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Abstract—Active research in blind single input multiple output ~ equalization. The proof that (the much easier to estimate) SOS
(SIMO) channel identification has led to a variety of second-order  of the cyclostationary oversampled output (this result was later
s_tatlstlcs-bgs_ed algorithms, particularly the subspace (SS) and the gytended to the multiple antenna case) does contain phase
linear prediction (LP) approaches. The SS algorithm shows good ¢, mation of the channel renewed the hope of developing

performance when the channel output is corrupted by noise and . . : o . .
available for a finite time duration. However, its performance is Plind algorithms that can achieve equalization with relatively

subject to exact knowledge of the channel order, which is not guar- Short data lengths. Since the first algorithm by Tet@l. [3],
anteed by current order detection techniques. On the other hand, a number of SOS-based blind algorithms have been proposed.
the linear prediction algorithm is sensitive to observation noise, Among the more popular are the subspace (SS) [4] and the
whereas its robustness to channel order overestimation is not al- |inear prediction (LP) [5], [6] algorithms. The former achieves
ways verified when the channel statistics are estimated. We propose better performance but requires precise knowledge of the
a new second-order statistics-based blind channel identification al- L . .

gorithm that is truly robust to channel order overestimation, i.e., channel order, which is a rather dghcate and improbable task.
itis able to accurately estimate the channel impulse response from The latter can handle an overestimated value of the channel
a finite number of noisy channel measurements when the assumedorder, but its performance is very sensitive to observation noise.
order is arbitrarily greater than the exact channel order. Another It has been pointed that its (claimed) robustness to channel
interesting feature is that the identification performance can be grder overestimation does not hold when SOS contain esti-
erhanced by increasing & ceran smoothing faclr Moreover 1 maion erfors (7], [6). I was shown [6]tht the LP algoritm
These facts are justified theoretically and verified through simula- can achieve acc_eptable performance W_hen t_he _assumed order
tions. equals that provided by an order detection criterion (the MDL
and the AIC criteria [9]) overestimated by a few (one or two)
taps only. This behavior does not make the LP algorithm fully
robust to order overestimation and, more importantly, does not
dispense with the need to estimate the channel order prior to
|. INTRODUCTION its response estimation. Another algorithm, which is similar in

d_properties and performance to the LP algorithm, is the outer

LIND identification of communication channels a duct decomposition (OPD) algorithm [10]
dresses those signal processing techniques that estinpéfl)% this pa erpwe develon a ngvel al orith that combines
the channel impulse response using solely its output statistics. paper, P 9

Such an estimate may be fed to an equalization algorithmaf vantages of both algorithms. It exhibits good performance at

order to restore the transmitted data. This obviates the nx%ﬂ eSmRh\;vgilfa Eﬁ;gthrgbursot tc())sgc]iagln(z)lri?l’r:rj:risO\t/rirleschlz])itsl?rt]c.)
for training sequences, thereby achieving a much desir G €mp Prop 9 y

bandwidth gain. As second-order statistics (SOS) of the pa0ffler overestimation as accurate identification is still achiev-

sampld channel ouput do ot contan niormaton abof° S0 ESLTaLes chane) st Tnepropesed g
the channel phase, early techniques [1], [2] exploited highgr

order statistics (HOS) to achieve blind equalization. Howevd} OPerties of the associated kernel. The algorithm does not re-

the channel needs to be observed for long durations befgriéire the computation of the correlation matrix pseudo-inverse,

A . with LP and OPD algorithms, nor is the whole kernel nec-
output HOS estimates are accurate enough to allow for re“aessary to achieve identification as with the SS algorithm. It is,

hence, proved theoretically then verified through simulations
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Better equalization techniques (MMSE or Viterbi) require the bl(n)

channel response to be identified. The contribution of this 1 1

work is not onl i i [ z (n) A\y (n)
y to useshiftedcorrelation matrices to perform h! ©,

blind identification but to show that this approach comes with

performance and robustness advantages w.r.t. existing ones as s(n)—

well.

The paper is organized as follows. In Section Il, we present he
the channel model and recall the main steps of the SS and the
LP algorithms. We point out, in particular, their (non) robust- b°(n)
ness to order overestimation. In Section Ill, we introduce a novel
SOS-based blind identification algorithm and prove its robust- Fig. 1. SIMO channel.
ness to channel order overestimation. In Section 1V, we rewrite
the proposed algorithm using estimated statistics and prove tg)g“t(n) def [yZ(n)---yT(n — (I — 1))], wherel is called the
its robustness to channel-order overestimation still holds undgfoothing factarwe have
such circumstances. Simulation results are presented in Sec-
tion V and commented on in Section VI. Concluding remarks viln) = Ti(hy)sipm(n) + bi(n)
appear in Section VII.

The following notations are used throughout the paper. M#here

z‘(n) @yc(n)

trices (resp. vectors) are represented by bold or calligraphic up- 7(h,)0 --- 0
percase (resp. bold lowercase) characters. Vectors are by default T
in column orientation, whereds, H, and« stand for transpose, T def 07 (hy) -~ 0

e -

transconjugate, and conjugate, respectively; is the:th unit
vector inR*. 0, is thea x b zero matrix. It is noted a8 when

its dimension can be inferred from the contdxtis thea x a 007 (hm)
identity matrix, and is thedl x (1 +m) filtering matrix, b;(n) is defined similarly as
vi(n), and0 is thec-dimensional null vector.
0 The channel output SOS are completely described by the cor-
g def 1. relation matrix functiond’(k) défE[y(n + E)yf(n)], k > 0.
e : These SOS terms can be arranged in different ways as correla-
1 0 tion matrices. We define th&tandardcorrelation matrix
def
. . . . R; = E[yi(n)y (n)]
is thea x a (down) shift matrix.|| - || denotes the Euclidean o (1 -1
norm. A ® B is the Kronecker product of matrices and B (0) (1) o D=1
defined such that it$:, j) block element isz; ;B. Veq.) is I .
the vectorizationoperator that turns a matrix into a vector by = @ (o) - T-2)
stacking the columns of the matrix one below another. : . . :
Mg -1y r@g-2y ...  1(0)
Il. BLIND IDENTIFICATION OF SIMO CHANNELS and the (down¥hiftedcorrelation matrix
A. SIMO Channel def
It i to model a fractionall o andior mut. < pyin=1)]
is common to model a fractionally spaced and/or mul- (1) r(2) ()

tisensor receiver by a single input multiple output (SIMO)
scheme, as depicted in Fig. 1. A set ofilters are driven NG (1 T -1
by a common scalar input(n). The SIMO channel order = © S ( )
m is defined as the maximum among those of the dif- : . . :
ferent filters h'---h¢. We define thec-dimensional taps I(—1+2) T(=l+3) --- T(1)
h(k) < hik) - he(B))T, k € {0, ..., m}, wherehi(k) is

the kth tap of theith filter. The SIMO impulse response is ] , .
def the corresponding correlation matrices.

§ =€ T T T i
defmeq ashy, ~ [ @ +ohi(m)] 'd;l:fhe noise corrupted "y o ine symbols are uncorrelated with the noise, the corre-
output is thec-dimensional vectoy(n) = [y*(n)---4°("M)]".  |ation matrices are given B, = Ti(h,,) R, TH () + R
The input-output relation is expressed as a multiy 4 Ti(,)R;,, T () + R, Ifthgglymbolss(n) are
dimensional convolutiony(n) = defx(”) + b(n) = yncorrelated, then the correlation matrices are givelby=
T (b )smi1(n) +b(n) whereT (hy,) = [0(0) ---h(m)], and  ;27;(h,, V7,7 (h,,, )+ R} andR; = 027:(h,, ) Jrpm T (i )+
sk(n) def [s(n)---s(n— (k—1))]* for anyk. R?. If, in addition, the noise components are uncorrelated, then
To exploit the time-invariant property of the SIMOR! = 021, andR} = ¢%(J; @ L.). The above assumptions
channel, the channel output is observed over durations largar the transmitted symbols and on noise will be maintained

than a symbol period. We stadk successive samples intothroughout the paper.

For any other procegs(n), we denote by’ (%), Ry andRY
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As the procesx(n) is anmth-order moving average (MA) statistics case) needs to be exactly known to properly compute
multivariate process, then only(k) and|k| < m are possibly the pseudo-inverse matrix. When the order is overestimated, the
nonzero, and the sgt’'(0), ..., I'(m)} contains all the SOS noise subspace dimension is underestimated, and some of its
information of the channel output. (small) eigenvalues are wrongly classified in the signal subspace

It is worth recalling here an important result [3] on the ranknd, hence, are inverted, leading to the failure of the algorithm.
of the Sylvester matriZ;(h,,): Zi(h,,) has full column rank Therefore, solving the blind identification problem is subordi-
if the channel is coprime (the transfer functions of the channglgte to solving the order-detection problem.
h®, ¢ =1, ..., cdo not have zeros in common), ahg m. Another algorithm, with performance similar to (or slightly
better than) the LP algorithm, is the OPD [10]. Its robustness to
order overestimation is not maintained in the estimated statistics
case for the same reason: The computation of the pseudo-inverse
of the noise-free correlation matrix is required.

We now briefly recall the principal steps and properties of the
most cited blind identification algorithms developed so far, the lll. EXACT STATISTICS CASE
SS gnd the LP algorithms. We p_articularly_comment on their bﬁ: Theoretical Development
havior when the channel order is overestimated. This feature is

of practical interest because order-detection criteria, such as thd e proposed algorithm assumes knowledge of the corre-

MDL and AIC criteria [9], are not reliable when the channelf’iltlon matnx_?_?,l. The_ NOISE power 1S t_he S”_‘a”eSt qg_e_nvalue
f the Hermitian positive definite matriR; with multiplicity

output is observed under practical conditions involving me& b 5
surement noise and a limited time interval. However, overes;%—__(lRJZ T) ;T(c(h_ 1))Jl B ”;,},"éih";“’ml =o;(Ji @ 1) and
mated values of the channel order are easy to obtain, especial flqu (= 95 LU Hm S idm ity Am ).

with the AIC criterion, which is proved to asymptotically pro- pothesidl: The smoothing factor is no smaller than the
channel order! > m.

vide an overestimated channel order [9]. Alternatively, an over- UnderH1, Zi(l,,,) is full column rank (throughout the paper
estimated value of the channel order can be obtained withqig channel;1m isn;\ssumed to be co-prime) so that &Rk — '
resorting to order detection tests but simply from ¢priori RY) = rankJism) = | + m — 1. Therefore, there exist an
knowledge abOl:It the chan.nel delay spread. orthogonal se{nf)l o [resp.{n% i1 ] of vectors

The SS algorithm exploits the fact that a (full column rank) , ’ o oy def
filtering matrix 7; (h,,, ) is uniquely (up to a scalar constant) de!" the right (resp. left) null space ®; — Ry, wherew = (c —
termined by its left kernel. When the noise is spatially and ter%zl —m+ 1 Foreveryi =1,..., w, we have

porally white, the latter is given by the noise subspace of the cor-

B. Existing Algorithms and Robustness to Order
Overestimation

relation matrixR;. An important feature of the SS algorithm is TI(hm)JHmTzH(hm)n;ﬁ =0
that the noise subspace of the exact correlation matrix is also ¢rel

noise subspa(_:e of the empirical corr_elau_on matrix in the noise- (ngz)Q) Ti(hn) I 1em T () = 0.
less case. This allows for exact estimation of the channel im- '

pulse response when there is no observation noise [13] and is
the reason why the SS algorithm significantly outperforms tHa'erefore
other blind identification algorithms. However, the knowledge

of the exact channel order is required to fully characterize the Jz+mTzH(hm)n§f)1 =0
channel. and
The LP approach is based on the proof Bipck[5] that JIT+mg;H(hm)n§i)2 —o0.

the mth-order moving average (MA) SIMO output is also an
mth-order autoregressive (AR) multivariate process whose in- i i
novation is proportional to the SIMO scalar input. Hence, th qnsequently, there ex:‘StO‘l) such thatTlH(h"')n§7)l -
mth-order linear predictor, which is obtained by solving th&: i+m,i+m, and similarly, there eXiStO{g) such that
Yule—Walker (YW) equations, is used to derive muth-order ZH(hm)ngf')g = oY ei1m,1. The unknowns:\” andal” can
zero forcing (ZF) zero-delay equalizer. The channel impulse rige determined (up to an unknown phase) from

sponse is then derived from the equalizer expression and the
SOS. As annth-order AR process can also be regarded as an ngi
m/th-order AR process:’ > m, the LP algorithm was cited ’

(R~ RY) nf, =020 70,7 (b )n)

2 J 2 J

[5], [6] as robust w.r.t. channel-order overestimation. However, 203 H,];H(hrn)ngj)j
as pointed out in [7] and [8], this does not hold when the SOS are o @)
estimated, and the channel order is arbitrarily overestimated. In =% |% 7 > j=12

fact, solving the YW equation requires the computation of the

pseudo-inverse of the noise-free correlation matrix. The latter!n fact, there exist orthonormal bases of the left and right null spaces of
imat k-deficient matrix. and the theoretical r T, — RE suchthatv)” = 0 anda,” = 0fori =1, ..., w— 1. Hopefully,

approxmg s a rank-de Fe a. » a e_ eoretica a[ﬂése bases are computed with a zero probability in the exact and estimated

of the noise-free correlation matrix (that relative to the exastatistics cases.
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Consequently r«o) --- I'*“(m-1)
r*(1) - I(m)
% def 1 DN 1 . )" .
gl(f)l, +m — oL Y D) n;,?[ (1) = ? : 0 g,(n)_lj 15 ifl=m
'78\/111,1 (Rl_Rl)nl,l s .
and
I'“(m) 0O
i e 1 i)
l(—)l,ldzf O 5 n?% (2) )
s \/nlf2 (Ri — R})n;% and we rewrite (4) as
verify i 0 I'"(—m)
ho o= L S O
‘ Oé(z)* m 03 . -1,l4+m
T )y, 1m = 57 St thm Lo oy
1 ifl>m
and r 0 I*(—m)
0)*
i o : :
ZT(hnl)gg_)L 1= 2(1) €l4tm, 1 1 . . OX
Qg = ; 0 grn—l,?rn
| orem) e D
and, hence, aré — 1) order ZF equalizers with maximum and LT (—=m+1) --- TI%(0)

minimum delay, respectively, in that, in the absence of noise,

they restore the transmitted symbols with the exact amplitudd = m. Here,0 is thec x ¢ zero matrix.
and up to unknown phases. We have as many equalizers as vec-

tors ngq and n§7)2 The channel taps can be retrieved from thB. Robustness to Order Overestimation

channel output statistics and any of the ZF equalizers since  \ve now prove an important feature of the proposed algo-
rithm, which is its ability to estimate the exact channel impulse

h(k) = —E (y(n)s(n — k)*) responsé,,, when the channel order is overestimated. In fact,
s if we detect an ordet.’ > m, the rank ofR; —7?5’ is (over)esti-
= i? E (x(n)xf(n — k) g, | mated to bé-+m' +1. Any among the vectons;”) andn.’) suf-
T% ' fices to estimate the channel response following the above steps.
= % E (x(n)xff(n — k+1+m - 1)) gV e If _g,g?LHm, and gl@L , are constructed as indicated above,
i ' using (3), the algorithm attempts to compute
which can be rewritten as follows. r#(0) --- r=(l - 1)
() i
Based org;; ;, the channel response is
1 : : .
o) ... T*(1-1) | ) o Dm =) g1,
1 : : i) § : :
b= 5| : g’ .. @ . e
I*(m) - I*(l+m—1) (m) e I m = 1)
hrn,
Based orgl(z_)ly 1+m» the channel response is . r*(m+1) --- I'*(I+m)
= . ON
z P 2 : : 8i-1,1
, F"(—l—m—i-l) F"(—m) (o) F“”(m’) F“”(l—i—m’—l)
_ : : @)
hn" B 0_52 ' ’ gl*l:l'f'"l' |: hrn :|
r#(-1+1 <o (0 =
( ) ( ) (4) Oc(rn,’—rn,), 1

This step s a generalizatiqn of a similar one propc_)sed for t(/]v(:'ﬁere we have used the fact that becaxige) is anmth-order
LP algorithm [6]. As equalizers are determined with a pha?\ffA processI®(k) = 0, if [k| > m. Similarly, using (4), the

amb!gu!ty, the channel response is determined up to a ph%?éeorithm attempts to compute
ambiguity as well.

Using the fact thak(n) is anmth-order MA proces§l' (k) =

. . Oc m’—m
0 if |k| > m), we rewrite (3) as follows: [ ( b )’1} .
r=(0) --- I'*(m) 0 --. _ _
1 . . () ) Consequently, the channel response so estimated is a
hng : : 81,1, IfI>m zero-padded version of the true channel response and,

I*(m) 0 .- hence, can be used for equalization purposes.
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IV. ESTIMATED STATISTICS CASE Note that this criterion tolerates channel-order overestimation

Because of the finite sample size, the estimaf® of R? may
not be rank deficient. The vectart”) [resp.n{’}] is chosen to Ocmy 1 Ocrmy,1
be the right (resp. left) singular \}ectqr associated withithe 7 h,, TIH h,, = Tl(hm)TlH (h,,)
smallest singular value of the estim&fe of R;. They are no
longer equivalent as they may not achieve perfect ZF equaliza-
tion. The algorithm will be rewritten w.r.t. the estimated SO®r anym; andm.
case in two ways (see Sections IV-A and B). We prove in Sec-
tion IV-C that even though SOS may be estimated, robustndss Equalization Peak Criterion

Ocrnz ;1 Ocrnz ;1

to order overestimation is still maintained. We are interested here in introducing a new criterion on the
equalizers that allows for the selection of an equalizetter

A. Correlation Matching Criterion than those directly issued from the left and right singular vec-
torSnEf},i =1,...,w j = 1, 2, whereas, at the same time,

() (4)
Each among the YeCtorﬂhl an_d n, , leads, throughout r?ducing the computational complexity. For the reasons men-
the procedure described in Section IllI-A, to an estimate @ . )
ioned above, the vectoss, ; , ¢ = 1, ..., w,j = 1, 2 may

the channel response (or of a zero-padded version if the

. . . not achieve perfect ZF equalization and, hence, are no longer
detected channel order is overestimated). We need to introduce P g ' : 9

a criterion to select theestamong the2w candidates{ﬁgfl)} equivalent, in the sense that their output SNRs depend directly

i) . L
using the sole available (second-order) information about tﬁg the values of the scalau§ - Moreover, each linear combina

channel, i.e., its output estimated covariance matrix. Hen on of equalizers with the same delay is another equalizer. The

T (hOVEH (D R — 231 Wi h Hitterent zF equalizers can be compared on the basis of the am-
we compare;(h,,,)7," (hn') to Ry — 0,11 We propose the plitude of the restored symbol. We thus refer to the following as

fo!Iovying criterion, henceforth named the correlation matchinlg]e equalization peak criterion (EPC). It was introduced in [14]
criterion (CMC) to improve the performance of the LP and the mutually refer-
enced equalizer (MRE) algorithms.
R,—o2L,— AT, (flgl)) TH (flg,?) H2 ) The C()(n;pined channel-equalizer response is given by
M 7" (h,,)n;"”; . Its norm approximates (the square of) the

(5) amplitude of the restored symbol when the intersymbol in-

terference is negligible. LeN, ; & [nglj. ---ng'“})]* contain

where||.|| s stands for a matrix norm# can be chosento hel  all estimated equalizers with zero delay;jif =1 and with

if the channel response needs to be approximated with a phéseximum) delayl + m if j = 2. For all w-dimensional

ambiguity, i.e., up to a unitary complex constant. vectorst;, N; ;f; is also an equalizer. The best choice of
In the case of phase and amplitude ambiguity, the algfy- in the sense of maximizing the equalizer's output SNR,

rithm can be simplified by modifying (1) and (2) to computés achieved by [14] argmay,_,[|7" (h,,)N; ;f||. Hence,

g nl and g, a0 . The identification We Selectf; as an eigenvector associated with the largest
procedure continues as before. If we choose the Frobengigenvalue ofN/;(R; — 07L.)" Ny ;, i.e., with the largest
. . def . . ~ e .
matrix norm defined agA || = ||Vec(A)|| for any matrixA, eigenvalue OfN{IjRITNl,j- Let nl’jd:le,jfj, j =1,2be
(5) is simplified as follows: the so-computed equalizers. We finally select the ZF equalizer

def

n _argmaxj:mn{fjf{fnl,j associated with the largest

h,, = argmin <1nin
; 3
? h

equalizer output SNR. We compute the equaligen def n; or

~ N 2
h,, = argmin HRI —afIcl

i F

o

def 1
gi-1= e - =
OsA/ 1 (Rl — O’bIcl) n;

depending on whether we want to achieve identification with

1y

Vec(f{l - };gIcl)H Vec(Tl (hgf,)) 7,7 (h%))) ‘2

< ( < |12 ' hase and amplitude ambiguity or with phase ambiguity only.
() 7 ), phase and amltude anbity o wih phse by ny
C. Robustness to Order Overestimation
Finally When the channel order is overestimated, the noise subspace
dimension is (under)estimated to ke < w, and the vectors
. n§“}+1), . nfuj’.),j = 1, 2 are wrongly classified in the signal

h,, = argmax
i

subspace. However, unlike the LP and OPD algorithms, the as-
. e NH o . sociated (small) singular values will not be inverted, and the
‘Vec(Rl - O'fIcz) Vec(Tl (hgfz)) 7" (hgfz)))‘ algorithm will be able to provide estimates that well approxi-
— — (6) mate zero-padded versions of the channel response. However,
H?’l(hgﬁ)) M (hﬁ,ﬁ)) as the proposed algorithm has fewer vecm%, j =12

I
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Fig. 3. Channel-order overestimation. The legend shows the assumed channel

Fig. 2. Algorithms compariso.= m. Exact order known. (a) SNR 20 dB.
order. Sample size- 200, SNR= 20 dB. (a) CMC. (b) EPC.

(b) Sample size= 200.

6) EPC.
a) Computet;, j = 1, 2 as the eigenvector associated
with the largest eigenvalue of

[<1> n“ﬂ RY [nfj (@)]*

available than actually exist, the set of the estimaigsis re-
stricted, and the identification error is higher than it would be
if the exact order were known. This loss in performance can be
compensated for by increasing the smoothing factor and, hence,

the number of candidate estimates. g J g

b) Letn; ¥ ! ...n )*f
D. Algorithm ) 0=y ’1]
. , o[, @ T [0 @]
The algorithm can be summarized as follows. £ gy | Ry g ey | )
1) Choose an ordet: superior to the exact channel order. R, 1T a1 1) ()
2) Choose a smoothing factbi> m. > f; [nz,z e 1,2} R; [nl,2 g 2} £y
3) Compute the estimaf@, of R;. def (1) (w)q« ;
4) Estimate the noise powef as the average dthe (c — o= ngs 215%2] f2, otherwise. _ _
1)(I + 1) — m smallest eigenvalues &t ;. c) Computeg;, = n; (phase and amplitude ambi-
5) Fori=1,..., w,w= (¢ — 1)l — m + 1, compute the guity) or
cl-dimensional left singular vecttilrgy)1 and right singular g1 def ! n
VeCtOI’n(Z) associated with th&h smallest singular value \/ T
Tg (Rl UbIcl) n;

2We do not us&k; asR,; —

of 72[ — T (Jl X Ic)

oI may be full rank (ifl equals the exact channel

order and: = 2) and, hence, does not allow us to estimate the noise power.

(phase ambiguity).

d) Deduce the channel estimdig, using (3) or (4),
depending omn; being a left or right singular
vector.
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7) CMC.
a) Construct the se{mgz)} = {ngf)l} U {n% :
b) For eachngz), i = 1,..., 2w, estimate the ZF

equalizer

(i) det 1
-1 = I — )
Ts \/ngz) (Rl — O'g:[cl) n;z)

(phase ambiguity) ogl(i_)l Lef

plitude ambiguity). ‘
c) For eachggi)l, deduce the estimath(’ of the

NOR

ngi)* (phase and am-

channel response using (3) or (4), depending on

n§i> beigg a left or right singular vector.
d) Choosé,, such that

h,, = argmin (Hlf{l — r/beIcl -0’7 (Bﬁf}) TH (]&5})) H)

(phase ambiguity)

h,, = argmax

T

Vec(Ri -3 L) HVeC(Tz (55) 7 (85)) ‘
62} ()

(phase and amplitude ambiguity).

I

V. SIMULATIONS
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The previously proposed error measure simplifies to the fol-

lowing:
MSE (ﬁm,)

A Oc(m/— ?

def . . L c(m’—m), 1
# g i s a5, |
2
min(|h,, — 3 [ " } ) .

8 Oc(rn’—rn), 1

This can be proved to be equal to
MSE(h,,/) = 1

A 2
max(‘[Olyc(mum)hg] h,, )
|

This identification error was, each time, averaged over 100
Monte Carlo realizations.
We tested the proposed algorithm under the same conditions
asin [4]. The SIMO channel coefficients are£ 4 andm = 4)
h(0) =[-0.049 + 4 0.359 0.443 — i 0.0364
—0.211 — i0.322 0.417 +40.030]"
h(1) =[0.482 —40.569 1 —0.199 +i0.918 1]%
h(2) =[-0.556 +i0.587 0.921 —i0.194
1 0.873+40.145]"
h(3) =[1 0.189 —i0.208 —0.284 —i0.524
0.285 + 1 0.309]"

’ [hg Ol,c(rn’ 7771)] 1Alrn’
flrn’

A set of simulations has been conducted to test the proposed h(4) =[—0.171 +¢0.061 —0.087 — 0.054

algorithm w.r.t. different observation parameters (SNR, sample
size, smoothing factor) and, more particularly, its robustness
order overestimation and its performance compared with e
isting SOS—-based blind algorithms, namely, the SS, LP, av

OPD algorithms.
With respect to the targeted applications (equalization

communication channels), the identification problem wi
be considered to be perfectly solved whenever the solutio
matches the exact channel response up to an unknown complex
factor and an unknown number of zero trailing terms. Hence,

for an m’th-order channel estimate,,,,, with m’ > m, we

0.136 —0.190 —0.049 440.161]".

'ffle conditioning w.r.t. inversion of the processed correlation
trices is well described by the lowest nonzero singular

alue o,,;,, Which is given byo,,i,(Ry — RY) = 0.0642 and

§ in(Ra — RY) = 0.1985. The SIMO channel is driven by a

ource of unit-variance i.i.d. four-QAM symbols and corrupted

¥ unit-variance AWG noise. The SNR is defined as

E 2 2 2
sz E(EIE) _ ol |
E(llb()I*)
Fig. 2(a) and (b) compare the proposed algorithm, with both

CO’b

suggest the following identification error measure, inspirgfle c\MC and EPC criteria, to the SS, LP, and OPD algorithms
by that proposed in [15], which we will continue to call mear, \{ the number of channel observations and w.rt. the SNR,

square error (MSE)

Ocrnl 1 ?
B-rn’ - [3 h-rn

def

0(:771,2 ,1

[l

MSE (flmr) m@in

m1+ma =m'—m

whereg stands for a complex constant.
For the proposed algorithm, sucharth-order channel esti-
mate is expected to match, up to a constant, either

|:0c(rn’—rn), 1 :| or |: h,, :|
hrn Oc(rn,’—rn,), 1

respectively. As the SS, LP, and OPD algorithms are not robust
to order overestimation, this comparison is done, assuming the
exact order to be known. The proposed algorithm has better per-
formance than the LP and OPD algorithms. Even though it is
outperformed by the SS algorithm in this case, the proposed al-
gorithm, interestingly, shows good performance at low SNR.
The more important issue of channel-order overestimation is
depicted in Fig. 3. As the SS, LP, and OPD algorithms fail to
identify the channel under such conditions, only results from
the proposed algorithm are reported. For different overestima-
tion values, the simulations show low estimation error from 200
samples only. Fig. 3 shows also that this estimation error can be
further lowered by increasing the smoothing factor. This is also
illustrated in Figs. 4 and 5. This is especially useful when the
order is overestimated as initidl £ m') estimation errors can
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MSE on channel response

] T
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Sample size

. . Fig. 5. Smoothing factor effect (EPC). SNR 20. (a) Exact order.
Fig. 4. Smoothing factor effect (CMC). SNR= 20. (a) Exact order. (b) Overestimated order (by one tap).
(b) Overestimated order (by one tap).

be high. However, for the EPC criterion, the smoothing factdy be ciJrrespan|ng lowest nonzezo singular Vahﬂf&(Rf’h_

should not be chosen excessively large. The best results are p) = 0.0042 an ,ami“(R5 — R3) = 0.0171 n icate t, at

tained with! = m’ + 2. wherem/ is the assumed channel ordertn€ processed (shifted and standard) correlation matrices are
i ﬁther poorly conditioned compared with those associated with

To match more practical situations, we test the existing al ) ; . i
e channel corresponding to Figs. 2-5. Simulations results rel-

the proposed algorithms with the channel response from [1 ) . > L
prop 9 P [’\félve to this channel are summarized in Fig. 6. It shows that only

Table Ill], which corresponds to a three-ray, long delay (dela X . 2T

at 0, 0.5, and three baud periods) multipath channel. The Sl @9 proposed algorithm (with the EPC criterion) and the SS al-

channel coefficients are (= 4 andm = 5) gorithm (but only in the exact order case) are able to achieve low
identification errors. This is still true when the channel order is

h(0) =[0.0222 —40.0031 —0.1065 +40.0651 overestimated (by one tap). The fact that the CMC criterion be-
0.3757 — i 1.2429 —0.7860 — i 0.4996]" haves better in the overestimated case than in the exact order
h(1) =[0.5236 — i 1.9480 —0.9114 — i 0.9867 case is not meaningful as estimation errors are unpractical in
both cases.

0.2682 — i1.2279 —0.2713 — i 0.8143]%
h(2) =[-0.0683 + 4 0.0095 0.3268 — 70.1998 V. DISCUSSION

: " ; T
—0.1083 4404256 0.2297 +¢0.1934] As shown through simulations (Section V), the proposed al-
h(3) =[0.0222 —£0.0031 —0.1065 + ¢ 0.0651 gorithm has performances that are intermediate between the SS
0.0267 — 1 0.2953 —0.0658 — i 0.1874] and the LP algorithms when the exact channel order is known.
h(4) =[—0.0812 — 40.0977 0.1887 — i0.1856 Unlike the SS algorithm, it requires estimating the noise power,
—0.0902 +10.0914 0.1788 — 0.0320]" whlch_leaQS to a supplementary est|mat_|on error. The SS algo-
rithm is still the only one to exactly estimate the channel re-
h(5) =[0.0085 —0.0012 —0.0406 + ¢ 0.0249 sponse from noiseless finite observation samples, contrary to
0.0472 — 0.0887 —0.0955 — 0.0133]"". the proposed algorithm, which, hence, is not deterministic. This
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A T Prep. o (OMO) In fact, the proposed algorithm corrects a major drawback of
TS e gg)g.l;g. (EPO) . the existing algorithms, which are _ur_1ab|e to (ac_curately) est|_-
0'4;5&\_ N |88 e mate the channel response from a finite observation set when its
N : : Exact Order order is overestimated. The proposed method ensures that any
04\ NN | o OverBstimated Order By Ttap)l channel with goodliversity(i.e., whose exact noise-free corre-

lation matrix is well conditioned) can be well estimated from
a finite observation set and with an assumed order arbitrarily
greater than its exact order. However, if the channel has poor di-
versity, the performance of the proposed method, as well as the
existing ones, will degrade. This happens, for example, when the
channel response contains small tails [7], [19]. Effective order
detection [20] was proposed and shown to be relevant in many
situations. The issue of robustness to poor diversity remains a
challenging one.

MSE on channel response

" = .
50 100 150 200 250 300 350 400 450 500
Sample size VII. CONCLUSION

Fig. 6. Algorithms comparison. Badly conditioned channel. Exact and We proposed a novel second-order statistics-based blind iden-
overestimated order. tification algorithm that is truly robust to channel order over-
estimation. By truly, we mean that the channel response can
explains the threshold observed in Fig. 2(b). The improved pdie well estimated when an arbitrarily overestimated value of
formance of the proposed algorithm w.r.t. the LP algorithm cdhe channel order is known and when a finite number of noise-
be justified in different ways. First, the proposed algorithm usesrrupted observation samples is available. This is qualified as
singular vectors, whereas the LP algorithm explicitly (pseuddyue robustnes&n comparison with the linear prediction algo-
inverts the correlation matrix to solve the YW system. Secondthm, which, in some situations, is able to handle overestimated
like the LP algorithm, the proposed algorithm estimates a Zfhannel order obtained by statistical criteria, such as MDL and
equalizer prior to channel response estimation. However, unlikéC. In addition, the proposed algorithm is shown to outperform
the LP algorithm, the proposed algorithm provides a set of g&e LP and OPD algorithms. Its performance can be enhanced
timates and, hence, has a betthanceto achieve a lower es- by increasing the size of the processed correlation matrix (the
timation error. The number afandidatescan be increased by smoothing factor) at a fixed observation size.
increasing the smoothing factor, improving, as verified through
simulations, the algorithm performance. The decrease in the es-
timation error when the smoothing factor increases, however,
is only global (Fig. 3). This is due to the fact that the selection [1] D.N.Godard, “Self-recovering equalization and carrier tracking in two-
criteria, CMC, and EPC are both suboptimal w.r.t. the MSE cri- dc'gslr_‘gg?;Lgi?éﬂ‘gg"'&%t\'fqgggtlengE Trans. Communvol.
terion. Hence, as verified through tests, they happen to select ap] J. R. Treichler and B. G. Agee, “A new approach to multipath correc-

estimate that does not achieve the lowest MSE on the channel tion of constant modulus signaldEEE Trans. Acoust., Speech, Signal
response Processingvol. ASSP-31, pp. 459-471, Apr. 1983.
) L . . [3] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization
The CMC criterion shows performance that is slightly better *~ pased on second-order statistics: A time domain appro#€BE Trans.
than that obtained by EPC. We believe that this might be ex-  Inform. Theoryvol. 40, pp. 340-349, Mar. 1994.

; ; ima. [4] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace
plalned by. thdocal behawor.Of the proposed .Channel estima methods for the blind identification of multichannel FIR filter$FEE
tion technique. Local behavior refers to the instantaneous per-  tyans. signal Processingol. 43, pp. 516-525, Feb. 1995.

formance of any estimation algorithm achieved in a single trial [5] D. Slock, “Blind fractionally-spaced equalization, perfect reconstruction

without any statistical averaging [17]. In fact, although the noise fiIterb_anks, and multilinear prediction,” iRroc. IEEE ICASSP Conf.
is the same in all antenna sensors, the instantaneous noi Adalaide, Australia, Apr. 1994.
poweris ! K. Abed-Meraim, E. Moulines, and P. Loubaton, “Prediction error

realization is particular to each of them, and thus, differently =~ method for second-order blind identification|EEE Trans. Signal
weighting the sensor outputs leads to differeatl estimation Processingvol. 45, pp. 694-705, Mar. 1997.

o . 7] A. P. Liavas, P. A. Regalia, and J. P. Delmas, “On the robustness of the
results. Inthe CMC criterion, we select the best estimate amond linear prediction method for blind channel identification with respect

a set of channel estimates that have different local behaviors. to effective channel undermodeling/overmodelin§EE Trans. Signal
Notice that as long as ZF equalization is concerned, the Processingvol. 48, pp. 1477-1481, May 2000.

: : i ; [8] A. Gorokhov and P. Loubaton, “Blind identification of MIMO-FIR sys-
proposed algorithm can provide a set of minimum or maximum tems: A generalized prediction approac8jgnal Processvol. 73, pp.

delay equalizer of any desired order, contrarily to the LP  105-124, 1999.

algorithm, which provides only onenrfth-order zero delay) [9 M. Wax and T. Kailath, “Detection of signals by information theo-

equalizer. retic criteria,” IEEE Trans. Acoust., Speech, Signal Processird.
L= . ASSP-33, pp. 387-392, Apr. 1985.

While the proposed algorithm has been proved to be (truly)i10] z. ping, “Matrix outer product decomposition method for blind mul-

robust to order overestimation, its performance is still depen- tiple channel identification,IEEE Trans. Signal Processingol. 45,
dent on the conditioning of thehiftedcorrelation matrix. This pp. 3053-3061, Dec. 1997.

L il diti g. . d back with th [11] S.Zazo and J. M. Paez-Borralo, “Blind multichannel equalization using
sensitivity to 1ll conditioning Is a common drawback with the a novel subspace methodZEE Trans. Signal Processingol. 48, pp.

existing algorithms [18]. 2458-2462, Aug. 2000.
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