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Asymptotic Normality of Sample Covariance Matrix for
Mixed Spectra Time Series: Application to Sinusoidal

Frequencies Estimation

Jean-Pierre Delmas, Member, IEEE

Abstract—This correspondence addresses the asymptotic normal dis-
tribution of the sample mean and the sample covariance matrix of mixed
spectra time series containing a sum of sinusoids and a moving average
(MA) process. Two central limit (CL) theorems are proved. As an appli-
cation of this result, the asymptotic normal distribution of any sinusoidal
frequencies estimator of such time series based on second-order statistics
is deduced.

Index Terms—Central limit (CL) theorem, covariance-based sinusoidal
frequencies estimation, mixed spectra time series, sample covariance ma-
trix.

I. INTRODUCTION

There is considerable literature (e.g., [1]–[4]) concerning the asymp-
totic Gaussian distribution of the sample mean and the sample covari-
ance matrix of the real-valued stationary processesxt. Several situ-
ations have been considered, among them whenxt is a generalized
linear process, satisfies mixing conditions, or is Gaussian with a power
spectral density. However, few contributions have been devoted to the
asymptotic distributions of the sample covariance matrix associated
with mixed spectra time series. Subsequent to the revision of this man-
uscript, [5] was brought to our attention, where this problem is tackled
with quite advanced statistical tools such as martingale theory.

We will be concerned with real- or complex-valued1processes of the
type

xt = m+

K

k=1

ak cos(2�fkt+ �k) + vt

or xt = m+

K

k=1

ake
i� ei2�f t + vt (1.1)

with

vt =

Q

q=0

bqut�q: (1.2)

Throughout this correspondence,(ut)t=1; ...;n is a sequence of
zero-mean independent and identically distributed (i.i.d.) random
variables whereEju4t j < 1, with

cu
def
=E(u2t ); �u

def
=Cum(ut; ut; ut; ut)

and

cu
def
=Eju2t j; c0u

def
=E(u2t )

�u
def
=Cum(ut; u

�

t ; ut; u
�

t )
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1Complex processes appear as complex envelope of bandpass real processes.

respectively in the real and the possibly noncircular2 complex case.
(ak)k=1; ...;K and (bq)q=0; ...;Q are unknown fixed real or complex
numbers, respectively.m is an unknown fixed number andfk are un-
known fixed distinct real numbers in]0; 1=2[ for real-valued processes
[resp., in]�1=2; +1=2 [for complex-valued processes]. For the phases
�k, the model (1.1) can be interpreted in two different ways, leading to
different statistical descriptions.

1) We can assume that�k are random variables uniformly dis-
tributed on[0; 2�] and that(�k)k=1; ���;K andut are mutually
independent. In this case,xt is a wide-sense-stationary process.

2) We can assume that�k are nonrandom unknown parameters3

and soxt is not a wide-sense-stationary process.

We are interested in the asymptotic distribution of the sample mean
mn

def
= 1

n

n

t=1
xt and of the sample covariance matrix

RRRn
def
= 1

n

n

t=1

(xxxt �mmmn)(xxxt �mmmn)
T

in the real case [resp.,

RRRn
def
= 1

n

n

t=1

(xxxt �mmmn)(xxxt �mmmn)
H

in the complex case], where

xxxt
def
=(xt; xt�1; . . . ; xt�p+1)

T

and

mmmn
def
=(mn; . . . ; mn)

T :

The asymptotic normality of the sample meanmn and sample covari-
ance matrixRRRn is proved in Section II. As an application of this result,
the asymptotic normal distribution of any sinusoidal frequencies esti-
mator of such time series, based on second-order statistics, is derived
in Section III.

II. CENTRAL LIMIT THEOREMS

For the convenience of the reader, the definition of the complex
Gaussian distribution is recalled. A complex randomp � 1 vectoryyy
has a zero-mean complex Gaussian distribution specified by ap � p
positive-definite matrix���1 and ap � p symmetric matrix���2 and de-
notedN (0; ���1; ���2)4 if the 2p-joint distribution of the real and imag-
inary part ofyyy is 2p-zero-mean real Gaussian, i.e., if for any complex
p� 1 vectorwww, the real scalarwwwHyyy + (wwwHyyy)H has a zero-mean real
Gaussian distribution with variance

2wwwH���1www +www
H���2www

� +www
T����

2www (2.1)

whereE(yyyyyyH) = ���1 andE(yyyyyyT ) = ���2.
Considering the sample mean, the following theorem is proved in

the Appendix.

Theorem 1:
p
n(mn � m) converges in distribution to the

zero-mean real [resp., complex] Gaussian distribution of variancecm

[resp.,cm; c0m] in the real case [resp., in the complex case] irrespective
of the phase model

p
n(mn �m)

L!N (0; cm) [resp.,N (0; cm; c
0

m)]: (2.2)

2Here, circular refers to second-order circular (see, e.g., [6], which is some-
times called “proper” (see [7])).

3In this model,f 6= 0, otherwise,m would be a special case of a sinusoid.
4This notation was introduced in [6]. The matrix��� is called relation matrix

in [6] and pseudocovariance matrix in [7].
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Furthermore,

lim
n!1

E(mn) = m and lim
n!1

nVar (mn) = cm (2.3)

wherecm andc0m are defined as

cm = cu

Q

q=0

bq

2

and c
0

m = c
0

u

Q

q=0

bq

2

: (2.4)

Then, considering the sample covariance matrix, ifRRR denotes,
respectively,E[(xxxt � mmm)(xxxt � mmm)T ] andE[(xxxt � mmm)(xxxt � mmm)H ]
in the real and the complex case of the first statistical model with
mmm

def
=(m; . . . ; m)T , the following theorem is proved in the Appendix.

Theorem 2:
p
n (Vec(RRRn)� Vec(RRR))5 converges in distribution

to the zero-mean real [resp., complex] Gaussian distribution of covari-
anceCCCR [resp.,CCCR; CCCRKKK] in the real case [resp., in the complex
case], irrespective of the phase model.
p
n (Vec(RRRn)�Vec(RRR))

L!N (0; CCCR) [resp.; N (0; CCCR; CCCRKKK)]:

(2.5)

Furthermore,

lim
n!1

E(RRRn) = RRR and lim
n!1

nCov (Vec(RRRn)) = CCCR (2.6)

whereCCCR is defined respectively in the real and the complex cases as

CCCR=
+1=2

�1=2

S
2
v(f)

� eee(f)eeeH(f)
ceee(f)eee
H(f)+eee(f)eeeT (f)
ceee(f)eee

T (f) df

+�uVec(BBBBBB
T )VecT (BBBBBBT )

+
1

2

K

k=1

a
2
kSv(fk) eee(fk)eee

H(fk)
ceee(fk)eee
H(fk)

+eee(�fk)eeeH(�fk)
ceee(�fk)eeeH(�fk)

+
1

2

K

k=1

a
2
kSv(fk) eee(fk)eee

H(�fk)
ceee(fk)eee
H(�fk)

+eee(�fk)eeeH(fk)
ceee(�fk)eeeH(fk)

(2.7)

CCCR=
+1=2

�1=2

S
2
v(f) eee(f)eeeH(f)
ceee(f)eee

H(f) df

+
+1=2

�1=2

S
02
v(f) eee(f)eeeT (f)
ceee(f)eee

T (f) df

+2

K

k=1

a
2
kSv(fk)[eee(fk)eee

H(fk)
ceee(fk)eee
H(fk)]

+�uVec(BBBBBB
H)VecH(BBBBBBH) (2.8)

with

eee(f)
def
=(1; ei2�f ; . . . ; ei2(p�1)�f )H

where
c denotes the complex Kronecker productAAA 
c BBB, i.e., the
block matrix, the(i; j) block element of which isb�i; jAAA6 andKKK is the

5Vec (:) is the “vectorization” operator that turns a matrix into a vector con-
sisting of the columns of the matrix stacked one below another.

6This slightly unusual convention makes it easier to deal with complex ma-
trices.

vec-permutation matrix which transformsVec (AAA) toVec (AAAT ) for any
square matrixAAA.

Sv(f)
def
= cu

Q

q=0

bqe
�i2�fq

2

i.e., the spectral density ofvt and

S
0

v(f)
def
= jc0uj

Q

q=0

bqe
�i2�fq

Q

q=0

bqe
+i2�fq

:

BBB denotes thep � (p+ Q) filtering matrix

b0 b1 � � � bQ
. . .

. . .

b0 b1 � � � bQ

:

Remark 1: In (2.6),Cov (Vec(RRRn)) denotes

E(Vec(RRRn �RRR)VecH(RRRn �RRR)):

We note that

VecT (RRRn �RRR) = VecH(RRRn �RRR)KKK (2.9)

so

E(Vec(RRRn�RRR)Vec
T (RRRn�RRR))=E(Vec(RRRn�RRR)Vec

H (RRRn�RRR))KKK:

Therefore, the noncircular complex Gaussian asymptotic distribution
of RRRn is characterized byCCCR only.

Remark 2: We note that expression (2.7) ofCCCR obtained in the real
case cannot be deduced from expression (2.8) in the complex case as
suggested by the Euler relation applied to relation (1.1)

ak cos(2�fkt+ �k) =
ak
2
ei� ei2�f t +

ak
2
e�i� e�i2�f t:

In fact, if S0v(f), BBB
H , anda2k[eee(fk)eee

H(fk) 
c eee(fk)eee
H(fk)] are,

respectively, replaced withSv(f),BBB
T , and

ak
2

2

[eee(fk)eee
H(fk)
c eee(fk)eee

H(fk)]

+
ak
2

2

[eee(�fk)eee
H(�fk)
c eee(�fk)eee

H(�fk)]

an extra cross-term appears in (2.7). This surprising property is ap-
parently contradictory, given the result that the asymptotic distribution
of the sample covariance matrix does not depend on the phase model.
In fact, the explanation comes from certain expressions proved in the
complex case in the Appendix (see footnote 10) being valid only if no
frequencies are opposite. The fact that�k and��k, associated withfk
and�fk, are not independent is irrelevant.

Remark 3: We note that for a “very narrow band” (i.e., the band-
width is very small with respect to the sampling frequency) moving av-
erage (MA) processesvt, (2.7) and (2.8) are unbounded. For example,
whenvt tends to be white in[f0�b; f0+b] with finite fixed powercv ,
(2.7) and (2.8) are not bounded withb, becauseSv(f) tends tocv=2b
for jf � f0j � b and0 elsewhere, which implies thatCCCR contains the

terms +1=2

�1=2
S2
v(f)df which tends toc

2b
.

Since the matrixRRR is Toeplitz, the “accuracy” of its sample
covariance estimateRRRn, which is non-Toeplitz, should be improved
by replacing it by its “Toeplitzed” estimate. This “Toeplitzation,”
also known as redundancy averaging in statistical signal and array
processing applications [9], is carried out by averaging along the
diagonals. The resulting estimateRRRto

n is referred as the “Toeplitzed”
estimated covariance matrix. Because this “Toeplitzation” operates a
linear transform onRRRn, Theorem 2 extends as follows.
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Corollary 1: Vec(RRRn) andVec(RRRto
n
) have the same asymptotic

Gaussian distribution. It is characterized by the asymptotic distribution
of the first columnrrrn of RRRn. In the real case [resp., in the complex
case], we have

p
n (rrrn � rrr)

L!N (0; CCCr) [resp.; N (0; CCCr; CCC
0

r)]: (2.10)

Furthermore,

lim
n!1

E(rrrn) = rrr and lim
n!1

nE[(rrrn�rrr)(rrrn�rrr)T ] = CCCr (2.11)

resp.; lim
n!1

nE[(rrrn � rrr)(rrrn � rrr)H ] = CCCr

lim
n!1

nE[(rrrn � rrr)(rrrn � rrr)T ] = CCC
0

r] (2.12)

whereCCCr [resp.,CCCr; CCC
0

r ] is defined in the real [resp., complex] case
as

CCCr =
+1=2

�1=2

S
2
v(f) eee(f)eeeH(f)+eee(f)eeeT (f) df

+�uBBBbbbbbb
T
BBB
T+

1

2

K

k=1

a
2
kSv(fk)

� eee(fk)eeeH(fk)+eee(�fk)eeeH(�fk)
+eee(fk)eee

H(�fk)+eee(�fk)eeeH(fk) (2.13)

CCCr =
+1=2

�1=2

S
2
v(f)eee(f)eee

H(f)+S
02
v(f)eee(f)eee

T (f) df

+�uBBBbbbbbb
H
BBB
H+2

K

k=1

a
2
kSv(fk)eee(fk)eee

H(fk) (2.14)

CCC
0

r =
+1=2

�1=2

S
2
v(f)eee(f)eee

T (f)+S
02
v(f)eee(f)eee

H(f) df

+�uBBBbbb
�
bbb
H
BBB
T+2

K

k=1

a
2
kSv(fk)eee(fk)eee

T (fk) (2.15)

with bbb is the(p+Q)� 1 vector(b0; . . . ; bQ; 0; . . . ; 0)T .

Remark 3: In the complex case, we note that contrary toRRRn (see
Remark 1), the asymptotic distribution ofrrrn is not characterized by
CCCr only.

Relation (2.11) reads componentwise withrrrn
def
=(r0n; . . . ; r

p�1
n )T

and

r
i
b
def
=

b0bi + � � �+ bQ�ibQ; for 0 � i � Q

0; for Q < i � p� 1

lim
n!1

nCov(rin; r
j
n)

=2
+1=2

�1=2

S
2
v(f) cos(2�if) cos(2�jf)df

+2

K

k=1

a
2
kS

2
v(fk) cos(2�ifk) cos(2�jfk)+�ur

i
br

j
b ; i; j�0:

This extends the property given by [10] and by [3, Theorem 9.4] where
vt is, respectively, a sequence of i.i.d. zero-mean random variables with
E(v4t ) < 1 or a sequence of i.i.d. Gaussian distributed zero-mean
random variables.

III. A PPLICATION TOESTIMATION OF SINUSOIDAL FREQUENCIES

Theorem 2 allows us to derive the asymptotic performance of most
covariance-based sinusoidal frequencies estimation algorithms. With
this aim, we adopt a functional analysis approach which consists in

recognizing that the whole process of constructing an estimatefffn of
fff
def
=(f1; . . . ; fK)T is equivalent to defining a functional relationship

linking this estimatefffn to the statisticsRRRn from which it is inferred.
This functional dependence is denotedfffn = alg(RRRn). Clearly,fff =
alg(RRR) with RRR = EEE(fff)���EEEH(fff) + cuBBBBBB

H ,7 where

EEE(fff)
def
=(eee(f1); . . . ; eee(fK))

and

���
def
=Diag(a21; . . . ; a

2
K):

So the different algorithmsalg (:) constitute distinct extensions of the

mappingRRR
alg7!fff generated by any unstructured Hermitian matrixRRRn.

In the following, we consider “regular” algorithms. More specifically,
we assume the following conditions.

1) The functionalg (:) is differentiable in a neighborhood ofRRR, i.e.,
if DDDalg

f;R
8 denotes theK�p2 matrix of this differential evaluated

at pointRRR

alg(RRR+ �RRR) = fff +DDD
alg
f;RVec(�RRR) + o(�RRR): (3.1)

2) For anyfff , any positive-definite diagonal matrix��� and anycu

alg EEE(fff)���EEEH(fff) + cuBBBBBB
H = fff: (3.2)

These two requirements are met for example by the high-resolution
second-order frequency estimators such as MUSIC, weighted MUSIC,
Min-Norm, TAM, and ESPRIT, which all assume thatvt is white. With
(3.1) and (3.2), the following result is proved in the Appendix.

Theorem 3:
p
n(fffn�fff) converges in distribution to the zero-mean

Gaussian distribution of the covarianceCCCf , which is invariant with
respect to the distribution of the noise innovation

p
n(fffn � fff)

L!N (0; CCCf) (3.3)

with

CCCf =
+1=2

�1=2

DDD
alg
f;R S

2
v(f)(eee(f)eee

H(f)
c eee(f)eee
H(f))

+ S
02
v(f)(eee(f)eee

T (f)
c eee(f)eee
T (f)) DDD

alg
f;R

H

df: (3.4)

So, although the asymptotic covariance ofVec (RRRn) is very sensitive
to the distribution ofut, 9 the asymptotic performance of most covari-
ance-based sinusoidal frequency estimators is invariant with respect to
the distribution of the noise innovation. However, this asymptotic co-
varianceCCCf stays unbounded for narrow-band noise of fixed power
because of the term+1=2

�1=2
S2
v(f)df in (3.4). We note that Theorem

3 extends a result given in [13], where explicit expressions for the co-
variance of the estimation errors associated with MUSIC and ESPRIT
methods are derived for complex circular Gaussian white noise.

In the special case, where the spectral densitySv(f) is known up
to a multiplicative constant, the whitening of the noise used classically
in direction of arrival (DOA) estimation (see, e.g., [14]) can be used to

7We consider the complex case only, extension to the real case is straightfor-
ward.

8Expressions ofDDD are ordinarily deduced from perturbation calculus
(see, e.g., [11] for the standard MUSIC algorithm).

9 (nCov (Vec (RRR )) is unbounded for the super-Gaussian case under the
constraint of fixed power because of� in (2.7) and (2.8).
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advantage. In this approach, aftervt is whitened by a linear transforma-
tion applied toxxxt, any covariance-based DOA methods based on a cal-
ibrated array of generic steering vector in white noise (such as MUSIC,
weighted MUSIC, Min-Norm,…) can be used. In these circumstances,
it makes sense to study the influence of the spectrum ofvt and the
selected linear transformation on the performance of this sinusoidal
frequency estimator. Considering our functional analysis, Theorem 3
answers this question. The processvt is whitened using the Cholesky
decompositionLLLHLLL of (BBBBBBH)�1 (see, e.g., [15, relation 1.7.19]) and
any unitary matrixQQQ

(BBBBBBH)�1 = LLL
0H
LLL
0 with LLL

0def=QQQLLL

and the covariance matrix ofxxxt becomes

RRR
0 = LLL

0
EEE(fff)��� LLL

0
EEE(fff)

H
+ cuIII:

If alg (:) denotes an algorithm based on generic steering vector and
white noise assumption, the sinusoidal frequencies are estimated
through the following scheme:

RRRn 7! RRR
0
n

def
=LLL

0
RRRnLLL

0Halg7!fffn ) RRRn
alg7!fffn:

Applying the chain differential rule, Theorem 3 applies in this situation
by replacing in (3.4),DDDalg

f;R by DDDal
f;R = DDD

alg
f;R

(LLL0 
c LLL
0), because

Vec(RRR0n) = (LLL0 
c LLL
0)Vec(RRRn).

APPENDIX

PROOF OFTHEOREMS

The complex case is considered only as the same approach may be
used for the real case.

A. Proof of Theorem 1

First of all,
p
n(mn �m) is decomposed as

p
n(mn �m) =

K

k=1

ake
i� 1p

n

n

t=1

e
i2�f t +

1p
n

n

t=1

vt:

(A1)

Because

n

t=1

e
i2�f t =

sin�nfk
sin�fk

is bounded, the first term of (A1) converges almost surely to0 when
n ! 1 whatever the phase model. Thus, we can consider the term
1p
n

n

t=1 vt only, in the study of the convergence in distribution ofp
n(mn �m). Let

yt
def
=w

�
vt + wv

�
t :

yt is a real stationaryQ-dependent sequence of random variables with
mean zero and correlation
k with


k=

Q

q=0

cujwj2(b�k+qbq+bk+qb�q)+c0uw�2bk+qbq+c0�uw2
b
�
k+qb

�
q :

The conditions of [2, Theorem 6.4.2] are fulfilled. Thus,1p
n

n

t=1 yt
converges in distribution to the zero-mean real Gaussian distribution of

variancecy = 
0+2 Q

q=1 
q andlimn!1 nVar( 1
n

n

t=1 yt) = cy
with

cy = 2jwj2cu
Q

q=0

bq

2

+ w
�2
c
0
u

Q

q=0

bq

2

+ w
2
c
0�
u

Q

q=0

b
�
q

2

:

The theorem follows thanks to (2.1).

B. Proof of Theorem 2

Because1
n

n

t=1 vt converges in probability to0 (see, e.g., [2,
Proposition 6.3.10]),mmmn converges in probability tommm. Using a
classical result (e.g., deduced from [2, Propositions 6.3.4 and 6.3.7]),
we can deduce that studying the asymptotic distribution ofRRRn, boils
downs to studying the asymptotic distribution of

RRR
0
n

def
= 1

n

n

t=1

(xxxt �mmm)(xxxt �mmm)H :

Then, usingVec(aaabbbH) = aaa
c bbb, Vec(RRR
0
n �RRR) is decomposed as

Vec(RRR0n �RRR) =
1

n

n

t=1

(zzz1t += z= z= z2t )

with

zzz
1
t

def
= ccct 
c vvvt + vvvt 
c ccct + vvvt 
c vvvt �Vec(RRRv)

and

zzz
2
t

def
=

1�k 6=k �K
akak e

i(� �� )
e
i2�(f �f )t

eee(fk)
c eee(fk )

where

ccct
def
=

K

k=1

ake
i�

e
i2�f t

eee(fk)

vvvt
def
=(vt; vt�1; . . . ; vt�p+1)

T

and

RRRv
def
=E(vvvtvvv

H
t ):

Because

p
n
1

n

n

t=1

zzz
2
t

� 1p
n

1�k 6=k �K
akak

sin(�n(fk � fk )

sin(�(fk � fk )
keee(fk)
c eee(fk )k

p
n 1
n

n

t=1 zzz
2
t converges almost surely to0 whenn!1. Thus, we

can consider the term
p
n
n

n

t=1 zzz
1
t alone, in the study of the conver-

gence in distribution of
p
nVec(RRR0n � RRR). To prove the convergence

in distribution of
p
n 1
n

n

t=1 zzz
1
t to a zero-mean noncircular complex

Gaussian distribution, we consider the associated scalar real random
variableyt

def
=wwwHzzz1t+(wwwHzzz1t )

H (see definition in Section II). The con-
ditional distribution of(yt)t=1; ...;n given the phases(�k)k=1; ...;K is
a zero-mean real distribution ofL-dependent (withL = p + Q) but
not strictly stationary random variables becauseyt are not identically
distributed. As such, the conditions of [2, Theorem 6.4.2] are no longer
fully satisfied.

To prove Theorem 2, we continue to make use of [2, Theorem 6.4.2]
by some modifications of its proof. Following this proof, we must con-
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sider first, the limit ofnVar( 1
n

n

t=1 yt=�) whenn ! 1. Thanks
to (2.9), this expression may be written as

2wwwH 1

n
1�s; t�n

E(zzz1szzz
1
t

H
=�) www+wwwH 1

n
1�s; t�n

E(zzz1szzz
1
t

H
=�) KKKwww�

+wwwT 1

n
1�s; t�n

E(zzz1szzz
1
t

H
=�)

�

KKKwww (A2)

where

1

n
1�s; t�n

E(zzz1szzz
1
t

H
=�) = TTT a + TTT b + TTT c

with

TTT a
def
=

1

n
1�s; t�n

E((vvvs 
c cccs)(ccc
H
t 
c vvv

H
t )=�)

+ E((cccs 
c vvvs)(vvv
H
t 
c ccc

H
t )=�)

TTT b
def
=

1

n
1�s; t�n

E((vvvs 
c cccs)(vvv
H
t 
c ccc

H
t )=�)

+ E((cccs 
c vvvs)(ccc
H
t 
c vvv

H
t )=�)

TTT c
def
=

1

n
1�s; t�n

E((vvvs 
c vvvs � Vec(RRRv)(vvvt 
c vvvt �Vec(RRRv))
H :

Thanks to the following property of the vec-permutation matrixKKK

(aaaH 
c bbb
H)KKK = bbbT 
c aaa

T (A3)

E((vvvs 
c cccs)(ccc
H
t 
c vvv

H
t )=�) + E((cccs 
c vvvs)(vvv

H
t 
c ccc

H
t )=�)

= [(E(vvvsvvv
T
t )
c cccsccc

T
t ) + (cccsccc

T
t 
c E(vvvsvvv

T
t ))]KKK

thus the first term ofTTT a becomes

p+Q�1

l=�p�Q+1

RRR0v(l)
c

�
1�k; k �K

akak ei(� +� )e�i2�f l

�
1

n
s2S

ei2�(f +f )s eee(fk)eee
T (fk ) KKK

with RRR0v(l)
def
=E(vvvsvvv

T
s�l) andSn; l is the setfs; 1 � s � n � l for

l � 0 or�l + 1 � s � n for l � 0g. Because10

lim
n!1

1

n
s2S

ei2�(f +f )s = 0

the first term ofTTT a and, therefore, the termTTT a tends toOOO whenn!
1. As

E((vvvs 
c cccs)(vvv
H
t 
c ccc

H
t )=�) + E((cccs 
c vvvs)(ccc

H
t 
c vvv

H
t )=�)

= (E(vvvsvvv
H
t )
c cccsccc

H
t ) + (cccsccc

H
t 
c E(vvvsvvv

H
t ))

10Except for the specific case where two frequenciesf are opposite.

the first term ofTTT b becomes:

p+Q�1

l=�p�Q+1

RRRv(l)
c

�
1�k; k �K

akak ei(� �� )ei2�f l

�
1

n
s2S

ei2�(f �f )s eee(fk)eee
H(fk )

with RRRv(l)
def
=E(vvvsvvv

H
s�l). Because

lim
n!1

1

n
s2S

ei2�(f �f )s = 0

for fk 6= fk and1 for fk = fk , the first term ofTTT b tends to

1�k�K

a2k

p+Q�1

l=�p�Q+1

RRRv(l) e�i2�f l 
c eee(fk)eee
H(fk)

whenn ! 1. With

p+Q�1

l=�p�Q+1

RRRv(l) e�i2�f l = Sv(fk)eee(fk)eee
H(fk)

the termTTT b tends to

2
1�k�K

a2kSv(fk)[eee(fk)eee
H(fk)
c eee(fk)eee

H(fk)]: (A4)

Then, becausevvvt = BBBuuut with uuut
def
=(ut; ut�1; ...; u )T , the

termTTT c becomes

(BBB 
c BBB)nCov(Vec(RRRu
n))(BBB

H 
c BBB
H) (A5)

with RRRu
n

def
= 1

n

n

t=1 uuutuuu
H
t .

[nCov(Vec(RRRu
n))](j�1)(p+Q)+i; (l�1)(p+Q)+k

then becomes

1

n
1�s; t�n

E(us�i+1u
�
s�j+1u

�
t�k+1ut�l+1)

�E(us�i+1u
�
s�j+1)E(u�t�k+1ut�l+1): (A.6)

By the definition ofCum(us�i+1; u
�
s�j+1; u

�
t�k+1; ut�l+1), (A6) is

decomposed as

E(us�i+1u
�
t�k+1)E(us�j+1u

�
t�k+1)

+ E(us�i+1ut�l+1)E(u�s�j+1u
�
t�k+1)

+ Cum(us�i+1; u
�
s�j+1; u

�
t�k+1; ut�l+1):

These three terms are, respectively, equal to

c2u; for s� t = i� k = j � l

0; elsewhere

jc0uj
2; for s� t = i� l = j � k

0; elsewhere

�u; for i = j; k = l ands� t = i� k

0; elsewhere.

Consequently,

lim
n!1

[nCov(Vec(RRRu
n))](j�1)(p+Q)+i; (l�1)(p+Q)+k
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is defined and decomposed as

c2u; for i� k = j � l

0: elsewhere
+

jc0

uj2; for i� l = j � k

0; elsewhere

+
�u; for i = j; k = l

0; elsewhere

whose associated matrix is

c2u

+1=2

�1=2

[eee(f)eeeH(f)
c eee(f)eee
H(f)] df

+ jc0uj2
+1=2

�1=2

[eee(f)eeeH(f)
c eee(f)eee
H(f)]KKK df + �uVec(III)Vec

T (III):

Then

(BBB
cBBB)
+1=2

�1=2

[eee(f)eeeH(f)
ceee(f)eee
H(f)] df (BBBH
cBBB

H)

=
+1=2

�1=2

(BBBeee(f)eeeH(f)BBBH)
c(BBBeee(f)eee
H(f)BBBH)df;

(BBB
cBBB)
+1=2

�1=2

[eee(f)eeeH(f)
ceee(f)eee
H(f)]KKK df (BBBH
cBBB

H)

=
+1=2

�1=2

(BBBeee(f)eeeH(f)BBBT )
c(BBBeee(f)eee
H(f)BBBT )df

thanks to (A3) with

cuBBBeee(f)eee
H(f)BBBH = Sv(f)eee(f)eee

H(f)

and

jc0ujBBBeee(f)eeeH(f)BBBT = S0v(f)eee(f)eee
H(f):

And then

�u(BBB 
c BBB)Vec(III)VecT (III)(BBBH 
c BBB
H)

= �uVec(BBBBBB
H)VecH(BBBBBBH)

thanks toVec(AAABBBCCC) = (AAA 
c CCC
H)Vec(BBB). Putting together the

limits of termTTT b and of termTTT c

lim
n!1

1

n
1�s; t�n

E(zzz1szzz
1
t
H
=�)

is defined and does not depend on the phases�k. Thanks to (A2) and
(2.1), we get (2.8) irrespective of the phase model.

Then, following the proof of [2, Theorem 6.4.2], the application of
the classical central limit (CL) theorem (e.g., [2, Theorem 6.4.1]) to the
sum

1p
n

r

t=1

yt; k

with yt; k
def
= y(t�1)k+1+� � �+ytk�L, wherer

def
= bn=kc andk fixed with

k > L for n ! 1 is not valid because(yt; k)t=1; ...; r are zero-mean
independent but not identically distributed random variables. We re-
place the classical CL theorem by the Lyapunov theorem (see, e.g., [8,
p. 371]) by verifying the following Lyapunov’s condition [8, Relation
(27.16)] with� = 2:

lim
r!1

r

t=1

E(y2+2
t; k =�)

r

t=1

E(y2t; k=�)
2+2 = 0: (A7)

As

1

n

r

t=1

E(y2t; k=�) = nVar
1

n

r

t=1

yt; k=�

we get after similar manipulations as previously that

r

t=1

E(y2t; k=�) / n; whenn!1:

On the other hand,1
n

r
t=1 E(y4t; k=�) can be decomposed as the sum

of terms

ca; b; c; d(www)
1

n

r

t=1 1�l; l ; l ; l �k�L

E (zzz1(t�1)k+l)
s
a (zzz1(t�1)k+l )

s
b

�(zzz1(t�1)k+l )sc (zzz1(t�1)k+l )
s
d =� (A.8)

for 0 � a; b; c; d � p2, whereca; b; c; d(www) is an appropriate function
ofwww and where(yyy1(t�1)k+l)

s
i denotes theith component ofyyy1(t�1)k+l

which is conjugated for certain indexes. Because an examination of the
term (A8) shows that it has a limit whenn ! 1,

r

t=1

E(y4t; k=�) / n; whenn!1:

So Lyapounov’s condition (A7) with� = 2 is proved. Therefore, the
conditional real scalar random variable

r

t=1

yt; k

r

t=1

E(y2t; k=�)

converges in distribution to the zero-mean, unit variance real Gaussian
distribution whenr ! 1.

Finally, incorporating the other elements of the proof of [2, The-
orem 6.4.2],

p
n 1
n

n
t=1 yt converges in distribution to the zero-mean,

Gaussian distribution of variance

2wwwHCCCRwww +wwwHCCCRKKKwww� +wwwTCCC�RKKKwww

with CCCR given by (2.8). And by application of the Cramer–Wold the-
orem [8, Theorem 29.4], the complex random vector

p
n 1
n

n
t=1 zzz

1
t

converges in distribution to the zero-mean complex noncircular
Gaussian distributionN (0;CCCR; CCCRKKK).

C. Proof of Corollary 1

Thanks to the “Toeplitzation” projection matrixTTT o, Vec(RRRto
n ) =

TTT oVec(RRRn). Therefore, Theorem 2 extends toRRRto
n with the asymptotic

covariance matrixCCCto
R = TTT oCCCRTTT o. Because

eee(fk)eee
+(fl)
c eee(fk)eee

+(fl)

= (eee(fk)
c eee(fk))(eee
+(fl)
c eee

+(fl)); with +
def
=T orH

andeee(fi)
ceee(fi) = Vec(eee(fi)eee
H(fi))with eee(fi)eeeH(fi) is a Toeplitz

matrix

TTT o(eee(fk)eee
+(fl)
ceee(fk)eee

+(fl))TTT o=eee(fk)eee
+(fl)
ceee(fk)eee

+(fl):

Then, becauseBBBBBB+ is also a Toeplitz matrix, the relationTTT oCCCRTTT o =
CCCR is proved. Therefore, the “Toeplitzation” does not improve the co-
variance estimate and the expressions ofCCCr andCCC0r are given by the
blocks(1; 1) of CCCR andCCC0R, respectively.
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D. Proof of Theorem 3

From regularity condition (3.1), the asymptotic behaviors offff
n

andRRRn are directly related. The standard result on regular functions
of asymptotically normal statistics (see, e.g., [12, Theorem, p. 22])
applies. So (3.3) withCCCf = DDD

alg
f;RCCCR(DDD

alg
f;R)

H . Furthermore, this
closed-form expression simplifies if (1) and (2) are taken into account

fff =alg(EEE(fff)(���+����)EEEH(fff)+(cu+�cu)BBBBBB
H)

=fff+DDDalg
f;RVec(EEE(fff)����EEEH(fff)+�cuBBBBBB

H)+o(����) + o(�cu)

=fff+DDDalg
f;R

K

k=1

�a
2
k(eee(fk)
c eee

H(fk))+�cuVec(BBBBBB
H)

+o(����) + o(�cu) (A9)

where

Vec(eee(fk)eee
H(fk)) = eee(fk)
c eee

H(fk)

is used in the third equality. Therefore, the following constraints upon
DDD

alg
f;R hold:

DDD
alg
f;R[eee(fk)
c eee

H(fk)] = 0; k = 1; . . . ; K

and DDD
alg
f;RVec(BBBBBB

H) = 0 (A10)

and using (2.8), the proof follows.
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Generalizing Carathéodory’s Uniqueness of Harmonic
Parameterization to Dimensions

Nicholas D. Sidiropoulos, Senior Member, IEEE

Abstract—Consider a sum of exponentials in dimensions, and let
be the number of equispaced samples taken along theth dimension. It

is shown that if the frequencies or decays along every dimension are distinct
and 2 + ( 1), then the parameterization in terms
of frequencies, decays, amplitudes, and phases is unique. The result can be
viewed as generalizing a classic result of Carathéodory to dimensions.
The proof relies on a recent result regarding the uniqueness of low-rank
decomposition of -way arrays.

Index Terms—Multidimensional harmonic retrieval, multiway analysis,
PARAllel FACtor (PARAFAC) analysis, spectral analysis, uniqueness.

I. INTRODUCTION

The problem of harmonic retrieval and, more generally, exponen-
tial retrieval permeates the applied sciences and engineering. Although
one-dimensional (1-D) exponential retrieval is most common (e.g., see
[17] and references therein), the multidimensional case appears in a va-
riety of important applications like joint azimuth, elevation, delay, and
Doppler estimation in antenna array processing for communications
[3]–[6], synthetic aperture radar (e.g., [7], [10] and references therein),
and also certain signal separation problems in chemistry.

A wide variety of nonparametric and parametric techniques have
been developed for the harmonic retrieval problem in one or more di-
mensions. Underpinning technique and practice of harmonic retrieval is
the issue of identifiability, i.e., uniqueness of model parameterization.
Owing to the work of Carathéodory [1] and later Pisarenko [11], this
issue is well understood for the case of 1-D harmonics. In the case of
multidimensional harmonics (and, more generally, exponentials), one
can apply the 1-D result separately in each dimension, but this has two
serious drawbacks. First, this approach does not reap the benefits of the
rich multidimensional structure, leading to uniqueness conditions that
are unnecessarily strict. Second, the association problem (i.e., whether
the “pairing” of frequencies along different dimensions is unique) re-
mains.

The uniqueness problem is hard for harmonics in two or higher
dimensions. Only partial results are known for the two–dimensional
(2-D) case [8], [10]. For example, [10] considers one possible formu-
lation of the 2-D harmonic retrieval problem wherein the frequencies
are assumed to occur at the intersections of certain unknown grid lines
in the 2-D frequency domain, and provides sufficient conditions for
identifiability. In the case of a single realization of the 2-D harmonic
mixture, the conditions in [10] require that one has sufficiently many
samples in each dimension for the 1-D result of Carathéodory to kick
in.

The contribution of this correspondence is a general uniqueness re-
sult forN -dimensional exponential mixtures that is valid for anyN and
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