin@te ) of ® is equiv- g the spatial term®&. @. R, andR. ©. R.., and therefore, the perfor-
alent to defining a functional relation linking this estimé¥én ) to the  mance of all the covariance-based DOA algorithms are sensitive to the
statisticsR..(n) from which it is inferred. This functional dependencaemporal correlation of the sources when the noise is temporally corre-
is denoted®(n) = alg(R.(n)). Clearly,® = alg(R. ); therefore, the |ated. In the next subsections, we show that the asymptotic performance
differentalgorithms aly) constitute distinct extensions of the mappingf DOA algorithms that require the sources spatially uncorrelated are
R. — © generated by any unstructured Hermitian maRix(n). In  sensitive to the distribution and the coloration of the spectrum of the
the following, we consider “regular” algorithms. More specifically, wesgurces, even when the noise is temporally uncorrelated.
assume the conditions given in [5].

1) The function al¢) is differentiable in a neighborhood d@t., C. Toeplitzation Techniques

. . al - 2 . . . .
i.e., if Dg’p, denotes thel' x M~ matrix of this differential  gor A7-uniform linear array (ULA) [resp. ) x Ms-uniform
evaluated at poinR. rectangular array (URA)] spatially uncorrelated sources and spatially
alg(R, + 6R) = © + D% . Veo(SR) + o(6R). 4.1) White noise,R. ex_hibits a Toeplitz [resp., Toeplitz_, block-Toeplitz]
o ) o1, VOB R) +0(2R) (4-1) structure. The estimated spatial covariance maRiXn) accuracy
2) For any® and any positive definite source correlation maRix is significantly improved by averaging along its diagonals [resp., its
(condition 2a) or for any® and any positive definite diagonal subblock diagonals]. The resulting estimdE’ () is referred to as

A. Functional Approach

source correlation matriR,, (condition 2b) the “Toeplitzed” estimated spatial covariance matrix. Because this
P 9 “Toeplitzation,” which is also known as redundancy averaging [10],
AYE(®)R.E"(©) +0.C) = 0. (4.2) operates a linear transform d®.(n) thanks to the “Toeplitzation”

. . . rojection matrixA,, (Vec(RY(n)) = AwVec(R.(n))), Theorem

Under appropriate hypotheses on the array manifold, requwement% ?Js extending to)t!%to((n)o(with( t?w)e asyrtnptoti(c cg)vzi)r?ance matrix

and 2a are met by most of the second-order DOA estimators. Requ%ﬁa A.Cn A v By the regularity condition (4.1) of Section
= tolU R, Ato. .

ments 1 and 2b are mgt by the second-order DOA f_est|mators that SNﬁi the estimated DOA's are asymptotically normal with asymptotic
pose the sources spatially uncorrelated. The following lemma (proved

under conditions 1 and 2a in [5]) is used in next section to prove gfgvanance:

invariance of the asymptotic distribution of the DOA's with respect to CS =Dy AiCr, Aw(Dg®p )" 4.7)

the distribution and the temporal correlation of the sources. In contrast to the classical covariance-based DOA algorithms, we show
Lemma 1: Under _condltl_olgs 1 and 2a [resp. conditions 1 and Zbﬂn the following that the Toeplitzed covariance-based DOA algorithms
one has the constraints @, are sensitive to the spectral shape of the spectrum of the sources. More
Dggu‘(E(g) 0. E(®) =0 precisely, the following properties are provid.
e N _ 1) The Toeplitzation is not sensitive to the distribution of the
[resp..Do" g, (e(Ok) ©c e(O1)) =0 ARMA sources if the sources are not only spatially uncorrelated
k=1,---, K]. (4.3) but are independent.
Proof. If the sources are independent, the only nonzero
terms of the fourth-order cumulant matr@, are the terms

B. Standard Algorithms def +1/2 (41/2
. y ) _ [Qulk o=tk Kh—y+x = & = [2150 J7175 Pk k(s
By the regularity condition (4.1), the asymptotic behavior®dgf.) f'. —f#)df df', and the fourth-order cumulant term of (3.3)

andR. (n) are directly related. The standard result on regular functions  p5ils down to Zfﬁ celens (Bn) o enn(00))(e (8) ©.

of asymptotically normal statistics (see, e.g., [6, p. 122]) applies: el (6,)), whereer (6 ) déi(l‘ 0% (Hi0k L. M=1)i0)T
Jn(®(n) — @) iN(Q Co) (4.4) T_he DOA algori_thms al(_;) appl_iec_zl toR;"(v_z)_ define the map-
ping alg°(-). This mapping satisfies condition 2b of Lemma 1.
with Thus, the second constraint mfalg,{l of Lemma 1 establishes
. T the result. [ |
Ce = lim nE((O(n) - ©)(O(n) - ©)") 2) Inthe single source case, the Toeplitzation is not sensitive to the
=Dy, Cr, (D52 ). (4.5) temporal correlation of the sources. .
N _ o Proof: In this case, condition 2a of Lemmal reduces to %ondl-
We can now state our main result. tion 2b. The expressions opggRI AChr, Atng%RI

Theorem 2: For Gaussian or non-Gaussian, ARMA, or harmonic coincide for the ARMA and harmonic sources with
source signals, the asymptotic covariance of any covariance-based DggR A(oZen(0)eli(8) @o oIy + oy ©

e

DOA estimators that do not require the sources spatially uncorrelated Ufejw(% )eli(81) 4+ ail2) A (D35 ). =
have the common closed-form expression when the neisés 3) Inthe case of several sources, the Toeplitzation is sensitive to the
temporally uncorrelated temporal correlation of the sources.
5 s
Co :D“@lg,{,(E(®)RuEH(®) 9e02C Proof. Becau_se ev(fr)ens(6:), k # 1 does not
o g 1 have a Toeplitz structure, and the column space of
+0.C0. E(@)R.E"(O©) A (E(®) @. E(®)) does not belong to the column space of
+0,C2.C+Q,)(Dgp ). (4.6) E(®) ®. E(®). Condition 2a of Lemma 1 is generally not

2A similar approach based on the implicit function theorem was introduced3The following properties are proved for ULA; the proofs can be extended to
by Xu and Kaveh [9]. URA along the same lines.
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satisfied. Therefore, the associated terms in (4.7) do not vani:
contrary to the single source case. Therefore, the extra term

+1/2 10
Ao | Y ( / Suk<f>sul<f>df>
1<izk<K \7/~1/2

107k

et (Bx)ehr (0x) D ens(01)ehr (01) | Avo (4.8) g

107k
that appears for ARMA sources does not vanistCi§. We
note that the performance of the ARMA sources case and t
harmonic source case coincides when the spectrums of 1 "¢
ARMA sources tend to be disjoint. At low SNK;, can be
approximated by I, and the Toeplitzation becomes insensitive o : : : ; ; : :
to the temporal correlation of the sources. Furthermore, tt - s ° S nmm 2 28 so
closed-form expressions given for two closely spaced sources

at low SNR in ([11, rel. 9.118 and 9.119]) and in [12] remain&ig. 1. Theoretical and estimated MSE 6f(n) versus the SNR for,
valid for colored sources. At high SNR, the term (4.8) becomégspectively, whitgo), colored (+), and harmonigx) signals for a 10-ULA
dominant inCr.,, and the Toeplitzation becomes very sens@ray.:n = 100 after Toeplitzation (—) and without Toeplitzation (- - -).

tive to the temporal correlation of the sources, which will be
confirmed in Section V. [ | 107

3

D. Augmention Techniques

The linear or planar sparse arrays attract considerable attentior
they lead to significantly improved performance [13] for spatially un 4| ...
correlated and white sourcé3o show that these techniques are ser
sitive to the temporal correlation of the sources, we consider only tly
standard method utilizing the direct augmentation approach [15]. =
fix notations, consider a planar grid (a half wavelengh of the incidel
radiation equispaced). L&tbe the array characteristic function

Lz, y) = {

Let A(dw, dy) be the autocorrelation function of the array characte : : :
istic functionT [A(dz, dy) represents the number of times the lac 0 o1 oz os o ) 5 o7 o8 o5
(dx, dy) is present in the sparse arraf]. (n) and R:"(n) denote

the spatial covariance matrices associated with the fictitibfisx  Fig.2. Theoretical MSE df,(n) versus the sources bandwidth fora 10-ULA
M3-URA and theM; x M. augmented array, respectivElJhen, array, SNR=20 dB after Toeplitzation.

the direct augmentation approach [15] operates a linear transform on

R.(n)8 thanks to the augmentation operald¢ M3 x Mi> M. ma-
trix Aau: (Vec(RY"(n)) = AauVed(R:(n))).7

[Aau]

107k ..

1, ifasensoris in positiofz, y) o
0, elsewhere. ‘ ‘ monlcs[gnal e

0. 0.5 0.
Sources bandwidih

(hfl)fwfsz+(]’71)]L11A’V12+(971)A’Wl+i,

(F= V)M’ ML+(1—1) M| My+(e—1) M| +k
T(k—1,e—1T(I -1, f—1) if{l—k:j—i

= Al—Fk, f—e) ’

0, elsewhere.

f-e=h-y

(4.9)

Theorem 1 extends t&:"(n) with the asymptotic covariance matrix
Cy, = A..Cr, AL, . By the regularity condition (4.1) of Section

4An improvement of the performance of DOA algorithms when the source
are spatially correlated was proposed by using the redundancy averaging t g :
niques. Under these conditions, these techniques lead to asymptotical incor 197 s o pre g e 20
tent and biased estimates [14]. Number of sensors

SMy = M/ andM, = M for restricted redundancy and, < A4 and
M, < MY for unrestricted redundancy [13].

8We note that this linear transform is defined only for analysis purpose
R_.(n) is not observed.

7In the case of linear arrays,= f = ¢ = h = 1, and (4.9) reads
[Aau](j—)Mpi, (1= 1) M7 +k IV-A, the estimated DOA's are asymptotically normal with asymptotic
{ Dk—1I(1-1) covariance

Fig. 3. Theoretical and estimated MSEAf ) versus the number of sensors
of an ULA array, SNR=20 dB; = 100 for white (o), colored (+) and harmonic
f%) signals after Toeplitzation.

= F) ifl—k=yj—1
0, elsewhere.

C8 = Dyp AuCr, AL (D p ). (4.10)
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MSE

-10 -5 0 5 10 15 20 2 30 -10 -5 0 5 10 15 20 25 30
SNR(dB) SNR(dB)

Fig. 4. Theoretical and estimated MSEtf(n) and¢, (n) versus the SNR for, respectively, white (either Gaussian or disqretedolored (+), and harmonic
(*) signals for a 12-Greene and Wood array= 100 after standard augmentation technique (—) and without augmentation (- - -).

We note that Lemma 1 does not apply to this situation because the to the temporal correlation of the sources (the bandwidth is fixed to

mapping al§" (-) is not defined o2, () buton some terms d&®.(n) 0.5 for ARMA signals). These MSE’s are decreasing with the number

only. Consequently, the insensitivity of the augmentation techniqueksensors except for the case of overlapping spectrums where the “sat-

to the distribution and the temporal correlation of the sources is rigiation” phenomena can lead to a degradation of the MSE.

assured. The second experiment presents the case of two sources with the

same temporal parameters (for white source signals, the distribution is

either Gaussian or discrefe-1, +1}) as in the first experiment but

are impinging on a 12—Greene and Wood array [16] utilizing the direct
We consider throughout this section two sources of equal powgligmentation approach [15]. Fig. 4 plots the theoretical MSE and the

(07 )x=1,2. The SNRis defined as theratiori+03)/o;). The DOA's  estimated MSE of the anglés and¢;. as a function of the SNR. The

are estimated by the standard MUSIC algorithm, and the numberihavior of these MSE’s is similar to those of the MSE’s obtained for
Monte Carlo runs is 500. These sources are issued from the DO#@ ULA Toeplitzation situation.

fr = msin @} with 87 = 30°, 85 = 20° for the ULA and from the
DOA’s 8, = msin 6}, sin @}, ¢ = wcos 0} sin ¢}, with 87 = 30°
#, = 20° and¢} = 10° ¢, = 40° for the URA.

The first experiment presents the case of two sources that are bot this correspondence, we have presented an asymptotic perfor-
spatially uncorrelated, white Gaussian, ARMA Gaussian [generatedignce analysis of DOA finding algorithms using the stochastic model
a (10,10) Butterworth filter driven by a white Gaussian noise], or hagssumption in which both source and noise signals are possibly non-
monic. The centered frequencies of the ARMA and the frequencies@hussian and possibly temporally correlated. We have shown that the
the harmonics are-0.25 and 0.25. Fig. 1 plots the theoretical MSEasymptotic statistical performance of the second-order DOA finding
of 6% (1/n)[Celk, . and the estimated MSE||6x(n) — 617, @ @ algorithms generally depend on the temporal correlation of the source
function of the SNR for an 10-ULA (the bandwidth is fixed to 0.5 forng noise signals, but when the noise is supposed temporally uncor-
ARMA signals) after Toeplitzation. We observe that these estimateglate, it is proved that the covariance-based DOA estimators that do
MSE's are in good agreement with the theoretical MSE's but are vegy; require the sources to be spatially uncorrelated are insensitive to the
sensitive to the temporal correlation of the sources. Fig. 2 plots tRyinytion and the temporal correlation of the source signals, unlike

theoretical MSE ofy (1/n)[Celk, « for the ARMA Gaussian spa- v, Toeplitzation and the augmentation techniques that are very sensi-
tially uncorrelated sources as a function of the sources bandwidth

a 10-ULA. We observe that these theoretical MSE'’s increase with this™"
bandwidth and begin increasing from the bandwidth 0.45, which is
associated with the overlapping of the spectrum of the two sources. REFERENCES
These MSE's increase from the value associated with two harmonic[1] B. Ottersten and Ljung, “Asymptotic results for sensor array pro-
sources to the value associated with two white sources. The “satu- cGelssmg," Siroi)l IEIiI;SIgt. Coznzf.6 écgggg, Speech, Signal Progess.

A" ; ; asgow, U.K., Mar. » PP. — .
raf'tltcl,)]n tf/)vhenomena Observted n I[lO].dlsa’E)lpfarti Vmﬁn the spectrunEZ] P. Stoica and A. Nehorai, “MUSIC, Maximum likelihood, and
0 Q 0 sources are no ,Over appmg. OQ a, _e common ex- Cramer—Rao boundJEEE Trans. Acoust., Speech, Signal Processing
pression of the MSE’s obtained without Toeplitzation is close to the vol. 37, pp. 720-741, May 1989.
MSE's obtained after Toeplitzation for nonoverlapping spectra. Fig. 3 [3] ——, “Performance study of conditional and unconditional direction-of-
plots the theoretical MSE @, (1/n)[Co]x, x and the estimated MSE grsrlvr?rl)eit7|r8n;t|](->7néI5E%E:’riggbAcoust., Speech, Signal Processial

2 H , . —. f . .

El|6x (")__ Ox[r as afunction of the numbgr of sensors, for an. ULA 0[4] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of subspace fitting
for SNR=20 QB. We Obser\{e that these estimated MSE’s are in 9000~ and ML techniques for parameter estimation from sensor array data,”
agreement with the theoretical MSE, but these MSE's are very sensi-  IEEE Trans. Signal Processingol. 40, pp. 590-599, Mar. 1992.

V. SIMULATIONS

VI. CONCLUSION



2674 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 9, SEPTEMBER 2000

[5] J.F. Cardoso and E. Moulines, “A robustness property of DOA estimthe channel responses are estimated based on the channel outputs
t302r§5b<’§26§170f’1180V?38266EEE Trans. Signal Processingol. 42, pp.  without using training sequences. Most of the earlier approaches to
—. , Nov. . . . e . . ..
[6] R. J. Serfing, Approximation Theorems of Mathematical Statis_bllr_ld identification are based on the use of higher order statistics,
tics. New York: Wiley, 1980. which are known to suffer from many drawbacks. They usually
[7] J. F. Cardoso and E. Moulines, “Asymptotic performance analysis egquire a large number of data samples and a heavy computational

direction-finding algorithms based on fourth-order cumulantSEE ; : ; ot
Trans. Signal Processingol. 43, pp. 214224, Jan. 1995, burden, making them unattractive for practical applications. A recent

(8] P. J. Brockwell and R. A. DavisTime Series, Theory and Methods M&jor progress is made by Toegal. [3] in which they explored the
Second ed. New York: Springer Verlag, 1991. cyclostationary properties of an oversampled communications signal

[9] W. Xu and M. Kaveh, “The optimum weight of angle-dependenand proposed an approach for estimating the channel responses based
ggggltegygusclgm%ﬁ\lg\i ?gg?xma“ons’ froc. Asilomar Conf. ) the second-order statistics of the channel outputs. Since then, many

[10] A. Gorokhov, Y. Abramovich, and J. F. Bohme, “Unified analysis of€chniques have been developed including the eigenstructure-based
DOA estimation algorithms for covariance matrix transforniignal methods [4], [5] and the least squares (LS) method [6]. The LS method

Process,vol. 55, pp. 107-115, 1996. as the advantage of not requiring the explicit statistical knowledge of
[11] P. Forster and E. Villier, “Performances asymptotiques des méthodes 9 q 9 P 9

HR,” in Les Méthodes A Hautes Résolutid Marcos. Ed. Paris, 1€ channel input. This is important for many practical applications
France: Hermes, 1998. where such information is not available. The LS method uses a cross
[12] —, “Simplified formulas for performance analysis of MUSIC andrelationship between each pair of sensor outputs to estimate the

Min Norm,” in Proc. Ocean Conf.Sept. 1998. ;
[13] S. Haykin_ J. P. Reilly, V. Kezys, and E. Vertatschitsch, “Some aspecritsugmented channel responses, i.e., the channel responses formed by

of array signal processingProc. Inst. Elect. Eng. Fvol. 139, no. 1, pp. @Ppending one channel response vector to another. In applications
1-26, Feb. 1992. where the channel orders are is relatively small, the computation cost
[14] FEECE 'T”d“k“g‘.ar a?gv. U. Reddlyh"oA ”Otigg rfggngagci’gzvzeragmgéf the LS method may be affordable. However, for applications such
[15] S. U. Fr,ﬁlr';i' ar']%ni_ I-:glcjiiswsgtgt'istiéaﬁpénalysis of ae High resolutiofS SPeech dereverberation and echo cancellation, where each channel
spatial spectrum estimator utilizing an augmented covariance matrixftay have an order at the level of several hundreds, the computational
IEEE Trans. Acoust., Speech, Signal Processimg. ASSP-35, pp. burden of the LS method may increase significantly due to the
[16] ésg_é?(ezegnglgxdllgsé Wood, “Sparse array performarcéytoust. in_c_reased dimenSion of the augmented channel responses, making it
Soc. Amer.vol. 63, pp. 1866-1872, 1978. difficult for real-time implementations.

In this correspondence, an efficient blind identification algorithm for
multichannel FIR systems is proposed based on a deterministic mod-
eling for the channel inputs. The approach uses a relationship between
a pair of channel outputs in theplane. In thez domain, uniformly

distributed sampling points on the unit circle are used to interpolate the
Blind Identification of Multichannel FIR Systems Based  z-transforms of the channelimpulse responses. In the time domain, we

on Linear Prediction show that each channel response vector forms a linear prediction re-
lationship among the data sequence obtained from the inverse Fourier
Yifeng Zhou, Henry Leung, and Patrick Yip transforms of a ratio function between thdransforms of the pair of

channel outputs at interpolation points on thplane. The channel re-
sponses are then estimated by solving a set of linear prediction equa-
Abstract—in this correspondence, a blind identification algorithm for  tions. The proposed algorithm decouples the estimation of each channel
multichannel F_IR systemsis proposed. In the approach, the |_dent|f|cat|on of impulse responses. Unlike the LS method, which requires a solution
egch chann_el is decoupled, and channel responses are estimated separatel¥ . ' . .
without having to solve for the augmented channel responses. The algo- 1O @n augmented channel impulse response vector of an increased di-
rithm can be implemented using linear prediction techniques. Itis compu- mension, the proposed algorithm estimates each individual channel re-
tationally efficient and suitable for real-time applications. Computer simu-  sponses separately. The decoupling of the estimation process can re-
lations are used to demonstrate the effectiveness of the proposed algorithm. e the computational complexity of the algorithm. In addition, since
Index Terms—Communication channels, FIR digital filter, identification,  the proposed algorithm is a linear prediction process, many existing
least squares method, parameter estimationZ transforms. fast algorithms can be applied, making it practical for real-time appli-
cations. This correspondence is organized as follows. In Section I, we
formulate the multiple FIR channel data model. Section Il is devoted
to the development of the new blind channel identification algorithm.
The problem of blind channel identification has been extensively Section 1V, we discuss the implementations and computational com-
studied by researchers since the pioneering work by Sato [1]. It hslexity of the algorithm. Finally, in Section V, computer simulations are
received considerable attention in communications and signal piged to demonstrate the effectiveness of the proposed algorithm.
cessing society [2]. Blind identification refers to the process in which
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