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Asymptotic Normality of Sample Covariance Matrix for respectively in the real and the possibly noncirculaomplex case.
Mixed Spectra Time Series: Application to Sinusoidal (ax)k=1,..,x and(by)4=o,.. ¢ are unknown fixed real or complex

Frequencies Estimation numbers, respectively. is an unknown fixed number anfi are un-
known fixed distinct real numbers Jfi, 1/2[ for real-valued processes
Jean-Pierre Delmaslember, IEEE [resp.,in]—1/2, +1/2 [for complex-valued processes]. For the phases

o1, the model (1.1) can be interpreted in two different ways, leading to

) ) _different statistical descriptions.
Abstract—This correspondence addresses the asymptotic normal dis-

tribution of the sample mean and the sample covariance matrix of mixed 1) We can assume that, are random variables uniformly dis-
spectra time series containing a sum of sinusoids and a moving average tributed on[0, 27] and that(¢x )s—1. ... x andu, are mutually

(MA) process. Two central limit (CL) theorems are proved. As an appli- ind dent. In thi . ide- _stati
cation of this result, the asymptotic normal distribution of any sinusoidal Independent. In this case IS a wide-sense-stationary process.

frequencies estimator of such time series based on second-order statistics 2) We can assume that, are nonrandom unknown paramegers
is deduced. and sar; is not a wide-sense-stationary process.

Index Terms—Central limit (CL) theorem, covariance-based sinusoidal . . T
frequencies estimation, mixed spectra time series, sample covariance ma- W€ are interested in the asymptotic distribution of the sample mean

: def . .
trix. m, =1 %" r;and of the sample covariance matrix
T
def 1 T
. INTRODUCTION R, =1 ) (w0 —my) (@ —m,)
t=1

There is gonsiQergblg literature (e.g., [1]—-[4]) concerning the asyMB- e real case [resp.,
totic Gaussian distribution of the sample mean and the sample covari-
ance matrix of the real-valued stationary processesSeveral situ- def 4 i H
ations have been considered, among them wheis a generalized R=5 > (@ —ma) (@ —ma)
linear process, satisfies mixing conditions, or is Gaussian with a power =t
spectral density. However, few contributions have been devoted to tAdhe complex case], where
asymptotic distributions of the sample covariance matrix associated def 7
with mixed spectra time series. Subsequent to the revision of this man- B= (T Xty Bimpt)
uscript, [5] was brought to our attention, where this problem is tacklédnd

with quite advanced statistical tools such as martingale theory. m, = (ma, ... oma)?.
We will be concerned with real- or complex-vald@docesses of the ) ) )
type The asymptotic normality of the sample mean and sample covari-

ance matrix®,, is proved in Section Il. As an application of this result,

the asymptotic normal distribution of any sinusoidal frequencies esti-

we=m+ Y arcos(2mfit + or) + vl mator of such time series, based on second-order statistics, is derived
k=1 in Section Il

K

K
or x=1m-+ Z akew’“eizrf’“t 4+ v (1.2)
k=1
with For the convenience of the reader, the definition of the complex
Gaussian distribution is recalled. A complex randprnx 1 vectory
Q has a zero-mean complex Gaussian distribution specifiedjby @
e = Z bgtte—q. (t1.2) positive-definite matriXZ; and ap x p symmetric matrixX, and de-
7=0 noted\'(0; X;, X.)4 if the 2p-joint distribution of the real and imag-
Throughout this correspondencéy; )= ... is a sequence of inary part ofy is Qp-zero-meanhrreal Gau;sia}p, i.e., if for any complex
zero-mean independent and identically distributed (i.i.d.) randofn< 1 Vectorw, the real scalaw ™y + (w™'y)" has a zero-mean real

Il. CENTRAL LIMIT THEOREMS

variables wher&|u!| < oo, with Gaussian distribution with variance
of of 20"'S A%w" +w' S} 2.1
C,L'i:fE('u?), ;{‘“d:fCum(u,g, Uty Up, Ut) whIw W ow w Zow (1)
and whereE(yy?) = £, andE(yy?) = .
. dﬁfE|’uQ| o @Ewg) Considering the sample mean, the following theorem is proved in
L the Appendix.

def * *
Ky = Cum(ue, uy, we, ug) . T
! ( Theorem 1:\/n(m, — m) converges in distribution to the

zero-mean real [resp., complex] Gaussian distribution of variapce
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Furthermore, vec-permutation matrix which transforriiec (A4) to Vec (A”) forany

) , ) square matrix4.
lim E(m,)=m and lim nVar(m,)=cn (2.3)

n— 00 n—oo

2

) def
wherec,, andc,, are defined as So(f)=cu

Q
2 b
q=0

Q .
S e

q—0

Q 2
and ¢, =¢, (Z bq> ) (2.4) i.e., the spectral density et and
q=0

Q Q
(Z bqﬁi‘zﬁrfq) (Z bq6+i27rfq> .
Then, considering the sample covariance matrixRifdenotes, q=0 a=0

respectivelyE[(x: — m)(z: —m)"] andE[(z; — m)(z: — m)"'] B genotes the x (p + Q) filtering matrix
in the real and the complex case of the first statistical model with

2

Cm = Cy

def

S (HZN ]

m™ (m, ..., m)T, the following theorem is proved in the Appendix. bo b g
Theorem 2: \/n (Vec(R..) — Vec(R))5 converges in distribution
to the zero-mean real [resp., complex] Gaussian distribution of covari- bo b --r bo

anceC.R [resp.,.C'R, CrK] in the real case [resp., in the complex Remark 1: In (2.6), Cov (Vec(R,.)) denotes
case], irrespective of the phase model.

o ) i E(Vec(R, — R)Vec (R, — R)).
vn (Vec(R,,) — Vec(R)) =N (0, Cr) [resp, N(0, Cr, CrK)].

We note that

(2.5)
Taed — Vet _ -
Furthermore, Vec' (R, — R) = Vec” (R, — R)K (2.9)
lim E(R,)=R and lim nCov(Vec(R.))=Cr (2.6) S0

E(Vec(R,—R)Vec' (R,—R))=E(Vec(R,—R)Vec" (R,—R))K.
whereC'r; is defined respectively in the real and the complex cases as ] ) o
Therefore, the noncircular complex Gaussian asymptotic distribution
C,R:/“/2 $2(f) of R, is characterized b only.
—1/2 Remark 2: We note that expression (2.7) 6f: obtained in the real
. [e(f)eH(f)@;:wce('f‘)eH(f)+e('f‘)eT(f‘) me(f)eT(f)] df case cannot be deduced from expression (2.8) in the complex case as

suggested by the Euler relation applied to relation (1.1)

+#,Vee(BB" )Vec” (BBT) ag cos(2mfit + dy) = Gk pivkgizmint 4 Ok —iop  —i2m iyt
) ' 2 2
K
1 2 - . 1 < . .
+5 D axSu(fr) [e(fk)eH(fk)Q@Ce(fk)eH(fk) In fact, if ',(f), B, anddile(fi)e™ (fr) @ e(fr)e" (f1)] are,
. . . T
k=1 respectively, replaced with, (f), B*, and

NN N .\ I . R
el (FBce(— e () (%) fete’ (£1) e e(fe” (1]

>

ar Su(fr) [C(fk)eH(—fk)@ne(fk)eH(—fk) + (%)2 le(—fr)e™ (—fr) @ e(—fr)e (= f2)]

1

N =
Eod
Il

o o an extra cross-term appears in (2.7). This surprising property is ap-
te(—fr)e” (fr)@ce(—fr)e (fk)] parently contradictory, given the result that the asymptotic distribution
(2.7) of the sample covariance matrix does not depend on the phase model.
12 In fact, the explanation comes from certain expressions proved in the
an/ S2(f) [e(f)eH(f)tZCe(f)eH(f)] df complex case in the Appendix (see footnote 10) being valid only if no
frequencies are opposite. The fact thatand— ¢, associated witlfy,
+1/2 and— fi, are not independent is irrelevant.

+/ S5 [e(he” (Hoce(pel ()] df

—1/2 Remark 3: We note that for a “very narrow band” (i.e., the band-
K width is very small with respect to the sampling frequency) moving av-
+23 " aiSu(fi)le(fr)e” (fe)@ee(fr)e’ (fi)] erage (MA) processes, (2.7) and (2.8) are unbounded. For example,
k=1 whenv, tends to be white ififo — b, fo +b] with finite fixed powerc,,
+ 5y Vec(BBH ) Vec” (BBY) (2.8) (2.7) and (2.8) are not bounded withbecause.( f) tends toc, /2b
for |f — fo| < b and0 elsewhere, which implies thétr contains the

termsfj//f S2(f) df which tends toc .

—1/2

with

e(HHE(L, ™, L P Since the matrixR is Toeplitz, the “accuracy” of its sample

] covariance estimat®,,, which is non-Toeplitz, should be improved

where®. denotes the complex Kronecker produtt. B, i.e., the py replacing it by its “Toeplitzed” estimate. This “Toeplitzation,”
block matrix, the(i, j) block element of which i ;A° andK isthe 4150 known as redundancy averaging in statistical signal and array

5Vec (.) is the “vectorization” operator that turns a matrix into a vector conp,roceSSIng appllcathns [9]', IS Czrrlled out by avera%]mg a.long“the
sisting of the columns of the matrix stacked one below another. dla_gona|5~ The r_eSU“mg eS_tlmamz Is refgrred as Fhe _Toeplltzed

6This slightly unusual convention makes it easier to deal with complex m@stimated covariance matrix. Because this “Toeplitzation” operates a
trices. linear transform orRR,,, Theorem 2 extends as follows.
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Corollary 1: Vec(R,) and Vec(R)®) have the same asymptoticrecognizing that the whole process of constructing an estighatef

Gaussian distribution. It is characterized by the asymptotic distributigﬁéf(fh ..., )7 is equivalent to defining a functional relationship
of the first columnr,, of R,.. In the real case [resp., in the compleXinking this estimatef, to the statisticsR,, from which it is inferred.
case], we have This functional dependence is denotgg = alg(R,,). Clearly, f =
i ; _ H H 7
Vi (e = 1) SN0, C) [resp, A(0; Cr, €LY, (2.10) V(B with B = E(f)AEZ(f) + . BB7,7 where
Furthermore, E(f)= (e(fr), ..., e(fx))
lim E(r,)=r and lim nE[(r,—7)(r,—r)"]=C, (2.11) and

Adé[Diag(nf, e, A%
resp, lim nE[(r, —r)(r, — )] =C.
e . T , So the different algorithmslg (.) constitute distinct extensions of the
nlgnoo nEl(rn —r)(rn =) =] (212) mappingR»ﬂgf generated by any unstructured Hermitian maf®ix.

whereC, [resp.,C,, C'.] is defined in the real [resp., complex] casdh the following, we cqnsider “r_e_gular” algorithms. More specifically,
we assume the following conditions.

as
+1/2 9 Cou o 1) The functiomlg (.) is differentiable in a neighborhood &, i.e.,
Cr= e So(f) [e(f)e (f)+e(f)e (f,)] df if D7'%, denotes thék” x p> matrix of this differential evaluated
B e at pointR
+H,‘Bbb’TBT+_1 Z a3 So(fr) o ,
2 alg(R+ 6R) = f + D}, Vec(SR) + o(5R). (3.1)
[etre” (r+e=fire (= £1) N .
" . 2) For anyf, any positive-definite diagonal matrix and anyc,,
+e(fi)e (—fu)+e(=fe” ()] (213)
12 ) alg (E(HAE" (f) + . BB" ) = f. (3.2)
c=[ [spetne(nesiene (] a
—1/2
K These two requirements are met for example by the high-resolution
+x,Bbb B 42 Z ap So(fr)e(fr)e (Fi) (2.14) second-order frequency estimators such as MUSIC, weighted MUSIC,
k=1 Min-Norm, TAM, and ESPRIT, which all assume thatis white. With

| o S (3.1) and (3.2), the following result is proved in the Appendix.
c. :/ [Sv(f)e(f)e (F)+5%(fe(fe (f)] daf

—1/2 Theorem 3: /n(f,, — f) converges in distribution to the zero-mean
K Gaussian distribution of the covarian€®s, which is invariant with
+r, By BT 12 Z aiSU(fk)e(fk)eT(fk) (2.15) respect to the distribution of the noise innovation

k=1
L oyr
with b is the(p + Q) x 1 vector(bo, ..., bo. 0, ..., 0)7. Vilf, — £)=N (0. Cy) 3.3)

Remark 3: In the complex case, we note that contrarylde (see with

Remark 1), the asymptotic distribution of is not characterized by

C. only. C. — /2 D= [g2 Hy oy o H
Relation (2.11) reads componentwise With= (r¢, ..., 72~ )7 I /,1/2 IR [ v()(elNe(f) e e(flen ()

e + SN (D ceetne ()] (D3%) 0. 3.4)
Tid_e[{bobi 4ot booibg, for0<i<Q 1) e ~ rnr) WS
b— .
0, f i<p-1 _ _ _ N
orQ<isy So, although the asymptotic covariancéVet: (R, ) is very sensitive

lim nCov(r, ri) to the distribution of:¢, ® the asymptotic performance of most covari

n—oo ance-based sinusoidal frequency estimators is invariant with respect to
+1/2 the distribution of the noise innovation. However, this asymptotic co-
22/ S2(f) cos(2mif) cos(2mj f) df varianceC'; stays unbounded for narrow-band noise of fixed power
—1/2 because of the terryﬁ'fl‘//; S2(f)df in (3.4). We note that Theorem

Koo o 3 extends a result given in [13], where explicit expressions for the co-
+2 % ap SI(fi) cos(2mifi) cos(2mj fi)+ruriry, i, j20.  variance of the estimation errors associated with MUSIC and ESPRIT
k=1 methods are derived for complex circular Gaussian white noise.

This extends the property given by [10] and by [3, Theorem 9.4] whereIn the special case, where the spectral densityf) is known up

vy IS, respectively, a sequence of i.i.d. zero-mean random variables V\{ith S L ; .
7 - ) L 0 a multiplicative constant, the whitening of the noise used classically
E(vy) < oo or a sequence of i.i.d. Gaussian distributed zero-me

. M direction of arrival (DOA) estimation (see, e.g., [14]) can be used to
random variables.

"We consider the complex case only, extension to the real case is straightfor-

[1l. APPLICATION TO ESTIMATION OF SINUSOIDAL FREQUENCIES ward.

. . 8Expressions ofD‘}ls’H are ordinarily deduced from perturbation calculus
Theorem 2 allows us to derive the asymptotic performance of mqste, e.g., [11] for the standard MUSIC algorithm).

covariance-based sinusoidal frequencies estimation algorithms. Witk (,,Cov (Vec (R,,)) is unbounded for the super-Gaussian case under the
this aim, we adopt a functional analysis approach which consistsdonstraint of fixed power becauseof in (2.7) and (2.8).
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advantage. In this approach, aftetis whitened by a linear transforma- variance:y, = yo+2 Zle vg andlin, o nVar(L 37 yi) = ¢y
tion applied taz;, any covariance-based DOA methods based on a calith
ibrated array of generic steering vector in white noise (such as MUSIC,

weighted MUSIC, Min-Norm,...) can be used. In these circumstances, Q 2 v Q ? ) s Q 2
it makes sense to study the influence of the spectruny afnd the ¢y = 2|w . qu tw ey Z by | +wey Z by
selected linear transformation on the performance of this sinusoidal a=0 a=0 q=0

frequency estimator. Considering our functional analysis, Theorem 3
answers this question. The processs whitened using the Cholesky 1he theorem follows thanks to (2.1). U
decompositio.” L of (BB™)~* (see, e.g., [15, relation 1.7.19]) and
any unitary matrixQ B. Proof of Theorem 2

Because% > i, v converges in probability t® (see, e.g., [2,
(BBU)—1 AL with L’défQL Proposition 6.3.10]);m,, converges in probability ton. Using a
classical result (e.g., deduced from [2, Propositions 6.3.4 and 6.3.7]),
we can deduce that studying the asymptotic distributioRef boils
downs to studying the asymptotic distribution of

R = LE(H)A (L'E(H)" + el » Z B
’né% (z; — m)(z: —m)

and the covariance matrix af becomes

If alg(.) denotes an algorithm based on generic steering vector and =1
white noise assumption, the sinusoidal frequencies are estimated
through the following scheme: Then, usingVec(ab™) = @ ©. b, Vec(R,, — R) is decomposed as

R.— RELR.LTSf, = RYF, (R — B = LS (5 = g
Vee(R, ~ R) = — g< +=1z)

Applying the chain differential ruIe Theorem 3 applies in this S|tuat|0{;\|,I h

by replacing in (3 4),Da1° by D'y = D%, (L' ©. L'), because

! &) ! .
Vt‘((Rn) (L e L )\eL(R ) ZldIOfCt De Vi + V¢ Qe € + V¢ D Ve — \'TCC(RU)

and
APPENDIX et e i . ,
PROOF OF THEOREMS =) agage PR ETIRTID e (1) @ el fir)
. . 1<k#£k/ <K
The complex case is considered only as the same approach may be
used for the real case. where
A. Proof of Theorem 1 o & r iont
lel 1oy 127 fit .
. . Ct = 1€ > é A
First of all, /n(m, — m) is decomposed as t IZ ke "e (fe)
—1
K n 1 v = (Ve Vi—1 y Ut—ptt)
_ 27 frt
nim,;, —m)= (1k6 — € — v
\/_( ! ) I; \/_ Z \/ﬁ t=1 ; and def 5
(A1) R, =E(vv,).
Because
Because
n .
— sin 7 fi
sin(mn(fr —

lle(fx) @ e(fur)l

is bounded, the first term of (A1) converges almost surely tehen < n Z Ak dp!

sin(m(fi — f )

n — oo whatever the phase model. Thus, we can consider the term |ShARISK
v, only, in the study of the convergence in distribution of ,
\/\/__(%Ef = 7:1 Let nl S | 27 converges almost surely @whenn — oc. Thus, we

can consider the terrﬁk@ >-i_, =i alone, in the study of the conver-
v L v 4 wor. gence in distribution of/nVec(R,, — R). To prove the convergence
in distribution of /n L " 2/ to a zero-mean noncircular complex
y: is a real stationary)-dependent sequence of random variables witGaussian dlstrlbutlon we consider the associated scalar real random

mean zero and correlatiop. with variabley, = w'! 2} t+(wf 25" (see definition in Section I1). The con-
ditional distribution of(y:)¢=1, ..., » given the phaseSii)r=1,...,x IS
Q a zero-mean real distribution df-dependent (with = p + Q) but
Ve = Z Culw]? (D g gbgFrtgbl)Fchw 2 biy byt nw’biy b5 not strictly stationary random variables becaysere not identically
q=0 distributed. As such, the conditions of [2, Theorem 6.4.2] are no longer

fully satisfied.
The conditions of [2, Theorem 6.4.2] are fulfilled. Thl;\l% S w To prove Theorem 2, we continue to make use of [2, Theorem 6.4.2]
converges in distribution to the zero-mean real Gaussian distributiontgf some modifications of its proof. Following this proof, we must con-
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sider first, the limit ofVar(L 37| y:/¢) whenn — oo. Thanks
to (2.9), this expression may be written as

2w’ 1 Z E(zlle/(,b) wtw'’ 1 Z E(zlle/(/)) Kw™
' n

2
1<s,t<n 1<s,t<n

1 H,,
+w’ - Z E(zizi 7 /)| Kw (A2)
1<s,t<n
where
1
= 3 E(eiz o) = Ta+ Ty + T
n 1<s,t<n
with
defl — -
T2~ 3 B oce)e oool)/o)

) 1<s,t<n
+ E((es @ v,) (07" @ ef')]9)

> Bl S Doel)/6)

1<s,t<n

def 1

T, 2
n

+ E((es @evs)(er! @evr')/0)

def 1

T.= = Y E((vs @c v, — Veo(Ry)(v: e vy — Vee(R,))".

1<s,t<n
Thanks to the following property of the vec-permutation malfix

(@ @ . b"K =b" @ a” (A3)

E((vs @ e5)(e @evi)]0) + E((es @evs)(v)' @ ef'))6)
= [(BE(w.v}) @ el ) + (eue! @0 B(v.v] ) K
thus the first term o', becomes

r+Q—1

> R

I=—p—Q+1

>

1<k, k' <K

akak,e‘i(ﬁ‘)k-"-d)k/)e—i?"rfk/l

Lo et | o(et (1) | K
n SGSHJ

with B, () E(wvT ) andS,,isthe set{s, 1 < s < n — 1 for
I>00r—1+1<s<nforl<0}. Because®

lim l Z o 27 (Pt fyr)s -0

n—oc |1

SES, 1

the first term ofT", and, therefore, the terffi, tends toO whenn —
oo. As

E((vs ©c €5)(v]' @cel')]d) + E((es @evs)(e] @cv])/0)

= (E(’Usvlhr) Re CSCF) + (CSCF Re E(’US‘UF))

1%except for the specific case where two frequendiesire opposite.

1685
the first term ofT", becomes:
p+Q—1
> R.(Do.
I=—p—Q+1
Z akaklﬁi((pk—rbk/)eﬁrfk/l
1<k, k'<K
1 27(fr,—fur)s
LN e | efet ()
se,‘;n’l
with R, ()= E(v.v"" ). Because
.. 25 (- fi)s
1 — > Sk 4 =
nglic n Z € * 0
SES, ¢
for fr # fi- andl for fi = f.-, the first term ofT’, tends to
. p+Q-1 -
> ( > Rvm) e PTG el fr)e” (fi)
1<k<K (=—p—Q+1
whenn — oc. With
p+Q—1 ) )
( > Rv“’) I = 8, (foel e (f1)
(=—p—Q+1
the termT’,, tends to
2 Y aiS(fule(f)e” (fi) Oce(fr)e (f)] (Ad)
1<k<K
Then, because; = Bu; with utdér(ut, 11471,...,%,,),@“)? the
termT'. becomes
(B @, B)nCov(Vee(R:))(B" @, B") (A5)
with RES LS wul,
[nCov(Vec(R, )] (j—1)(p+@)+i, (1-1) (p+Q)+k
then becomes
1 * *
~ > Bemittti_ a0 g ti—i)
’ 1<s,t<n
—E(us—itrugj1 1) E(ui_pyrwi—i+1).  (A6)

By the definition of Cum(w._iq1, w541, wi_piq, wi—1g1), (AB) IS
decomposed as

E(usfiJrl'U‘l*—k+1)E(U‘sfjJrlU‘r—k-&-l)
+ E(te—ivrti—ip)E(ui_jui_py)
+ Cum(Us— i1, Us— 1y Ui ppts Utmig )

These three terms are, respectively, equal to

{cig

0,

{Ic’ulza
0,
Ko,
0,

Consequently,

fors —t=i—-k=j—-1
elsewhere
fors—t=i—-Il=j—-F
elsewhere
fori=j,k=lands —t=1i—k
elsewhere.

hIIl \[HCOV(\’veC(RZ))](j,l)(p+Q)+i7 1-1)(p+Q)+k

n—oo
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is defined and decomposed as As

{cﬁ, fori—k:j—l_i_{Ic"u,IQ. fori—l=j—k
0. elsewhere 0,

Il 2 0 v [1x ‘
> ;E(yt,k/@) = nVar <; ;%M@)

elsewhere
Fus fori=j k=1
+ 0, elsewhere we get after similar manipulations as previously that
whose associated matrix is . 2,
ZE(yz,k/@) o< 1, whenn — oc.
B ‘+1/2 ) ) t=1
& [ ene ) ceetne (i .
—1/2 Onthe other hand: >/, E(y! ,/¢) can be decomposed as the sum

1/2 , of terms
+ 1 )? / le(£)e (F) @ce(f)e” (H)IK df + kuVec(I)Vec (I).
—1/2

1 a 1 s 1 s
aboea(w) = 3 3 B2 i) (2o )
Then Ca, b, ,d(w)n <1<1‘w ((Zle—vykrt)a® (Zl—yesr);

T =1 AU <k—L

~+1/2
(BmB)[/ ) [6(f)eﬂ(f)<«?>ue(f)eﬂ(f)]df}(B“?JcBH)

1/2
= / (Be(f)e™ (f)B")o0.(Be(f)e™ (f)B™) df.

—1/2

1/2
(BmB)[/ [e(f)eH<f>®ce(f>eH<f>]Kclf}BH@cBH)

—1/2

~+1/2 i
_ / | (Bel e (DB )cc(Bel e (DB df
—1/2
thanks to (A3) with
cuBe(f)e" (f)B" = S.(f)e(f)e" ()
and

|c"u|Be(fe” ()BT = S'u(f)e(fle' ().
And then

#iu (B ©0 B)Vec(I'Vec! (I)(B" ©. BY)

= k. Vec(BB")Vec" (BB")

thanks toVec(ABC) = (A ®, C*)Vec(B). Putting together the

limits of termT', and of terniT..
. 1 1 1H
1 - F /
Jim > (z:2¢ /0)

1<s,t<n

is defined and does not depend on the phagedhanks to (A2) and

(2.1), we get (2.8) irrespective of the phase model.

'(Z%f—1 )A~+I”)ic (Z(lt—1)k+l”f)jd/¢) > (A.8)

for0 < a, b, ¢, d < p*, wherec, s ., 4(w) is an appropriate function
of w and wherdy(, _,,..,);’ denotes théth component of(, ),
which is conjugated for certain indexes. Because an examination of the
term (A8) shows that it has a limit when— ~o,

ZE(*U? k/0) x n, whenn — oc.
t=1

So Lyapounov’s condition (A7) with = 2 is proved. Therefore, the
conditional real scalar random variable

Z Yt, k
t=1
> E(yf /@)
t=1

converges in distribution to the zero-mean, unit variance real Gaussian
distribution wherny — oc.

Finally, incorporating the other elements of the proof of [2, The-
orem 6.4.2]y/nL 3°7_| y; converges in distribution to the zero-mean,
Gaussian distribution of variance

207 Crw + woCrKw* + w ChKw

with C'r given by (2.8). And by application of the Cramer—Wold the-
orem [8, Theorem 29.4], the complex random vegorL 37 z;
converges in distribution to the zero-mean complex noncircular
Gaussian distribution’(0; C'r, CrK). O

Then, following the proof of [2, Theorem 6.4.2], the application of
the classical central limit (CL) theorem (e.qg., [2, Theorem 6.4.1]) to tt@. Proof of Corollary 1

sum

1 s
_Zyt,k
\/E t=1

with y, k,défy(t,l)k+l+- A Yih— 1, wherer & |/ k| andk fixed with
k > L forn — oo is not valid becauséy:, » )¢=1, ..., » are zero-mean

Thanks to the “Toeplitzation” projection matrik,, Vec(R) =
T, Vee(R,). Therefore, Theorem 2 extendsR{> with the asymptotic
covariance matriC'yy = T.,CrT,. Because

e(fr)et (fi) Oce(fo)et (f)
== (e(fk) Re e(fk))(6+(fl) Re e+(fl))v

def

with + =7 or H

independent but not identically distributed random variables. We rgﬁde('fi)me(fi) — Vec(e(fi)eH(fi))With e('fi)eH(fi) is a Toeplitz
place the classical CL theorem by the Lyapunov theorem (see, €.9.,8rix

p. 371]) by verifying the following Lyapunov’s condition [8, Relation

(27.16)] withs = 2:

tZIE(y}“,),JE~2/<D)
lim =

r—00

_=0. (A7)

To(e(fr)et (f)@ce(fr)et (f)To=e(fr)e" (fi)@ce(fr)et (f1).

Then, becausBB™ is also a Toeplitz matrix, the relatid®,C' r T, =

C'r is proved. Therefore, the “Toeplitzation” does not improve the co-
variance estimate and the expression€gefandC!. are given by the
blocks(1, 1) of Cr andC";, respectively. O
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D. Proof of Theorem 3 Generalizing Carathéodory’s Uniqueness of Harmonic

From regularity condition (3.1), the asymptotic behaviorsfof Parameterization to N Dimensions

andR,, are directly related. The standard result on regular functions
of asymptotically normal statistics (see, e.g., [12, Theorem, p. 22])
applies. So (3.3) wittC; = D3%,Cr(D}%,)". Furthermore, this
closed-form expression S'mp“fles if (1) and (2) are taken into account Apstract—Consider a sum of F' exponentials inN dimensions, and let
I, be the number of equispaced samples taken along theth dimension. It
_ / H . H is shown that if the frequencies or decays along every dimension are distinct
f=alg(E(f)(A+SA)ET (f)+(cu+ben) BBT) and > | I, > 2F 4 (IN — 1), then the parameterization in terms
= f—|—Da] Voc(E(f)éAE" f) —l—(ﬁ'c,,,BB”)—i—o(ﬁA) +o(bew) of frequencies, decays, amplitudes, and phases is unique. The result can be
viewed as generalizing a classic result of Carathéodory t&N dimensions.

Nicholas D. SidiropoulgsSenior Member, IEEE

K
atg I7 N I The proof relies on a recent result regarding the uniqueness of low-rank
=f+Dj <'Z Sai(e(fr) @c € (fi)+bcuVec(BB )> decomposition of N-way arrays.
=1
+0(8A) + o(bcy) (A9) Index Terms—Multidimensional harmonic retrieval, multiway analysis,
’ PARAIllel FACtor (PARAFAC) analysis, spectral analysis, uniqueness.
where
|. INTRODUCTION
7 . H . _ . H . . )
Vec(e(fr)e” (fr)) = e(f) @ e (fi) The problem of harmonic retrieval and, more generally, exponen-

tial retrieval permeates the applied sciences and engineering. Although
is used in the third equality. Therefore, the following constraints up@he-dimensional (1-D) exponential retrieval is most common (e.g., see

D‘}IAR hold: [17] and references therein), the multidimensional case appears in a va-
riety of important applications like joint azimuth, elevation, delay, and
D‘}]gﬁ,[e(fk) e (fu)] =0, k=1,..., K Doppler estimation in antenna array processing for communications

[3]-[6], synthetic aperture radar (e.g., [7], [10] and references therein),
and also certain signal separation problems in chemistry.

A wide variety of nonparametric and parametric techniques have

and using (2.8), the proof follows. L been developed for the harmonic retrieval problem in one or more di-

mensions. Underpinning technique and practice of harmonic retrieval is

the issue of identifiability, i.e., uniqgueness of model parameterization.
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