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Extension of the Matrix Bartlett’s Formula to the
Third and Fourth Order and to Noisy Linear Models

With Application to Parameter Estimation
Jean-Pierre Delmas, Member, IEEE, and Yann Meurisse

Abstract—This paper focuses on the extension of the asymptotic
covariance of the sample covariance (denoted Bartlett’s formula) of
linear processes to third- and fourth-order sample cumulant and
to noisy linear processes. Closed-form expressions of the asymp-
totic covariance and cross-covariance of the sample second-, third-,
and fourth-order cumulants are derived in a relatively straightfor-
ward manner, thanks to a matrix polyspectral representation and
a symbolic calculus akin to a high-level language. As an applica-
tion of these extended formulae, we underscore the sensitivity of
the asymptotic performance of estimated ARMA parameters by
an arbitrary third- or fourth-order-based algorithm with respect
to the signal-to-noise ratio, the spectra of the linear process, and
the colored additive noise.

Index Terms—Bartlett’s formula, fourth-order cumulant, noisy
linear process, statistical performance analysis, third-order cumu-
lant.

I. INTRODUCTION

THE problem of estimating the parameters of linear time-in-
variant nonminimum phase systems when only output data

are available from higher order statistics has been intensively
studied. The use of the cumulants in time-series analysis has a
long back history, starting with the classical paper of Brillinger
and Rosenblatt [1] (see also Brillinger’s book [2]). Giannakis
[3] was the first to show that the parameters of a th-order MA
system can be calculated from only the system’s output cumu-
lant with his third- and fourth-order formulae. From this pio-
neering work, many contributions have dealt with higher order
statistics-based algorithms to estimate the MA, AR, and ARMA
parameters of linear systems driven by an independent and iden-
tically distributed non-Gaussian sequence corrupted (or not) by
additive Gaussian noise that may be colored (see, e.g., [4]–[8]
and the reference therein).

The statistical performance of the proposed algorithms has
been analyzed only by Monte Carlo simulations, except, to our
knowledge, in the work by Porat and Friedlander [5] and by
Dandawaté and Giannakis [9], [10]. This former work gives
closed-form expressions for the asymptotic variances and co-
variances of the sample third-order moments of ARMA pro-
cesses, thanks to a state-space representation focused on the
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noise-free case only. The latter work is dedicated to estimates
of the asymptotic variances and covariances of sample th-order
cumulants of arbitrary mixtures of deterministic, stationary, and
nonstationary processes satisfying a mixing condition, based on
smoothed cross periodograms.

The purpose of this paper is to give closed-form expressions
of the asymptotic variances and covariances of the sample third-
and fourth-order cumulants of linear processes corrupted by an
additive white or colored Gaussian or non-Gaussian noise. In
addition, naturally, this paper provides tools for performance
evaluation and comparison of identification algorithms based
on sample third- or fourth-order cumulants in these conditions.
The computation of each asymptotic variance/covariance in the
noisy case turns out to be a very tedious task. For example,
for zero-mean real-valued processes, the number of terms is
222 [resp. 6022] to express variance/covariance of the sample
third-order [resp. fourth-order] moments in the noisy case to
41 [resp. 715] terms in the noise-free case. To overcome this
computational difficulty, we propose in this paper to start from
another point of view and to derive these variance/covariance
via a matrix polyspectral approach. As a result, the complexity
of the derivation of these different terms will not increase from
the noise free to the noisy case. Furthermore, to avoid overly
laborious calculations, we use a symbolic calculus akin to a
high-level language.

This paper is organized as follows. After the data model
and some notations are given in Section II, the second-order
Bartlett’s formula is recalled in Section III and expressed in a
matrix polyspectral closed form in the noisy case for real-valued
processes. This approach is extended in Sections IV and V to
the third and fourth order, respectively. Because the deriva-
tion developed for the second order would be very tedious, a
symbolic algorithm based on a few well-defined rules is used.
Matrix closed-form expressions of the asymptotic covariance
of the third-order sample moment and the asymptotic cross-co-
variance between the second- and third-order sample moments
are given in the noisy case for zero-mean real-valued processes
in Section IV. For the fourth order, we focus on zero-mean
complex processes circular up to the fourth order as examples
in Section V, where we get closed-form expressions of the
asymptotic covariance of the second- and fourth-order sample
cumulants and the asymptotic cross-covariances between
the second- and fourth-order sample cumulants in the noisy
case. Finally, the sensitivity of the asymptotic performance
of the estimated ARMA parameters by an arbitrary third- or
fourth-order-based algorithm to the signal-to-noise ratio (SNR),
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the spectra of the linear process, and the colored additive noise
is addressed in Section VI. As an example, the asymptotic lower
bound for the variances of third- or fourth-order algorithms are
compared to the asymptotic variances given by the so-called

algorithms for non-Gaussian first— or second-order
moving average processes [abbreviated as MA(1) and MA(2) in
the sequel] corrupted by a Gaussian first-order autoregressive
process [abbreviated as AR(1) in the sequel].

The following notations are used throughout the paper. The
range of all summations is understood to be from to ,
except the specified summations and the range of all integrations
is . Cov is used for real and complex-
valued random vectors and means .

II. DATA MODEL

Consider the following linear process:

where is real valued in Sections III and IV [resp. complex
valued in Section V] with , and the observation
of is noisy

The input sequence is zero-mean, independent and
identically distributed, and non-Gaussian, real-valued with

and in Sections III and IV
[resp. complex valued, circular up to the fourth order with

and in Sec-
tion V]. The measurement noise sequence is assumed to be
zero-mean, colored stationary with unknown power spectrum
and is independent of . In Sections III and IV, is real-valued
Gaussian or non-Gaussian, with and with

sixth-order cumulants Cum
satisfying . So, the polyspectra
of , , and are defined up to the fifth order

In Sections V, is circular complex valued with

and with eighth-order cumulants
Cum satisfying

. So, the polyspectra of , and are
defined up to the seventh order

In Sections III and IV, the second-order moment

and third-order moment
are estimated from consecutive measurements by the as-
sociated sample moments:

and .1 These moments

are stacked in the vectors ,

,
, and are defined in the same way. In Sec-

tion V, the second-order moment and

fourth-order cumulant
are es-

timated from consecutive measurements by the asso-
ciated sample cumulants: and . These
cumulants are stacked in increasing order in the vectors

, and is
defined in the same way.

III. SECOND-ORDER BARTLETT’S FORMULA

A. Noise-Free Case

Under the above assumptions, is asymptotically
Gaussian (see, e.g., [11, Th. 3.3])

where stands for convergence in distribution, and
Cov is given by Bartlett’s formula

(see, e.g., [12, rel. 6, p. 255])

Cov

Using Parseval’s theorem and the Fourier relationship between
the covariance and the spectral density of and between
the fourth-order cumulant and the trispectrum
of , we get the following alternative matrix polyspectral
Bartlett’s formula:

(3.1)

with , where and
stand for transpose and conjugate transpose, respectively. We
note that an element-wise counterpart of this relation was de-
rived in [2, rel. 5.10.15] by another approach.

B. Noisy Case

Under the assumptions of Section II, the asymptotic
normality and (3.1) apply in the noisy case, by re-
placing by . Furthermore, from the in-
dependence assumption, and

1We note that both c (T ) and c (T ) can be defined in several other ways,
differing in the manner in which the end data are treated. However, all of these
definitions are asymptotically equivalent.
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, and thus,
there holds

(3.2)

We note that the last term of (3.2) vanishes if the additive noise
is Gaussian.

IV. THIRD-ORDER BARTLETT’S FORMULA

A. Noise-Free Case

Under the assumptions of Section II, is
asymptotically Gaussian (see, e.g., [1])

where Cov and
Cov , and it is straightforward to get

(see, e.g., [13, rel.10.5.2])

Cov

(4.1)

Cov

(4.2)

To proceed, deducing relations similar to (3.1) along the same
lines is possible in principle, but such a derivation would be
extremely tedious. A much more interesting approach, which
consists of devising a symbolic calculus akin to a high-level lan-
guage, is used. Based on a few well-defined rules, this algorithm
allows us to automatically perform the following steps.

• Generate all partitions given by the cumulants-to-mo-
ments formula (Leonov Shiryaev formula) [13, Th. 10.1]
expressing the fifth- ( of (4.1)) and
sixth-order moments ( of (4.2))
as functions of sums of products of cumulants.

• Eliminate the zero terms using the zero-mean property.
• Construct sets of similar expressions w.r.t. the

number of terms in each product of cumu-
lants. For each such set of similar expressions
[three sets for and six sets for

], a representative term is chosen
to be analytically expressed by a polyspectral formula, as
proved in Appendix A.

Consequently, using the (.) notation introduced in [14] to avoid
listing explicitly all the partitions, we obtain

Cum

Cum Cum

Cum

Cum Cum

Cum Cum

Cum Cum

Cum (4.3)

As an example, the expression Cum Cum
can be broken down into three sets

Cum Cum

(4.4)

and the last term cancels with in summation (4.1).
So, this expression reduces to two sets of similar expressions.
Using expressions (4.1), (4.3), and (4.4), the following matrix
polyspectral extensions of Bartlett’s formula is proved in Ap-
pendix A, where each polyspectral integral is associated with a
set of the previous similar expressions

Cov

(4.5)

where matrices , , and are defined in Ap-
pendix B.

With the same procedure, the following matrix polyspectral
formula is derived from (4.2)

Cov

(4.6)

where the different matrices are defined in Appendix B.
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B. Noisy Case

In the noisy case, the third-order relations are derived in the
same way as for the second order, because the independence of

and ensures the additivity of their polyspectra. Therefore,
for example, for additive Gaussian noise, we get from (4.5) and
(4.6)

(4.7)

(4.8)

The influence of the additive colored noise on these asymptotic
covariances is difficult to analyze from these expressions. How-
ever, from the SNR point of view, we note that for a specific
distribution of , and are proportional to and ,
respectively, whereas the noise additive terms are proportional
to and , respectively, where
the terms depend on the ARMA model and spectral
shape of the additive noise. In the case where the noise spectrum
has sharp resonances, the dominant term of the previous expres-
sion is given by the last term of (4.8). For example, for an AR(1)
noise , because it is proved in Appendix C that

(4.9)

this dominant term grows unbounded as approaches 1 and,
therefore, contributes to the degradation of the performance
when the SNR is decreasing, as will be seen in Section VI-C.

V. FOURTH-ORDER BARTLETT’S FORMULA

In this section, we focus on zero-mean complex processes
circular up to the fourth order2 as an example.

A. Noise-Free Case

Under the assumptions of Section II, is
asymptotically Gaussian3 (see, e.g., [1])4

where Cov ,
Cov , Cov

, Cov ,
Cov , and

Cov . With the approach used to
prove the real-valued Bartlett’s formula in [13, sec. 4.1, 4.2],
it is straightforward to get

Cov

Cov

Similarly to the real-valued Bartlett’s formula (3.1), we get the
following alternative matrix polyspectral Bartlett’s formula:

(5.1)

(5.2)

2A zero-mean complex processes x is circular up to the r-order iff
E( x x ) = 0 for all positive integers a , b , p, q
such that p + q � r and p 6= q.

3The distribution of a zero-mean Gaussian complex multivariate random vari-
able x is characterized by the two covariance matrices ��� = E(xx ) and
��� = E(xx ). This distribution is denoted N (0;��� ;��� ).

4We note that despite the fact that the cumulants are rich of symmetries, the
noncircular complex Gaussian asymptotic distribution of c (T ) [resp. c (T )]
is not characterized by C [resp. C ] only.
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Then, to express , , , in function of the
polyspectra of , we first note that because

we get the following first-order expansion:

where . Using
and the previous expansion, we get,

thanks to the asymptotic covariances of the sample moments
derived from [13, rel.10.5.2] extended to the complex case, the
asymptotic cross-covariance of the second- and fourth-order
sample cumulants

Cov

(5.3)

To get Cov , we use the same
approach for which we have

Cov

with

where we have the equation at the bottom of the page for the
continuation of the above. To proceed, the moments in the last
four summations of (5.3) and in are expressed by cumulants.
For example

then, these summations are evaluated similarly to the
real-valued polyspectral Bartlett’s formula (3.1).

The summations of sixth-order moments in , , and in
the first term of (5.3) and summations of eighth-order moments
in are expressed as functions of polyspectra of from
our symbolic calculus akin to a high-level language based on
a few well-defined rules used in Section IV. Here, the zero
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terms are eliminated according to the circularity property
up to the fourth order, and the sets of similar expressions
are constructed w.r.t. the number of terms and in
each product of cumulants. For each such set of similar ex-
pressions [six sets for and 21 sets
for ], a representative term is
chosen to be analytically expressed by a polyspectral formula
derived in the same way as for the third-order case proved in
Appendix A. We get

Cum

Cum Cum

Cum Cum

Cum (5.4)

and

Cum

Cum Cum

Cum Cum

Cum Cum

Cum

Cum Cum Cum

Cum (5.5)

where, for example, the second line of (5.4) gives

Cum Cum

and because the last term cancels with in the summa-
tion , this line gives
three sets of similar expressions.

The limits Cov and
Cov are evaluated simi-

larly. Finally, our symbolic calculus delivers

• LATEX polyspectral expressions of , , ,
and similar to (4.5), (4.6), but not reproduced here
due to lack of space. They are available from the authors
upon request;

• Matlab function files allowing one to compute the numer-
ical values of these expressions (see Section VI-B).

We have chosen to consider zero-mean processes that are com-
plex circular up to the fourth order. Naturally, our methodology
can be applied to the cases of zero-mean real-valued processes
or zero-mean complex processes circular up to the second order.
The only difference is due to distinct rules of elimination of the
zero terms.

B. Noisy Case

In the noisy case, the fourth-order relations are derived in
the same way as for the second and third order, thanks to the
additivity of the polyspectra of and .

VI. APPLICATION TO ESTIMATION OF ARMA PARAMETERS

It is beyond the scope of this paper to analyze the statistical
performance of the identification algorithms based on sample
third- or fourth-order cumulants proposed in the literature.
Instead, we unveil the influence of colored additive noise on
the potential asymptotic performance of such an arbitrary
algorithm. In that purpose, asymptotic lower bound for the
covariance of third- or fourth-order estimators and asymptotic
covariance of an arbitrary third- or fourth-order-based algo-
rithm are considered, where special attention is given to the
statistics involved.

A. Asymptotic Lower Bound on the Covariance

To apply the notion of asymptotic minimum variance (AMV)
estimators [5] (also called asymptotically best consistent esti-
mators in [15]), the involved sample cumulants must sat-
isfy three conditions.

• If denotes the real-valued parameters (real and imagi-
nary parts in the case of complex processes) of the noisy
ARMA model, must be identifiable from in the
following sense: .5

• The involved third- or fourth-order algorithms considered
as mappings that associate to , the estimate :

must be real [resp. com-
plex] differentiable w.r.t. at the point for
real-[resp. complex] valued processes.

• The covariance of the asymptotic distribution of the
sample cumulants must be nonsingular.

These two latter conditions do not raise any problem for
real-valued processes. However, for complex-valued processes,

must collect real-valued cumulants [e.g., and
] and complex-valued cumulants and their conjugate

[e.g., and for ] to satisfy the second
condition (see [16]). In addition, to satisfy the third condition,
redundant cumulant samples must be withdrawn. In these
conditions, the asymptotic covariance of an estimator of

given by an arbitrary third- or fourth-order algorithm is
bounded below by the real symmetric positive definite matrix

(6.1)

where . Furthermore, there exists a non-
linear least-square algorithm (dubbed the AMV algorithm [5])
whose covariance of the asymptotic distribution of the estimate
of satisfies (6.1) with equality. In practice, is Gaussian dis-
tributed, and if third- or fourth-order cumulants are considered,
the parametrization can be partitioned as ,
where collects the parameters of the ARMA filter of in-
terest, and collects the parameters of the se-
quences and . Consequently, the covariance of the asymp-
totic distribution of the minimum variance third- or fourth-order
ARMA estimator is given by the top left “ARMA corner” of

. Then, because is linear with

5We note that the definition of � depends on the choice of the cumulants c

and the a priori knowledge on the distribution of the measurement noise � .
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respect to , i.e., implies

with , the matrix inversion lemma gives

(6.2)

where denotes the projector onto the orthogonal com-

plement of the columns of .

B. Asymptotic Covariance of an Arbitrary Third- or
Fourth-Order Estimator

The asymptotic performance of an arbitrary third- or
fourth-order-based algorithm that estimates the ARMA param-
eters of a noisy ARMA model can be derived (see, e.g., [13,
Th. 3.16]) from the asymptotic normality of or

where is the differential of the algorithm considered as
a mapping, evaluated at point , and is the asymptotic
covariance matrix of the sample cumulants involved in the al-
gorithm deduced from , , for the third-order real
case or , , , , , for the fourth-order
complex case.

Our symbolic calculus translates the polyspectral expres-
sions of these different asymptotic covariance matrices into
rational fraction expressions w.r.t. the ARMA process
and AR(1) process coefficients, under the form of Matlab
function files. These files allow one to compute the numerical
values of these matrices for particular values of the param-
eters and are available from the authors upon request. They
allow the interested practitioner to evaluate the performance
of third- or fourth-order algorithms by simple computation
of the differential of the algorithm and selection of the

involved. The programs giving the numerical values
of and are built along the
following steps. First, each polyspectral integral expression
obtained in Section IV and V is symbolically expressed as
functions of and of the transfer
function of the measurement noise generator driven by
the independent Gaussian sequence of power , thanks to
the relations (see, e.g., [4, rel. (C-24)]) extended to the complex
case

real case

complex case

Second, the transfer functions and are expressed in
terms of the parameters of the MA process and AR process

(e.g., and in Section VI-C), and finally, the polyspectral

Fig. 1. Third-order normalized lower bound for the asymptotic variance of
estimates of a as a function of the SNR for different values of L.

integrals are symbolically computed as functions of the MA and
AR parameters for fixed, thanks to the relation

where are deduced
from the polyspectral expressions evaluated as functions of

and .

C. Illustrative Numerical Examples

As examples, three experiments are proposed for which noisy
MA(1) or MA(2) processes are considered. The SNR is de-
fined as . In the two first
experiments, the processes are real valued, the input is ex-
ponentially distributed with mean adjusted to zero, power
and , and the measurement noise is either
Gaussian i.i.d. or Gaussian AR(1), ( where is
Gaussian i.i.d.).

In the first experiment, an MA(1) is considered, where
, and . Fig. 1 shows the normalized asymptotic lower

bound6 for the asymptotic variance of estimates of based on
the third-order diagonal7 cumulants
and 8 as a function of the SNR for
different values of for white noise. For , the sample cu-
mulants and are consistent estimates of zero.
Nevertheless, however, Fig. 1 shows that they contribute to im-
proving the performance. This extends to noisy processes an ob-
servation shown in the noise-free case in [5].

Figs. 2 and 3 show the lower bound for the asymptotic vari-
ance of estimates of based on the sample third-order
cumulants and the asymptotic the-
oretical and empirical variance given by the so-called

6The normalized asymptotic lower bounds and asymptotic theoretical vari-
ances are computed for T = 1. That means that the actual asymptotic lower
bounds and asymptotic theoretical variances are obtained from the results given
here by dividing by T .

7We restrict this example to diagonal cumulants because the off-diagonal
third-order cumulants carry almost no additional information beyond the infor-
mation in the diagonal ones in the MA(1) process case, as it was shown in the
noise-free case in [5].

8The cumulants in the second set are called diagonal because of the relation-
ship c = c .
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Fig. 2. Third-order asymptotic lower bound (1) and asymptotic theoretical and
empirical (averaged on 100 independent Monte Carlo runs) variance given by
the C(k; q) formula (2) as a function of the SNR for T = 10 .

Fig. 3. Third-order asymptotic lower bound (1) and asymptotic theoretical and
empirical (averaged on 100 independent Monte Carlo runs) variance given by
the C(k; q) formula (2) as a function of the SNR for T = 10 .

formula of Giannakis [3] , respec-
tively, for white and AR(1) noise as a function
of the SNR. Because

, we note that from the expression of
given in Section IV-B, we get for the estimator

Var

(6.3)

where does not depend on the powers of and . We see
from these two figures that below a certain threshold (which is
typically related to the noise spectrum), the asymptotic variance
of the estimate of grows rapidly with the noise level. Beyond
this threshold (for SNR dB [resp. SNR dB] for white
noise [resp. AR(1) noise], the asymptotic variance is approx-
imately constant. This proves that the AMV3 and the
algorithms are insensitive to noise in a large domain. Further-
more, we note that contrary to the asymptotic lower bound, the
asymptotic variance given by the algorithm strongly de-
grades for sharp resonant AR(1) noise compared to white noise
of the same power.

Figs. 4 and 5 show the asymptotic lower bound and the
asymptotic theoretical and empirical variance given by the

Fig. 4. Third-order asymptotic lower bound (1) and asymptotic theoretical and
empirical (averaged on 1000 independent Monte Carlo runs) variance given by
the C(k; q) formula (2) as a function of the noise parameter b for a = 0:5,
SNR = 10 dB, and T = 10 .

Fig. 5. Third-order asymptotic lower bound (1) and asymptotic theoretical and
empirical (averaged on 1000 independent Monte Carlo runs) variance given by
the C(k; q) formula (2) as a function of the MA parameter a for b = 0:5,
SNR = 10 dB, and T = 10 .

algorithm as a function of the parameter of the AR(1)
noise and of the parameter of the MA(1) process , re-
spectively. We see that the performance is very sensitive to the
spectrum of the MA(1) process but relatively insensitive to
the spectrum of the additive noise , except when approaches
1 [see (4.9)], where the performance of any third order-based
algorithm dramatically degrades. We note that the asymptotic
variance given by the algorithm attains the asymptotic
lower bound for 9 and is inadequate to estimate a param-
eter close to zero.

Figs. 6(a) and (b) show the theoretical asymptotic lower
bound and the empirical asymptotic variance given by the
AMV3 and the algorithms as a function of the number

of samples for two values of SNR. We see that the domain
of validity of our asymptotic analysis roughly does not depend
on the algorithm but is sensitive to the SNR. Naturally, this
domain of validity increases with increasing SNR (
for dB and for dB).

9This property has been confirmed for all values of b and SNR, but we have
not succeeded in proving it analytically.
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(a)

(b)

Fig. 6. (a) Third-order theoretical asymptotic lower bound and empirical
(averaged on 1000 independent Monte Carlo runs) asymptotic variance given
by the AMV3 (1) and C(k; q) (2) algorithms as a function of T , for a = 0:5,
b = 0:5 ,and SNR = 0 dB. (b) SNR = 20 dB.

In the second experiment, an MA(2) process is considered,
where and . Fig. 7(a) [resp. (7b)]
shows the normalized asymptotic lower bound and theoretical
variance given by the algorithm for the estimated pa-
rameters [resp. ] as a function of the parameters [resp.

] of the MA(2) process . As for the MA(1) case, we see
that the performance is very sensitive to the value of the MA
parameters. As for MA(1), we see that the performance is very
sensitive to the spectrum of . We note that contrary to the
MA(1) case, no algorithm is adequate to estimate a parameter

close to zero. Furthermore, the performance of the
algorithm is practically uniformly optimal among the class of
third-order-based algorithms.

In the third experiment, the processes are complex valued,
the input is an 8-PSK modulation with power and

, , 10 and is either complex
circular Gaussian i.i.d. or AR(1) ( , where
complex circular Gaussian i.i.d.).

Figs. 8 and 9 show the normalized lower bound for the
asymptotic variance Tr of estimates of

based on the sample fourth-order cumu-

lants

10Because for up to fourth-order circular processes � = Eju j �
9 Eju jEju j + 2 � 6 (Eju j) and � = Eju j � 16 Eju jEju j �
18 Eju jEju j+ 2�72 Eju j(Eju j) � 6� 24 (Eju j) .

(a)

(b)

Fig. 7. Third-order theoretical asymptotic lower bound and empirical
(averaged on 1000 independent Monte Carlo runs) asymptotic variance given
by the AMV3 and C(k; q) algorithms for the estimated parameter (a) a as a
function of a for a = 0:8, b = 0:5, SNR = 10 dB, and T = 10 . (b) a as
a function of a for a = 0:5, b = 0:5, SNR = 10 dB, and T = 10 .

11 and the normalized asymptotic vari-
ances given by the so-called formula (1) extended
to the complex case and by the following modified
formulae (2)(3):

• ) (1);
• because

and (2);
• because

and (3)

for white and AR(1) noise as a function of the SNR.
We note that here, and . Sim-
ilar to the third-order case, we see from these two figures that
beyond a certain threshold, the asymptotic lower bound and the
asymptotic variance of the estimate of grows rapidly with the
noise level. Beyond this threshold (for about SNR dB), the
asymptotic variance is approximately constant. Furthermore, we
see that below this threshold, the asymptotic variances given by

11Because c = Cum(y ; y ; y ; y ), we note that c (T )
, c (T ) = c (T ) are real valued, and c (T ) =
c (T ) = c (T ) are complex valued. Consequently, the
statistic c (T ) used for the AMV4 estimator is composed of
fc (T ); c (T ); c (T ); c (T ); c (T );c (T ); c
(T ); c (T )g.
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Fig. 8. Fourth-order normalized asymptotic lower bound (AMV4) and
variances given by the C(k; q) formulae (1), (2), and (3) as a function of the
SNR.

Fig. 9. Fourth-order normalized asymptotic lower bound (AMV4) and
variances given by the C(k; q) formulae (1), (2), and (3) as a function of the
SNR.

all the algorithms grow more rapidly than in the third
order with the noise level as anticipated from the relation (6.3)
extended to the fourth-order case

Var

We see that the formula outperforms the modified
formulae, except for small SNR where their perfor-

mance is similar. Furthermore, we note that contrary to all
the formulae whose performance degrades for AR(1)
noise compared to white noise of the same power, the AMV
estimate improves for small SNR. Consequently, there must be
fourth-order algorithms that are much more efficient than the

formulae for small SNR.
Fig. 10 shows the normalized asymptotic lower bound based

on (AMV4), the normalized asymptotic lower bound
based on the statistics used in the formula (1), and the

modified formula (2), i.e., based on

Fig. 10. Fourth-order normalized asymptotic lower bounds (AMV4) (AMV4 )
and normalized asymptotic variance given by the C(k; q) formulae (1), (2), and
(3) as a function of the noise parameter b for a = 0:5e and SNR = 10dB.

Fig. 11. Fourth-order asymptotic lower bound (AMV4) and asymptotic
theoretical and empirical (averaged on 100 independent Monte Carlo runs)
variance given by the C(k; q) formulae (1), (2), and (3) as a function of the
MA parameter a for b = 0:999, SNR = 10 dB, and T = 10 .

(AMV4’) and
the normalized asymptotic variance given by the for-
mula (1) and by the modified formulae (2) and (3) as a
function of the parameter of the AR(1) noise . Because these
variances are relatively constant and symmetric w.r.t. zero, we
focus on the [0.999 1] domain of , where only the performance
of the formulae degrades when approaches 1.
The AMV4 and the AMV4’ are relatively insensitive to the
spectrum of the additive noise , including in the immediate
vicinity of 1.

Fig. 11 shows the asymptotic lower bound based on
(AMV4) and the asymptotic theoretical and empirical vari-
ance given by the formula (1), by the modified

formulae (2) and (3) as a function of the parameter
[ with ] of the MA(1) process .
We see that the performance is very sensitive to the spectrum
of the MA(1) process . Furthermore, we note that there is
no uniformly minimum variance estimator among the three

formulae that are inadequate to estimate a parameter
close to zero.

Finally, Fig. 12 shows the normalized asymptotic lower
bound for the asymptotic variance of estimates of
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Fig. 12. Fourth-order normalized asymptotic lower bound based on sample
covariances only (AMV2), on sample fourth-order cumulants only (AMV4),
and on sample covariances and fourth-order cumulants (AMV24) and
normalized asymptotic variance given by the C(k; q) formulae (1), (2), and (3)
as a function of the MA parameter a .

computed for three different cases: when the statistic
consists of the sample covariances only12

(AMV2), when the statistic
consists of the sample fourth-order cumulants only

(AMV4) and when the statistic
consists of the preceding sample covariances and sample
fourth-order cumulants (AMV24). This figure also exhibits the
normalized asymptotic variance given by the formulae
(1)(2)(3). In order for the parameter to be identifiable from
the sample covariance only, this figure is drawn in the
noise-free case. As we see from this figure, there is a
considerable amount of information in the fourth-order sample
cumulants compared to the information in the sample
covariances. Furthermore, we note that contrary to the noisy
case, the AMV vanishes for a parameter close to zero.

Naturally, these examples are totally inadequate for pre-
dicting the asymptotic performance of a specific third- or
fourth-order algorithm in the presence of additive colored
noise. They simply show the potentially large sensitivity of the
asymptotic performance of an arbitrary algorithm to the spectra
of the linear process and of the colored noise.

VII. CONCLUSION

This paper has extended Bartlett’s formula to the third and
fourth order and to noisy linear processes, thanks to a polyspec-
tral approach and a symbolic calculus akin to a high-level
language. As an application of these closed-form expressions,
the sensitivity of the asymptotic performance of the estimated
ARMA parameters by an arbitrary third- or fourth-order-based
algorithm to the SNR, the spectra of the linear process, and the
colored additive noise is addressed. Such sensitivity analysis
has been possible, thanks to the numerical expressions derived

12As estimation methods based on the sample covariances only cannot dis-
tinguish between nonminimum phase and minimum phase processes having the
same spectrum, the bound for this case applies only to estimators that are based
on prior knowledge of the zero locations within a sufficiently small error.

from our theoretical expressions, whereas Monte Carlo simula-
tions have accommodated only particular scenarios until now.
As an example, the asymptotic lower bound for the variances
of third- or fourth-order algorithms are compared to the asymp-
totic variances given by the so-called algorithms for
non-Gaussian first- or second-order MA processes corrupted by
a Gaussian first-order AR process with respect to the SNR and
to the MA and AR parameters. In particular, we have shown
that the performance presents a threshold effect with respect
to the SNR and is very sensitive to the spectrum of the MA
process but relatively insensitive to the AR spectrum, except
for sharp resonances.

APPENDIX A
PROOF OF EQUATION (4.5)

Because if and if

Cum

and from [4].
Then, looking at each term of Cum

Cum [10], there appears a term that
vanishes in (4.1), three terms of the form and six
terms of the form , which become, respec-
tively,

because the second term is a convolution product of and
at the point , since is

the Fourier transform of the sequence . Combining
these groups of terms, the matrix expression (4.5) is obtained.



2776 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

APPENDIX B
EXPRESSIONS OF THE DIFFERENT MATRICES

OF SECTION IV

Our symbolic algorithm gives rels. (4.5) and (4.6), where ma-
trices are composed of finite sums of
defined by the following:

where ,

and ,
, , 2,

3, ( in the first three equations and elsewhere).

APPENDIX C
PROOF OF EQUATION (4.9)

Because
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