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Abstract—Active research in blind single input multiple output
(SIMO) channel identification has led to a variety of second-order
statistics-based algorithms, particularly the subspace (SS) and the
linear prediction (LP) approaches. The SS algorithm shows good
performance when the channel output is corrupted by noise and
available for a finite time duration. However, its performance is
subject to exact knowledge of the channel order, which is not guar-
anteed by current order detection techniques. On the other hand,
the linear prediction algorithm is sensitive to observation noise,
whereas its robustness to channel order overestimation is not al-
ways verified when the channel statistics are estimated. We propose
a new second-order statistics-based blind channel identification al-
gorithm that is truly robust to channel order overestimation, i.e.,
it is able to accurately estimate the channel impulse response from
a finite number of noisy channel measurements when the assumed
order is arbitrarily greater than the exact channel order. Another
interesting feature is that the identification performance can be
enhanced by increasing a certain smoothing factor. Moreover, the
proposed algorithm proves to clearly outperform the LP algorithm.
These facts are justified theoretically and verified through simula-
tions.

Index Terms—Blind channel identification and equalization,
order overestimation, second-order statistics algorithms.

I. INTRODUCTION

B LIND identification of communication channels ad-
dresses those signal processing techniques that estimate

the channel impulse response using solely its output statistics.
Such an estimate may be fed to an equalization algorithm in
order to restore the transmitted data. This obviates the need
for training sequences, thereby achieving a much desired
bandwidth gain. As second-order statistics (SOS) of the Baud
sampled channel output do not contain information about
the channel phase, early techniques [1], [2] exploited higher
order statistics (HOS) to achieve blind equalization. However,
the channel needs to be observed for long durations before
output HOS estimates are accurate enough to allow for reliable
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equalization. The proof that (the much easier to estimate) SOS
of the cyclostationary oversampled output (this result was later
extended to the multiple antenna case) does contain phase
information of the channel renewed the hope of developing
blind algorithms that can achieve equalization with relatively
short data lengths. Since the first algorithm by Tonget al. [3],
a number of SOS-based blind algorithms have been proposed.
Among the more popular are the subspace (SS) [4] and the
linear prediction (LP) [5], [6] algorithms. The former achieves
better performance but requires precise knowledge of the
channel order, which is a rather delicate and improbable task.
The latter can handle an overestimated value of the channel
order, but its performance is very sensitive to observation noise.
It has been pointed that its (claimed) robustness to channel
order overestimation does not hold when SOS contain esti-
mation errors [7], [8]. It was shown [6] that the LP algorithm
can achieve acceptable performance when the assumed order
equals that provided by an order detection criterion (the MDL
and the AIC criteria [9]) overestimated by a few (one or two)
taps only. This behavior does not make the LP algorithm fully
robust to order overestimation and, more importantly, does not
dispense with the need to estimate the channel order prior to
its response estimation. Another algorithm, which is similar in
properties and performance to the LP algorithm, is the outer
product decomposition (OPD) algorithm [10].

In this paper, we develop a novel algorithm that combines
advantages of both algorithms. It exhibits good performance at
low SNR while being robust to channel order overestimation.
We emphasize that the proposed algorithm is truly robust to
order overestimation as accurate identification is still achiev-
able using estimated channel statistics. The proposed algorithm
is based on ashiftedversion of the correlation matrix and the
properties of the associated kernel. The algorithm does not re-
quire the computation of the correlation matrix pseudo-inverse,
as with LP and OPD algorithms, nor is the whole kernel nec-
essary to achieve identification as with the SS algorithm. It is,
hence, proved theoretically then verified through simulations
that identification is possible when the channel order is arbi-
trarily overestimated and when the SOS are estimated from a fi-
nite sample size. This has the major advantage of allowing blind
identification without prior detection of the channel order. The
a priori knowledge of the propagation conditions (in the case
of a multipath channel for example), in terms of channel delay
spread, will be sufficient.

Shifted correlation matrices have previously [11], [12]
been used to estimate ZF equalizers of arbitrary delays. In
addition to an important computational complexity (especially,
a singular value decomposition has to be performed twice),
these equalizers are limited by the noise-enhancement problem.

1053-587X/02$17.00 © 2002 IEEE
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Better equalization techniques (MMSE or Viterbi) require the
channel response to be identified. The contribution of this
work is not only to useshiftedcorrelation matrices to perform
blind identification but to show that this approach comes with
performance and robustness advantages w.r.t. existing ones as
well.

The paper is organized as follows. In Section II, we present
the channel model and recall the main steps of the SS and the
LP algorithms. We point out, in particular, their (non) robust-
ness to order overestimation. In Section III, we introduce a novel
SOS-based blind identification algorithm and prove its robust-
ness to channel order overestimation. In Section IV, we rewrite
the proposed algorithm using estimated statistics and prove that
its robustness to channel-order overestimation still holds under
such circumstances. Simulation results are presented in Sec-
tion V and commented on in Section VI. Concluding remarks
appear in Section VII.

The following notations are used throughout the paper. Ma-
trices (resp. vectors) are represented by bold or calligraphic up-
percase (resp. bold lowercase) characters. Vectors are by default
in column orientation, whereas, , and stand for transpose,
transconjugate, and conjugate, respectively. is the th unit
vector in . is the zero matrix. It is noted as when
its dimension can be inferred from the context.is the
identity matrix, and

...

...
...

is the (down) shift matrix. denotes the Euclidean
norm. is the Kronecker product of matrices and
defined such that its block element is . Vec is
the vectorizationoperator that turns a matrix into a vector by
stacking the columns of the matrix one below another.

II. BLIND IDENTIFICATION OF SIMO CHANNELS

A. SIMO Channel

It is common to model a fractionally spaced and/or mul-
tisensor receiver by a single input multiple output (SIMO)
scheme, as depicted in Fig. 1. A set offilters are driven
by a common scalar input . The SIMO channel order

is defined as the maximum among those of the dif-
ferent filters . We define the -dimensional taps

, , where is
the th tap of the th filter. The SIMO impulse response is
defined as . The noise corrupted

output is the -dimensional vector .
The input–output relation is expressed as a multi-
dimensional convolution

where , and

for any .
To exploit the time-invariant property of the SIMO

channel, the channel output is observed over durations larger
than a symbol period. We stack successive samples into

Fig. 1. SIMO channel.

, where is called the
smoothing factor. We have

where

...

is the filtering matrix, is defined similarly as
, and is the -dimensional null vector.

The channel output SOS are completely described by the cor-
relation matrix functions , .
These SOS terms can be arranged in different ways as correla-
tion matrices. We define thestandardcorrelation matrix

...
...

. . .
. . .

...

and the (down)shiftedcorrelation matrix

...
...

...
. . .

...

For any other process , we denote by , and
the corresponding correlation matrices.

When the symbols are uncorrelated with the noise, the corre-
lation matrices are given by
and . If the symbols are
uncorrelated, then the correlation matrices are given by

and
. If, in addition, the noise components are uncorrelated, then

and . The above assumptions
on the transmitted symbols and on noise will be maintained
throughout the paper.
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As the process is an th-order moving average (MA)
multivariate process, then only and are possibly
nonzero, and the set contains all the SOS
information of the channel output.

It is worth recalling here an important result [3] on the rank
of the Sylvester matrix : has full column rank
if the channel is coprime (the transfer functions of the channels

, do not have zeros in common), and .

B. Existing Algorithms and Robustness to Order
Overestimation

We now briefly recall the principal steps and properties of the
most cited blind identification algorithms developed so far, the
SS and the LP algorithms. We particularly comment on their be-
havior when the channel order is overestimated. This feature is
of practical interest because order-detection criteria, such as the
MDL and AIC criteria [9], are not reliable when the channel
output is observed under practical conditions involving mea-
surement noise and a limited time interval. However, overesti-
mated values of the channel order are easy to obtain, especially
with the AIC criterion, which is proved to asymptotically pro-
vide an overestimated channel order [9]. Alternatively, an over-
estimated value of the channel order can be obtained without
resorting to order detection tests but simply from thea priori
knowledge about the channel delay spread.

The SS algorithm exploits the fact that a (full column rank)
filtering matrix is uniquely (up to a scalar constant) de-
termined by its left kernel. When the noise is spatially and tem-
porally white, the latter is given by the noise subspace of the cor-
relation matrix . An important feature of the SS algorithm is
that the noise subspace of the exact correlation matrix is also the
noise subspace of the empirical correlation matrix in the noise-
less case. This allows for exact estimation of the channel im-
pulse response when there is no observation noise [13] and is
the reason why the SS algorithm significantly outperforms the
other blind identification algorithms. However, the knowledge
of the exact channel order is required to fully characterize the
channel.

The LP approach is based on the proof bySlock [5] that
the th-order moving average (MA) SIMO output is also an

th-order autoregressive (AR) multivariate process whose in-
novation is proportional to the SIMO scalar input. Hence, the

th-order linear predictor, which is obtained by solving the
Yule–Walker (YW) equations, is used to derive anth-order
zero forcing (ZF) zero-delay equalizer. The channel impulse re-
sponse is then derived from the equalizer expression and the
SOS. As an th-order AR process can also be regarded as an

th-order AR process , the LP algorithm was cited
[5], [6] as robust w.r.t. channel-order overestimation. However,
as pointed out in [7] and [8], this does not hold when the SOS are
estimated, and the channel order is arbitrarily overestimated. In
fact, solving the YW equation requires the computation of the
pseudo-inverse of the noise-free correlation matrix. The latter
approximates a rank-deficient matrix, and the theoretical rank
of the noise-free correlation matrix (that relative to the exact

statistics case) needs to be exactly known to properly compute
the pseudo-inverse matrix. When the order is overestimated, the
noise subspace dimension is underestimated, and some of its
(small) eigenvalues are wrongly classified in the signal subspace
and, hence, are inverted, leading to the failure of the algorithm.
Therefore, solving the blind identification problem is subordi-
nate to solving the order-detection problem.

Another algorithm, with performance similar to (or slightly
better than) the LP algorithm, is the OPD [10]. Its robustness to
order overestimation is not maintained in the estimated statistics
case for the same reason: The computation of the pseudo-inverse
of the noise-free correlation matrix is required.

III. EXACT STATISTICS CASE

A. Theoretical Development

The proposed algorithm assumes knowledge of the corre-
lation matrix . The noise power is the smallest eigenvalue
of the Hermitian positive definite matrix with multiplicity

. We have and
.

HypothesisH : The smoothing factor is no smaller than the
channel order: .

UnderH1, is full column rank (throughout the paper,
the channel is assumed to be co-prime) so that rank

rank . Therefore, there exist an
orthogonal set [resp. ] of vectors

in the right (resp. left) null space of , where
. For every , we have

and

Therefore

and

Consequently, there exist1 such that

, and similarly, there exist such that
. The unknowns and can

be determined (up to an unknown phase) from

1In fact, there exist orthonormal bases of the left and right null spaces of
R �R such that� = 0 and� = 0 for i = 1; . . . ; w � 1. Hopefully,
these bases are computed with a zero probability in the exact and estimated
statistics cases.
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Consequently

(1)

and

(2)

verify

and

and, hence, are order ZF equalizers with maximum and
minimum delay, respectively, in that, in the absence of noise,
they restore the transmitted symbols with the exact amplitude
and up to unknown phases. We have as many equalizers as vec-
tors and . The channel taps can be retrieved from the
channel output statistics and any of the ZF equalizers since

which can be rewritten as follows.
Based on , the channel response is

...
... (3)

Based on , the channel response is

...
...

(4)
This step is a generalization of a similar one proposed for the
LP algorithm [6]. As equalizers are determined with a phase
ambiguity, the channel response is determined up to a phase
ambiguity as well.

Using the fact that is an th-order MA process
if , we rewrite (3) as follows:

...
... if

...
...

if

and we rewrite (4) as

...

if

...
...

if Here, is the zero matrix.

B. Robustness to Order Overestimation

We now prove an important feature of the proposed algo-
rithm, which is its ability to estimate the exact channel impulse
response when the channel order is overestimated. In fact,
if we detect an order , the rank of is (over)esti-
mated to be . Any among the vectors and suf-
fices to estimate the channel response following the above steps.
If and are constructed as indicated above,
using (3), the algorithm attempts to compute

...
...

...
...

...
...

where we have used the fact that because is an th-order
MA process, , if . Similarly, using (4), the
algorithm attempts to compute

Consequently, the channel response so estimated is a
zero-padded version of the true channel response and,
hence, can be used for equalization purposes.
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IV. ESTIMATED STATISTICS CASE

Because of the finite sample size, the estimate of may
not be rank deficient. The vector [resp. ] is chosen to
be the right (resp. left) singular vector associated with theth
smallest singular value of the estimate of . They are no
longer equivalent as they may not achieve perfect ZF equaliza-
tion. The algorithm will be rewritten w.r.t. the estimated SOS
case in two ways (see Sections IV-A and B). We prove in Sec-
tion IV-C that even though SOS may be estimated, robustness
to order overestimation is still maintained.

A. Correlation Matching Criterion

Each among the vectors and leads, throughout
the procedure described in Section III-A, to an estimate of
the channel response (or of a zero-padded version if the
detected channel order is overestimated). We need to introduce
a criterion to select thebestamong the candidates
using the sole available (second-order) information about the
channel, i.e., its output estimated covariance matrix. Hence,
we compare to . We propose the
following criterion, henceforth named the correlation matching
criterion (CMC)

(5)

where stands for a matrix norm. can be chosen to be
if the channel response needs to be approximated with a phase
ambiguity, i.e., up to a unitary complex constant.

In the case of phase and amplitude ambiguity, the algo-
rithm can be simplified by modifying (1) and (2) to compute

and . The identification
procedure continues as before. If we choose the Frobenius
matrix norm defined as Vec for any matrix ,
(5) is simplified as follows:

Vec Vec

Finally

Vec Vec
(6)

Note that this criterion tolerates channel-order overestimation
as

for any and .

B. Equalization Peak Criterion

We are interested here in introducing a new criterion on the
equalizers that allows for the selection of an equalizerbetter
than those directly issued from the left and right singular vec-
tors , , , whereas, at the same time,
reducing the computational complexity. For the reasons men-
tioned above, the vectors , , may
not achieve perfect ZF equalization and, hence, are no longer
equivalent, in the sense that their output SNRs depend directly
on the values of the scalars . Moreover, each linear combina-
tion of equalizers with the same delay is another equalizer. The
different ZF equalizers can be compared on the basis of the am-
plitude of the restored symbol. We thus refer to the following as
the equalization peak criterion (EPC). It was introduced in [14]
to improve the performance of the LP and the mutually refer-
enced equalizer (MRE) algorithms.

The combined channel-equalizer response is given by
. Its norm approximates (the square of) the

amplitude of the restored symbol when the intersymbol in-
terference is negligible. Let contain
all estimated equalizers with zero delay if and with
(maximum) delay if . For all -dimensional
vectors , is also an equalizer. The best choice of

, in the sense of maximizing the equalizer’s output SNR,
is achieved by [14] argmax . Hence,
we select as an eigenvector associated with the largest

eigenvalue of , i.e., with the largest

eigenvalue of . Let be
the so-computed equalizers. We finally select the ZF equalizer

associated with the largest

equalizer output SNR. We compute the equalizer or

depending on whether we want to achieve identification with
phase and amplitude ambiguity or with phase ambiguity only.

C. Robustness to Order Overestimation

When the channel order is overestimated, the noise subspace
dimension is (under)estimated to be , and the vectors

are wrongly classified in the signal
subspace. However, unlike the LP and OPD algorithms, the as-
sociated (small) singular values will not be inverted, and the
algorithm will be able to provide estimates that well approxi-
mate zero-padded versions of the channel response. However,
as the proposed algorithm has fewer vectors
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Fig. 2. Algorithms comparison.l = m. Exact order known. (a) SNR= 20 dB.
(b) Sample size= 200.

available than actually exist, the set of the estimatesis re-
stricted, and the identification error is higher than it would be
if the exact order were known. This loss in performance can be
compensated for by increasing the smoothing factor and, hence,
the number of candidate estimates.

D. Algorithm

The algorithm can be summarized as follows.

1) Choose an order- superior to the exact channel order.
2) Choose a smoothing factor .
3) Compute the estimate of .
4) Estimate the noise power as the average of2 the

smallest eigenvalues of .

5) For , , compute the
-dimensional left singular vector and right singular

vector associated with theth smallest singular value

of .

2We do not usêR asR �� Imay be full rank (ifl equals the exact channel
order andc = 2) and, hence, does not allow us to estimate the noise power.

Fig. 3. Channel-order overestimation. The legend shows the assumed channel
order. Sample size= 200, SNR= 20 dB. (a) CMC. (b) EPC.

6) EPC.

a) Compute as the eigenvector associated
with the largest eigenvalue of

b) Let if

, otherwise.

c) Compute (phase and amplitude ambi-
guity) or

(phase ambiguity).
d) Deduce the channel estimate using (3) or (4),

depending on being a left or right singular
vector.



GAZZAH et al.: BLIND MULTICHANNEL IDENTIFICATION ALGORITHM 1455

7) CMC.

a) Construct the set .

b) For each , , estimate the ZF
equalizer

(phase ambiguity) or (phase and am-
plitude ambiguity).

c) For each , deduce the estimate of the
channel response using (3) or (4), depending on

being a left or right singular vector.
d) Choose such that

(phase ambiguity)

argmax

Vec Vec

(phase and amplitude ambiguity).

V. SIMULATIONS

A set of simulations has been conducted to test the proposed
algorithm w.r.t. different observation parameters (SNR, sample
size, smoothing factor) and, more particularly, its robustness to
order overestimation and its performance compared with ex-
isting SOS–based blind algorithms, namely, the SS, LP, and
OPD algorithms.

With respect to the targeted applications (equalization of
communication channels), the identification problem will
be considered to be perfectly solved whenever the solution
matches the exact channel response up to an unknown complex
factor and an unknown number of zero trailing terms. Hence,
for an th-order channel estimate , with , we
suggest the following identification error measure, inspired
by that proposed in [15], which we will continue to call mean
square error (MSE)

MSE

where stands for a complex constant.
For the proposed algorithm, such anth-order channel esti-

mate is expected to match, up to a constant, either

or

The previously proposed error measure simplifies to the fol-
lowing:

MSE

This can be proved to be equal to

MSE

This identification error was, each time, averaged over 100
Monte Carlo realizations.

We tested the proposed algorithm under the same conditions
as in [4]. The SIMO channel coefficients are ( and )

The conditioning w.r.t. inversion of the processed correlation
matrices is well described by the lowest nonzero singular
value , which is given by and

. The SIMO channel is driven by a
source of unit-variance i.i.d. four-QAM symbols and corrupted
by unit-variance AWG noise. The SNR is defined as

SNR

Fig. 2(a) and (b) compare the proposed algorithm, with both
the CMC and EPC criteria, to the SS, LP, and OPD algorithms
w.r.t. the number of channel observations and w.r.t. the SNR,
respectively. As the SS, LP, and OPD algorithms are not robust
to order overestimation, this comparison is done, assuming the
exact order to be known. The proposed algorithm has better per-
formance than the LP and OPD algorithms. Even though it is
outperformed by the SS algorithm in this case, the proposed al-
gorithm, interestingly, shows good performance at low SNR.

The more important issue of channel-order overestimation is
depicted in Fig. 3. As the SS, LP, and OPD algorithms fail to
identify the channel under such conditions, only results from
the proposed algorithm are reported. For different overestima-
tion values, the simulations show low estimation error from 200
samples only. Fig. 3 shows also that this estimation error can be
further lowered by increasing the smoothing factor. This is also
illustrated in Figs. 4 and 5. This is especially useful when the
order is overestimated as initial ( ) estimation errors can
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Fig. 4. Smoothing factor effect (CMC). SNR= 20. (a) Exact order.
(b) Overestimated order (by one tap).

be high. However, for the EPC criterion, the smoothing factor
should not be chosen excessively large. The best results are ob-
tained with , where is the assumed channel order.

To match more practical situations, we test the existing and
the proposed algorithms with the channel response from [16,
Table III], which corresponds to a three-ray, long delay (delays
at 0, 0.5, and three baud periods) multipath channel. The SIMO
channel coefficients are ( and )

Fig. 5. Smoothing factor effect (EPC). SNR= 20. (a) Exact order.
(b) Overestimated order (by one tap).

The corresponding lowest nonzero singular values
and indicate that

the processed (shifted and standard) correlation matrices are
rather poorly conditioned compared with those associated with
the channel corresponding to Figs. 2–5. Simulations results rel-
ative to this channel are summarized in Fig. 6. It shows that only
the proposed algorithm (with the EPC criterion) and the SS al-
gorithm (but only in the exact order case) are able to achieve low
identification errors. This is still true when the channel order is
overestimated (by one tap). The fact that the CMC criterion be-
haves better in the overestimated case than in the exact order
case is not meaningful as estimation errors are unpractical in
both cases.

VI. DISCUSSION

As shown through simulations (Section V), the proposed al-
gorithm has performances that are intermediate between the SS
and the LP algorithms when the exact channel order is known.
Unlike the SS algorithm, it requires estimating the noise power,
which leads to a supplementary estimation error. The SS algo-
rithm is still the only one to exactly estimate the channel re-
sponse from noiseless finite observation samples, contrary to
the proposed algorithm, which, hence, is not deterministic. This
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Fig. 6. Algorithms comparison. Badly conditioned channel. Exact and
overestimated order.

explains the threshold observed in Fig. 2(b). The improved per-
formance of the proposed algorithm w.r.t. the LP algorithm can
be justified in different ways. First, the proposed algorithm uses
singular vectors, whereas the LP algorithm explicitly (pseudo)-
inverts the correlation matrix to solve the YW system. Second,
like the LP algorithm, the proposed algorithm estimates a ZF
equalizer prior to channel response estimation. However, unlike
the LP algorithm, the proposed algorithm provides a set of es-
timates and, hence, has a betterchanceto achieve a lower es-
timation error. The number ofcandidatescan be increased by
increasing the smoothing factor, improving, as verified through
simulations, the algorithm performance. The decrease in the es-
timation error when the smoothing factor increases, however,
is only global (Fig. 3). This is due to the fact that the selection
criteria, CMC, and EPC are both suboptimal w.r.t. the MSE cri-
terion. Hence, as verified through tests, they happen to select an
estimate that does not achieve the lowest MSE on the channel
response.

The CMC criterion shows performance that is slightly better
than that obtained by EPC. We believe that this might be ex-
plained by thelocal behaviorof the proposed channel estima-
tion technique. Local behavior refers to the instantaneous per-
formance of any estimation algorithm achieved in a single trial
without any statistical averaging [17]. In fact, although the noise
power is the same in all antenna sensors, the instantaneous noise
realization is particular to each of them, and thus, differently
weighting the sensor outputs leads to differentlocal estimation
results. In the CMC criterion, we select the best estimate among
a set of channel estimates that have different local behaviors.

Notice that as long as ZF equalization is concerned, the
proposed algorithm can provide a set of minimum or maximum
delay equalizer of any desired order, contrarily to the LP
algorithm, which provides only one (th-order zero delay)
equalizer.

While the proposed algorithm has been proved to be (truly)
robust to order overestimation, its performance is still depen-
dent on the conditioning of theshiftedcorrelation matrix. This
sensitivity to ill conditioning is a common drawback with the
existing algorithms [18].

In fact, the proposed algorithm corrects a major drawback of
the existing algorithms, which are unable to (accurately) esti-
mate the channel response from a finite observation set when its
order is overestimated. The proposed method ensures that any
channel with gooddiversity(i.e., whose exact noise-free corre-
lation matrix is well conditioned) can be well estimated from
a finite observation set and with an assumed order arbitrarily
greater than its exact order. However, if the channel has poor di-
versity, the performance of the proposed method, as well as the
existing ones, will degrade. This happens, for example, when the
channel response contains small tails [7], [19]. Effective order
detection [20] was proposed and shown to be relevant in many
situations. The issue of robustness to poor diversity remains a
challenging one.

VII. CONCLUSION

We proposed a novel second-order statistics-based blind iden-
tification algorithm that is truly robust to channel order over-
estimation. By truly, we mean that the channel response can
be well estimated when an arbitrarily overestimated value of
the channel order is known and when a finite number of noise-
corrupted observation samples is available. This is qualified as
true robustnessin comparison with the linear prediction algo-
rithm, which, in some situations, is able to handle overestimated
channel order obtained by statistical criteria, such as MDL and
AIC. In addition, the proposed algorithm is shown to outperform
the LP and OPD algorithms. Its performance can be enhanced
by increasing the size of the processed correlation matrix (the
smoothing factor) at a fixed observation size.
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