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Asymptotically Minimum Variance Second-Order
Estimation for Noncircular Signals with Application

to DOA Estimation
Jean-Pierre Delmas, Member, IEEE

Abstract—This paper addresses asymptotically minimum vari-
ance (AMV) algorithms within the class of algorithms based on
second-order statistics for estimating direction-of-arrival (DOA)
parameters of possibly spatially correlated (even coherent) nar-
rowband noncircular sources impinging on arbitrary array struc-
tures. To reduce the computational complexity due to the nonlinear
minimization required by the matching approach, the covariance
matching estimation technique (COMET) is included in the algo-
rithm. Numerical examples illustrate the performance of the AMV
algorithm.

Index Terms—Asymptotically minimum variance, complex
noncircular, DOA estimation, second-order statistics-based
algorithms.

I. INTRODUCTION

THERE is considerable literature about second-order sta-
tistics-based algorithms for estimating directions of arrival

(DOA) of narrowband sources impinging on an array of sensors.
The interest in these algorithms stems from a large number of
applications including mobile communications systems [1]. In
this application, after frequency down-shifting the sensor sig-
nals to baseband, the in-phase and quadrature components are
paired to obtain complex signals. In addition, complex noncir-
cular signals [2], for example, binary phase shift keying (BPSK)
modulated signals, are often used. However, only a few contri-
butions, such as [3]–[6], have been devoted to noncircular sig-
nals.

The DOA second-order algorithms devoted to complex cir-
cular signals rely on the positive definite Hermitian covariance
matrix , and naturally, they can be used in the context
of noncircular signals. Because the second-order statistical char-
acteristics are also contained in the complex symmetric covari-
ance matrix for noncircular signals, a potential perfor-
mance improvement ought to be obtained if these two covari-
ance matrices are used. In the context of spatially uncorrelated
amplitude modulated or BPSK-modulated sources impinging
on a linear uniform array, a significant performance improve-
ment has been already observed by simulations in [5] and [6]
thanks to a MUSIC-like algorithm and a root-MUSIC like algo-
rithm, respectively.
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To improve the performance of these algorithms and to ex-
tend DOA estimation to spatially correlated or even coherent ar-
bitrary noncircular sources and to arbitrary array structures, we
propose to consider asymptotically (in the number of measure-
ments) minimum variance algorithms in the class of algorithms
based on the two covariance matrices. We extend to complex
noncircular processes the result of Porat and Friedlander [7],
which is devoted to the estimating of moving average (MA) and
autoregressive (AR) MA parameters of real non-Gaussian pro-
cesses from sample high-order statistics. After a general lower
bound is derived for the covariance of the estimated DOAs, it is
shown that a generalized covariance matching algorithm attains
this bound. Furthermore, the ideas of the covariance matching
estimation technique (COMET) [8] are exploited to reduce the
dimension of the optimization problem.

The paper is organized as follows. Section II presents the
asymptotically minimum variance second-order estimator for
stationary complex noncircular processes with special attention
to the statistics involved. As an application, the estimation of
the DOA parameters is considered in Section III. The asymp-
totic performance is analyzed in Section IV. Finally, illustrative
examples with comparisons with the asymptotically minimum
variance (AMV) estimators based on the first covariance matrix
only are given in Section V.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold uppercase and
bold lowercase characters, respectively. Vectors are by default
in column orientation, whereas , , and stand for transpose,
conjugate transpose, and conjugate, respectively. is the

th unit vector in . vec is the “vectorization” operator
that turns a matrix into a vector by stacking the columns of
the matrix one below another, and v(.) denotes the operator
obtained from vec(.) by eliminating all supradiagonal elements
of the matrix. They are used in conjunction with the Kronecker
product as the block matrix whose block element
is and with the vec-permutation matrix that trans-
forms vec to vec for any square matrix. The notation

means that .

II. ASYMPTOTIC MINIMUM VARIANCE

SECOND-ORDER ESTIMATOR

We consider a zero-mean strict-sense stationary -variate
complex, possibly noncircular process whose structured co-
variance matrices and
are parameterized by the real parameter .
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These covariance matrices are classically estimated by
and ,

respectively. This parameter is supposed identifiable from
( , ) in the following sense:

and

To consider the asymptotic performance of a second-order al-
gorithm, we adopt a functional analysis that consists of recog-
nizing that the whole process of constructing an estimate of

is equivalent to defining a functional relation linking this es-
timate to the statistics ( , ) from which it is inferred.
This functional dependence is denoted

alg

By assumption, alg , and therefore, the
different algorithms alg(.) constitute distinct extensions of the
mapping generated by any unstructured
Hermitian matrix and complex symmetric matrix .

To extend the ideas of Porat and Friedlander [7] concerning
asymptotically minimum variance second-order estimators to
complex noncircular processes, two conditions must be satis-
fied. First, the covariance of the asymptotic distribu-

tion of ( , ) must be regular. Second, the involved second-
order algorithm considered as a mapping must be complex dif-
ferentiable w.r.t. ( , ) at the point ( , ). While
these two conditions are satisfied for a second-order algorithms
based on only, neither of these two conditions are satisfied
in our situation for the following reasons. First, because is
symmetric, the rank of , which is the rank of the set of

the entries of ( , ), is not full. Consequently, is

singular. Second, because is complex non-Hermitian, an al-
gorithm considered to be a mapping is not complex differen-
tiable w.r.t. at point .

To satisfy these two conditions, we must eliminate the
common terms in and add complex conjuguate associated
terms. Below, we consider the equivalent to ( , ) statis-

tics constituted by vec , , and

and the associated mapping

alg

, and are defined in the same way from
and . Because vec vec vec ,

, where is the permutation matrix .

Consequently, any mapping alg differentiable w.r.t. ( ,

) becomes differentiable w.r.t. alone if is structured

as , in which case

alg alg

where and denote the Jacobian matrices of this differen-

tial at point , with . In addition, because

alg for all , we have with

alg alg

Therefore, is a left inverse of

(2.1)

and this time, the rank of the set of the entries of is gen-
erally ; therefore, the covariance of
the asymptotic distribution of is a Hermitian positive defi-
nite matrix. Therefore, we obtain, by application of [7, Th. 2],
extended to the complex case.

Theorem 1: The asymptotic covariance matrix of
an estimator of given by an arbitrary second-order al-
gorithm is bounded below by the real symmetric matrix

:

(2.2)

Proof: From (2.1), we get

and furthermore, because implies and

, the Hermitian matrix
is real symmetric.

Furthermore, we prove that this lowest bound is asymptoti-
cally tight, i.e., there exists an algorithm alg(.) whose covariance
of the asymptotic distribution of satisfies (2.2) with equality.
Therefore, [7, Th. 3] extends to the complex noncircular case.

Theorem 2: The following nonlinear least square algorithm
is an AMV second-order algorithm.

(2.3)

Proof: By a perturbation analysis,
is associated with (with strutured).

If and
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, we have
and .

Expanding these two derivatives, we straightforwardly
obtain

. Consequently, the
algorithm (2.3) satisfies

alg

by using and
in the second equality. Consequently, the derivative of
the mapping alg(.) involved by (2.3) is

and
.

In practice, it is difficult to optimize the nonlinear function
(2.3), where it involves the computation of . Porat and
Friedlander proved for the real case in [9] that the lowest bound
(2.2) is also obtained if an arbitrary consistent estimate
of is used in (2.3). This property extends to the com-
plex noncircular case and to any Hermitian positive definite
weighting matrix, and therefore, we prove the following the-
orem.

Theorem 3: The covariance of the asymptotic distribution of
given by an arbitrary nonlinear least square algorithm

(2.4)

is preserved if the Hermitian positive definite weighting matrix
is replaced by an arbitrary consistent estimate that

satisfies .
Proof: Following a perturbation analysis similar to those

of the proof of Theorem 2, it is straightforward to show that the
differential of the mapping
alg involved by (2.4) is preserved.

Therefore, the minimization (2.3) can be preferably replaced
by the following:

(2.5)

III. APPLICATION TO ESTIMATION OF DOA

In the following, we will be concerned with the signal model

where represents the independent identically
distributed -vectors of observed complex envelope at the
sensor output. is the steering matrix where
each vector is parameterized by the real scalar param-
eter to avoid unnecessary notational complexity, but the
results presented here apply to a general parameterization.

and model signals transmitted by
sources and additive measurement noise, respectively. and
are multivariate independent, zero-mean, complex wide-sense
stationary. is assumed to be Gaussian complex circular
and spatially uncorrelated with , whereas

is complex circular or not, Gaussian or not, and possibly
spatially correlated or even coherent with and

. Consequently, this leads to the covariance
matrices of

and

( , ) is generically parametrized by the
real parameters

with and

.
For performance analysis, some extra hypotheses are

needed. The rank of is denoted . Clearly, ,
and strict inequality implies linear dependence among the
signal waveforms emanating from, e.g., specular multipath
or smart jamming in communication applications. We sup-
pose that the signal waveforms are linearly issued from
independent signals , i.e., there exists a full
colomn rank matrix such that . The fourth-order
cumulants of these sources are denoted by

Cum , Cum

and Cum .
We note that is linear with respect to . Consequently

(see e.g., [8]), there exists 1 a known matrix of the un-
known DOA parameters :

Because we suppose2 in this paper that is identifiable from
( , ), must be identifiable from , and neces-
sarily, has column full rank [8]. Under these conditions,
the minimization (2.5) with respect to is immediate if is
not restricted to be real. With a geometric procedure, we obtain

(3.1)

with . Because vec and
, where is the

selection matrix that satisfies vec for all
matrices, can be written as

with

Consequently, is the mean of the independent equidis-
tributed random variables . Therefore, Cov

1An explicit expression for 			(� ) will depend on the parameterization of
R(�) and R (�).

2We note that sufficient conditions for the identifiability will be application
specific since they will depend on the structure of the array and the spatial cor-
relation and the type of noncircularity of the sources.
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Cov ,
and

is a consistent estimate of structured as for the
real/imaginary part point of view. With arguments similar to that
of COMET [8], we prove that is real-valued.

Proof: If denotes the linear invertible transfor-
mation that is associated with , the real-valued vector

comprised of the real and imaginary parts of ,
, and given by (3.1) assumes the form

,
where is real, and so is . We must still examine

. Because is real-valued
and because is structured as , the matrix

is real-valued.
Thus, given by (3.1) is the real value that minimizes (2.5).

is obtained by subtituting in (2.5):

(3.2)

with

This COMET estimate is in general obtained by maximizing a
multidimensional nonlinear cost function. See [8] for some im-
plementational aspects (scoring technique, initialization of the
multidimensional search, regularization of the sample covari-
ance matrices ).

To evaluate the improvement provided by the use of the co-
variance matrix compared with the case in which only
is considered, we first consider AMV second-order algorithms
based on only.

IV. PERFORMANCE ANALYSIS

A. AMV Estimator Based on Only

We suppose here that is identifiable from only. In
this case, the asymptotic minimum variance of the estimated
parameters relies on the following standard central limit the-
orem applied to the independent equidistributed complex non-
circular random variables . Thanks to simple algebraic
manipulations of vec
vec and vec

vec , we straightforwardly prove the following
lemma.

Lemma 1: vec vec converges in distri-
bution to the zero-mean complex noncircular Gaussian distribu-
tion of covariances and , where3

(4.3)

3Because vec (y y �R(�)) = vec (y y �R(�))K,C = C K,
and the noncircular complex Gaussian asymptotic distribution ofR is charac-
terized by C only.

with4

and

First, we note that Theorems 1–3 apply to the statistics be-
cause a second-order algorithm based on only is a mapping

alg , which is complex differentiable w.r.t.
at the point , and the covariance of the asymp-

totic distribution of is regular. By application of Theorem
1 applied to the statistics , the covariance of the asymptotic
distribution of the minimum variance second-order DOA esti-
mator (3.2) based on only is given by the top left
“DOA corner” of , where is given by

(4.3). If we note here that with

and given by , the parti-
tioned matrix inversion lemma gives

where denotes the projector onto the ortho-comple-

ment of the colomns of . Consequently, we prove the
following theorem.

Theorem 4: For Gaussian or non-Gaussian and complex cir-
cularornoncircular sources, thecovarianceof theasymptoticdis-
tribution of the minimum variance second-order DOA estimator
based on only has the common closed-form expression

(4.4)

This expression (4.4) extends to non-Gaussian and/or complex
noncircular sources, which is the expression of the asymptotic
covariance given in [8] for Gaussian complex circular sources.
On the other hand, we note that this expression is no longer equal
to the Cramér–Rao bound because this AMV second-order esti-
mator based on only is no longer efficient for non-Gaussian
and/or complex noncircular sources.

Remark 1: The expression of is generally sensitive to the
noncircularity and the distribution of the sources. Furthermore,
we note that a parameterization of and may be introduced
to incorporate a priori knowledge on the spatial correlation of the
sources. For example, if the sources are supposed to be spatially
uncorrelated, will be parameterized by ,
and if, moreover, they are independent, and will be
parameterizedby only.
Consequently, the expression of is generally sensitive to this
a priori information as well.

Remark 2: Note that the derivative of the mapping
that associates the estimate to depends on the

4If the K sources are independent, Q is reduced to Q =
� (e 
 e )(e 
 e ).
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noncircularity and the distribution of the sources through the
expression of the weighting matrix [see (4.3)]. Con-
sequently, the lemma proved in [10], which states that the
constraints or ,

that satisfy the derivative if the sources
are not supposed to be spatially uncorrelated or respectively
supposed spatially uncorrelated, does not allow us to conclude
that the expression of is generally in sensitive to the
noncircularity and the distribution of the sources.

Remark 3: Note that in the particular case of one source, the

numerical value of is block diagonal , where

does not depend on the noncircularity and the distribution
of the source, but we have not succeeded in proving these prop-
erties analytically.

B. AMV EStimator Based on ( , )

To extend Lemma 1 to the statistic , we need to
consider the asymptotic joint distribution of vec
and vec . The standard central limit theorem of
the previous section extends similarly to the indepen-
dent equidistributed complex noncircular random vari-
ables . From simple algebraic manipulations of

vec
vec

vec
vec and

vec
vec

vec
vec , we

straightforwardly prove the following lemma.
Lemma 2: vec vec

vec vec converges in dis-
tribution to the zero-mean complex noncircular Gaussian

distribution of covariances and

, where is given by (4.3), and

with

where is given in Lemma 1, and5

5If the K sources are independent, Q and Q are reduced to
Q = � (e 
 e )(e 
 e ) and Q =

� (e 
 e )(e 
 e ), respectively.

Thanks to the standard continuity theorem, the asymptotic
behavior of and ( , ) are directly related. Therefore,
Lemma 1 extends to the statistic

with

and

(4.5)

Consequenlty, Theorem 4 extends to the minimum variance
second-order DOA estimator (3.2) based on ( , ) by
direct application of Theorem 1. Following the same procedure
used to prove Theorem 4, where, here, ,
given by and is replaced by
given in (4.5), we prove the following theorem.

Theorem 5: For Gaussian or non-Gaussian and complex cir-
cular or noncircular sources, the covariance of the asymptotic
distribution of the minimum variance second-order DOA esti-
mator based on and has the common closed-form ex-
pression

(4.6)

Remark 1: If the sources are Gaussian complex noncircular,
the stochastic maximum likelihood estimator is a second-order
algorithm based on and . Because it is asymptotically
efficient, the closed-form expression (4.6), where the fourth-
order terms , , and are canceled in , equals
the Cramér–Rao bound on the DOA parameters alone in these
conditions.

Remark 2: If the sources are complex circular up to the
fourth order, , , and consequently,

, and . Therefore, is block diag-

onal: . Consequently, the AMV of a

second-order algorithm based on ( , ) given by Theorem
5 reduces to

which is the AMV given by a second-order algorithm based on
only.

V. SIMULATIONS

In this section, numerical comparisons and Monte Carlo
simulations are made between the AMV estimator based on

only and the AMV estimator based on ( , ). This will
give an indication of the information contributed by the second
covariance matrix. The sources emit equipowered unfiltered
BPSK modulated signals. We consider a uniform linear array
of sensors separated by a half-wavelength for which

, where with
, which is the DOAs relative to the normal of array broadside.
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Fig. 1. Theoretical and empirical Var(� ) given by the AMV estimator
based onR only (?), by the AMV estimator based on (R ,R ) (�), by the
MUSIC-like algorithm given in [5] (o), and by the standard MUSIC algorithm
(+) versus the SNR.

In the first experiment, the two sources are independent, and
matrices and are parameterized by their diagonal terms.
Fig. 1 exhibits the theoretical and empirical (averaged on 1000
independent Monte Carlo runs) Var given by

• the AMV estimator based on only;
• the AMV estimator based on ( , );
• the MUSIC-like algorithm introduced in [5]6

• the standard MUSIC algorithm;

versus the signal-to-noise ratio (SNR) for
and . This figure shows a good agreement between the
theoretical and empirical curves, and we notice that the AMV
estimator based on ( , ) outperforms the AMV estimator
based on only, for all values of the SNR. Naturally, the
AMV estimators based on only and ( , ) perform
better than the MUSIC algorithms based on, respectively,
only and ( , ). Fig. 2 exhibits the theoretical normalized
asymptotic variance given by the AMV estimator
based on only and the AMV estimator based on ( , )
versus the DOA separation for an SNR of 10 dB. The AMV
estimator based on ( , ) clearly outperforms the AMV
estimator based on only, and the difference is particularly
prominent when the sources are very close.

In the second experiment, we select a scenario where the
second covariance matrix contributes almost no additional
information beyond the information in the first covariance
matrix. We consider two spatially correlated waveforms
including coherence. The matrices and are param-
eterized by the real and imaginary parts of their entries
(i.e., by , , , ,
and ). We suppose that
the signals consist of two equipowered multipaths issued
from the DOAs and . Referenced on the first sensor
and from the DOA , we have equivalently

6Because no performance study is available in the literature, only the empir-
ical Var(� ) is plotted for this algorithm.

Fig. 2. Theoretical normalized asymptotic variance of � ([C ] ) given
by the AMV estimator based on (R only (1) and the AMV estimator based on
R , R ) (2) versus the DOA separation.

Fig. 3. Theoretical normalized asymptotic variance of � ([C ] ) given
by the AMV estimator based onR only (1) and the AMV estimator based on
(R ,R ) (2) for uncorrelated or coherent sources versus the DOA separation.

and with and

. Consequently

and

Fig. 3 exhibits the theoretical normalized asymptotic variance
given by the AMV estimator based on only and the

AMV estimator based on ( , ) versus the DOA separation
for uncorrelated and coherent sources for
a SNR of 10 dB. We see that the AMV estimators based on
and on ( , ) have the same performance with coherent sig-
nals, whereas the AMV estimator based on ( , ) slightly
outperforms the AMV estimator based on for uncorrelated
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sources. Compared with Fig. 1, we see the crucial role of the
parameterization of and . If the sources are known to be
uncorrelated, we must parameterize these matrices by their di-
agonal only to benefit from the second covariance matrix.

VI. CONCLUSION

This paper has introduced asymptotically minimum variance
algorithms in the class of algorithms based on second-order
statistics for estimating DOA parameters of possibly spatially
correlated even coherent narrowband noncircular sources im-
pinging on arbitrary array structures. The performance of the
proposed algorithms were evaluated by closed-form expressions
of the asymptotic covariance of the DOA estimates that can be
used as a lower bound to assess the performance of any sub-
optimal second-order algorithms. These asymptotic covariances
were numerically compared with those obtained by AMV algo-
rithms based on the first covariance matrix only. We have then
realized that the expected benefits due to the noncircular prop-
erty mainly happen for uncorrelated sources and, furthermore,
if the parameterization takes this information into account. Nat-
urally, these conclusions must be mitigated because a thorough
comparison between these two AMV algorithms would need a
large quantity of scenarios (various geometry arrays, number of
sources, noncircularity, correlation, and SNR).

An issue that was not addressed in this paper is the sufficient
conditions that guarantee the identifiability of the DOA param-
eters from the two covariance matrices for noncircular signals.
This crucial question is not trivial, and it is, in fact, application
specific since it depends on the structure of the array, the spa-
tial covariance, and the type of noncircularity of the sources. A
study to deal with this issue is underway.
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