
1532 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 4, APRIL 2008
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With Respect to Bandwidth
Marc Oudin and Jean Pierre Delmas, Senior Member, IEEE

Abstract—This paper addresses the robustness of adaptive nar-
rowband beamforming with respect to bandwidth based on the loss
of performance in terms of signal-to-interference-plus-noise ratio
(SINR). The criterion used by Zatman to define a narrowband en-
vironment, i.e., the ratio between the jammer plus noise covari-
ance matrix and the noise eigenvalue, is studied from the point of
view of a loss of SINR after narrowband beamforming under non
narrowband conditions. Using theoretical results about the eigen-
values and eigenvectors of covariance matrices for signals closely
spaced in frequency by Lee, it is shown that Zatman’s criterion can
be interpreted as an upper bound on the SINR loss which is nearly
reached under certain conditions that are specified.

Index Terms—Adaptive beamforming, array signal processing,
bandwidth, direction of arrival, narrowband, robustness, signal-to-
interference-plus-noise ratio (SINR).

I. INTRODUCTION

EVOLUTION of radar technology and full digitized arrays
allow the short term use of wideband waveforms for dif-

ferent advantages, such as high range resolution, stealthness,
etc., (see, e.g., [1]). This breakthrough is a new challenge in radar
for which broadband time domain or frequency domain array
processing algorithms allow one to improve performance over
standard spatial beamforming based on narrowband assump-
tions [2]. However, this improvement is done at the price of an
increased complexity. Therefore, to optimize the choice between
narrowband or broadband beamforming algorithms we have
to precisely evaluate the performance of standard narrowband
algorithms when the waveform has a certain given bandwidth.

In [3], Zatman proposes a general definition of a narrowband
signal environment which is often used as a reference for adap-
tive beamforming, as well as for direction of arrival (DOA) es-
timation. It is based on the second eigenvalue of the jammer
plus noise covariance matrix. Thus, an environment is quali-
fied as “narrowband” if this eigenvalue is smaller than 3 dB
above the noise level in the jammer plus noise covariance ma-
trix. The author has shown by simulations that an increase of
bandwidth leads to the second eigenvalue rising above the noise
floor and a growth of the angular region in which the jammer de-
nies coverage. Therefore, the decrease of performance of adap-
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tive beamforming algorithms is related to the second eigenvalue
in the jammer plus noise covariance matrix. However, he has
not given an explicit relation between the second eigenvalue
level and the beamformer’s performance losses. Moreover, he
has considered a zero-bandwidth target whereas in practical ap-
plications, its bandwidth will often be nonzero like that of the
jammer, which may also induce losses on the SINR. Those is-
sues have been partially considered in [4] where the authors
have proposed to define the ratio between the signal-to-interfer-
ence-plus-noise ratio (SINR) resulting from narrowband beam-
forming with nonzero bandwidth conditions to that resulting
from the same processing with zero bandwidth conditions, as
a criterion for narrowband beamforming. However, they have
considered a jammer-free environment, which is not realistic for
most radar applications.

In this paper, we propose to use the same criterion as in [4]
to study the robustness of adaptive narrowband beamforming,
in the presence of a target and a nonzero bandwidth jammer
whose DOAs are assumed to be arbitrary. First, we derive
the expression of the SINR for zero-bandwidth and nonzero
bandwidth target models. Using theoretical results about the
eigenvalues and eigenvectors of covariance matrices for signals
closely spaced in frequency by Lee [5], we show that under
the assumption of a small fractional bandwidth, both models
lead to the same expression. Then, we relate the considered
SINR ratio to the criterion proposed by Zatman to define a
narrowband environment, i.e., the ratio between the second
eigenvalue of the jammer plus noise covariance matrix and
the noise eigenvalue. Thus, we show that the latter criterion
can be interpreted as an upper bound on the SINR loss due to
bandwidth, with respect to the target DOA, and derive sufficient
conditions for which the upper bound is nearly reached.

This paper is organized as follows. The data model is given in
Section II. Then, the considered robustness criterion is given in
Section III and detailed for zero-bandwidth and nonzero band-
width target models. Finally, this criterion is related to Zatman’s
definition of narrowband in Section IV.

II. DATA MODEL

We consider a radar system where the receive antenna is a
uniform linear array1 (ULA) composed of sensors. The trans-
mitted waveform has carrier frequency and the array is as-
sumed to have half-wavelength spacing with respect to the car-
rier frequency. Then, consider an environment composed of one
jammer, thermal noise and a target. The jammer is modeled by a
nonzero bandwidth white stationary process with power and
bandwidth and the thermal noise by a spatially white complex

1The results of this paper are easily extended to an arbitrary array geometry.
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process, with power . The jamming plus noise covariance ma-
trix2 is

(1)

with

where and is the DOA of the jammer. Finally,
the target signal is modelled by a stationary process, with power

, known DOA and covariance matrix .

III. ROBUSTNESS CRITERION WITH RESPECT TO BANDWIDTH

The common performance measure of SINR is chosen to
study the robustness of adaptive narrowband beamforming with
respect to bandwidth. In practical cases, knowing whether a
signal is narrowband or not is important to select the proper spa-
tial processing. If the signal is narrowband, spatial processing
alone is sufficient [6]. On the contrary, under non narrowband
conditions, space-time or subband processing allows one to
compensate for performance losses due to bandwidth, see, e.g.,
[2,, ch. 6], [7]–[10].

Under nonzero bandwidth conditions, the SINR expression is
given by

(2)

where and are defined in the previous Section and is a
spatial filter. When a zero-bandwidth designed adaptive beam-
former is computed under nonzero bandwidth conditions, its ex-
pression is given by3

(3)

and the SINR expression becomes, using (3) in (2)

(4)

In practical applications, the target and jammer bandwidth
can often be assumed to be identical. Indeed, when receiving
a nonzero bandwidth target signal, a bandpass filter is often ap-
plied to the data, thus reducing the jammer bandwidth to that of
the signal. Therefore, we consider in the following a nonzero
bandwidth target with the same bandwidth as that of the
jammer. However, to make the analysis of the full nonzero band-
width case (i.e., nonzero bandwidth jammer and target) easier,
we first consider the simpler case of a zero-bandwidth target
model with a nonzero bandwidth jammer model. In the fol-
lowing, we detail SINR expression (4) depending on the target
model.

2As in [3], we consider a radar scenario, assuming that this covariance ma-
trix does not contain a target signal’s component and study steady-state perfor-
mance.

3We use the subscript NZB when the environment is nonzero bandwidth and
ZB when it is zero-bandwidth.

A. Zero-Bandwidth Target Case

Here, we assume that the target signal is modelled by a zero-
bandwidth stationary process. Its covariance matrix is given by

(5)

with

(6)

Injecting (5) in (4), we obtain

(7)

B. Nonzero Bandwidth Target Case

Here, we assume that the target is modelled by a nonzero
bandwidth white stationary process with bandwidth . Its co-
variance matrix may be written as4

(8)

with

Now we show that (4) can be approximated by the SINR ex-
pression obtained with a zero-bandwidth target (7) under the as-
sumption of a small fractional bandwidth. More precisely, we
prove in Appendix I the following result.

Result 1: When the second eigenvalue of the target covari-
ance matrix satisfies , the SINR ap-
pearing in criterion (4) is approximated by

(9)

This approximation is validated by extensive numerical com-
parisons, for arbitrary jammer DOAs and number of sensors.
For instance, Fig. 1 compares actual SINR (4) to approximate
one (9) as a function of the target DOA. The parameters are

, , and dB, (those
parameters will be used in the following simulations) and the
fractional bandwidth . We observe that the ap-
proximation is accurate except when the target DOA is close to
array endfire. Then, to illustrate the influence of the fractional
bandwidth, we plot in Fig. 2 the same expressions, as well as
the term , as a function of the fractional
bandwidth, with . First, we note that the approxi-
mation remains accurate for fractional bandwidths up to about
0.15. Then, we observe that rapidly increases with the SINR
and that the condition in Result 1 is sufficient but not neces-
sary. Indeed, the approximation may be very accurate whereas
the condition is not satisfied, due to the
coarse upper-bounds used for the derivation of Result 1.

4Note that in [4], a simpler rank-one target covariance matrix of the form
�R = � �� �� with �� / � (f + f)df was used.
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Fig. 1. Actual SINR (4) and approximate SINR (9), as a function of the target
DOA.

Fig. 2. Actual SINR (4), approximate SINR (9) and � = (� � )=(� � ) as
a function of the fractional bandwidth.

C. Expression of the Robustness Criterion

Here, we introduce a robustness criterion defined by the ratio
between the nonzero bandwidth SINR (for both zero-bandwidth
and nonzero bandwidth targets with ) and the
zero-bandwidth SINR [4]. This criterion allows one to quantify
the loss in SINR due to the increase of bandwidth of the envi-
ronment (see, e.g., [3] for illustrations of this loss in SINR). Its
expression is

(10)

where is given by (7) and (9) and is the
optimal SINR under zero-bandwidth conditions equal to

where

(11)

is the zero-bandwidth jamming plus noise covariance matrix,
and is the zero-bandwidth jammer steering vector.
Because will denote the SINR loss throughout the
paper. Using the expressions of and in (10),
we obtain the detailed form of the chosen robustness criterion

(12)

IV. RELATION BETWEEN THE SINR LOSS AND ZATMAN’S

DEFINITION OF NARROWBAND

Now, we want to relate SINR ratio (12) to the ratio between
the second eigenvalue of the jammer plus noise covariance ma-
trix and the noise eigenvalue, proposed by Zatman for defining
a narrowband environment.

A. Upper Bound on the SINR Loss

Assuming that the fractional bandwidth is small, we prove in
the conditions of Zatman [3] the following result:

Result 2: In the presence of a zero-bandwidth target and a
nonzero bandwidth jammer, the ratio between the second eigen-
value of the jammer plus noise covariance matrix and the noise
eigenvalue is an upper bound on the SINR loss of the op-
timal adaptive beamformer due to bandwidth with respect to the
target DOA.

Proof: Using the derivation given in Appendix I and
based on the results of [5], the nonzero bandwidth jammer
covariance matrix can be approximated by a
rank-two matrix5 where its largest two eigenvalues and the
associated eigenvector are, respectively,

and and . Then, using (11),
. Consequently, we have

Using the matrix inversion lemma, we obtain

(13)

Incorporating (13) in (12), we obtain

(14)

A lower bound of this SINR ratio (14) with respect to
the target DOA is obtained by considering unconstrained
steering vector . In this case, (14) is minimized when
the term is maximized, i.e.,

5Note that this assumption has been justified in [3] by the empirical observa-
tion that the eigenvalues of �R overtake the noise floor one at a time when the
bandwidth is increased.
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with . Using, derived from
, this associated lower bound on

the SINR ratio is equal to6

(15)

Consequently, the ratio between the noise eigenvalue and the
second eigenvalue of the jammer plus noise covariance matrix
can be interpreted as a lower bound on the SINR ratio or con-
versely, the ratio between the second eigenvalue of the jammer
plus noise covariance matrix and the noise eigenvalue as an
upper bound on the SINR loss. From this result, we deduce an
upper bound of the SINR loss in the presence of a narrow-
band jammer, in the sense of Zatman’s definition. Thus, when
the second eigenvalue of the jammer plus noise covariance ma-
trix is smaller than 3 dB above the noise eigenvalue, Result 2
proves that the SINR loss will be smaller than 3 dB for arbitrary
target and jammer DOAs. Indeed, if , we have

For a nonzero bandwidth target, we have shown in Section III
that the SINR expression could be precisely approximated by
the SINR expression in the presence of a zero-bandwidth target,
under the assumption that where is the
second eigenvalue of the target covariance matrix (see Result 1).
Therefore, Result 2 is also valid for a nonzero bandwidth target,
under the latter assumption.

After having given a general relation between Zatman’s cri-
terion and the SINR loss , we now want to give sufficient
conditions for which the upper bound is nearly reached for
a certain DOA of the target.

B. Derivation of Sufficient Conditions for Which the Upper
Bound Is Nearly Reached

For ease of notations, we only consider the zero-bandwidth
target model. However, as we have already noted, the analysis
remains valid in the presence of a nonzero bandwidth target
under the conditions given by Result 1.

Our aim is to analyze the SINR ratio given by (12). To pro-
ceed, we first use the approximation introduced in [3] and jus-
tified by the analysis of Lee [5] applied to the spectral repre-
sentation of stationary bandlimited signals (see Appendix I), to
replace the jammer covariance by a rank-two matrix, under the
assumption of a small fractional bandwidth. Then, we make the
second assumption that the array is composed of many sensors7

which allows one to derive limit expressions of the considered
SINR ratio.

6Note that an approximation of u is given by the deriva-
tive of � (f) with respect to f , orthogonalized by � ;u �
((I � (� � )=(N)(d� (f)=df)c )=(kI � (� � )=
(N)(d� (f))=(df)c k) + o((B)=(f )) [5]. Since there is no
target DOA for which � is proportional to this vector, the lower bound on the
SINR ratio can not be reached.

7This assumption is justified in most radar applications, for which high spatial
resolution is required.

Fig. 3. Actual SINR (7) with or without approximation of the jammer plus
noise covariance matrix by (16) as a function of the target DOA.

1) Approximation of Covariance Matrix: We use the fol-
lowing approximation:

(16)

with

where . We have validated this second ap-
proximation by extensive numerical comparisons. However, we
note that the rank-two approximation leads to significant errors
in the SINR expression, when the fractional bandwidth is too
large. Indeed, in that case, the effective rank of the covariance
matrix is larger than 2 and the approximation is not justified any-
more. However, simulations show that for fractional bandwidths
up to , with the chosen parameters, this approx-
imation remains acceptable. It is illustrated in Fig. 3 where we
plot expression (7) with or without approximation of the covari-
ance matrix according to (16) for as a function of
the target DOA and in Fig. 4 for as a function of the
fractional bandwidth.

We observe that errors due to this second approximation are
very small. Therefore, (16) may be used for analysis of the
nonzero bandwidth case at small fractional bandwidths.

2) Derivation of Limit Expressions of the SINR Ratio: The
approximation of in (12) by allows one to derive a closed-
form expression of (7) and then of . Indeed, after a
double application of the matrix inversion lemma, we can write
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Fig. 4. Actual SINR (7) with or without approximation of the jammer plus
noise covariance matrix by (16) as a function of the fractional bandwidth.

with
and

where

(17)

Then after a Taylor series expansion, using and
under constraint , and

, we can write for

with

(18)

We deduce an approximate expression of the proposed
criterion

(19)

In order to validate the latter equation, we now compare
in Fig. 5 approximate relation (19) with actual one (12)

Fig. 5. Actual SINR ratio (12) and approximate SINR ratio (19), as a function
of the target DOA.

with respect to the target DOA. The fractional bandwidth is
.

First, we observe that the approximate plot is an accurate es-
timate of . We notice that when the target is in the vicinity of
the jammer, the SINR losses increase until a target posi-
tion close to that of the jammer. Then, from that position to the
jammer one, the SINR losses quickly decrease. When the target
and jammer DOAs are equal, the losses have nearly vanished
(actual ratio (12) is equal to [5] where

is the largest eigenvalue of ).
Next, we want to estimate the “worst-case” SINR ratio

with respect to the target DOA and relate it to the lower bound
(15). We prove the following result:

Result 3: Under the assumptions that and
under constraint , the maximal SINR loss

with respect to the target DOA nearly reaches the upper bound
equal to the ratio between the second eigenvalue of the

jammer plus noise covariance matrix and the noise eigenvalue.
Proof: Noticing that the minimum SINR ratio is

reached when , we can use a Taylor series ex-
pansion of term in (19), and obtain after a few algebraic
manipulations summarized in Appendix II

(20)

Then, by noticing that for
and using (17), we obtain the

following approximation of the minimum value of :

(21)

We remark that represents the
first-order Taylor series expansion of the second eigenvalue of
the jammer’s noise-free covariance matrix [deduced from ([3,
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Fig. 6. Actual and approximate (21) values of r , as a function of the frac-
tional bandwidth.

Fig. 7. Actual and approximate (21) values of r , as a function of the number
of sensors.

rels 27 and 28]) for ], so that the denominator
of (21) approximates . Finally, taking the inverse of (21) com-
pletes the proof.

In order to observe the influence of the fractional bandwidth
with respect to minimal SINR ratio , we now plot in Fig. 6
this one as a function of .

First, we note that approximate expression (21) is a very ac-
curate estimate of the actual value obtained from (12), ex-
cept for important fractional bandwidths. Second, we observe
that rapidly decreases when the fractional bandwidth in-
creases. Then, we analyze the influence of the number of sen-
sors on . Fig. 7 shows the value of this criterion for the ac-
tual and approximate expressions, for different values of and

.
We observe that the approximation given by (21) is very ac-

curate, except for high values of . This can be explained by
the fact that the series expansion done previously is valid under
the hypothesis that .

V. CONCLUSION

In this paper, the robustness of adaptive narrowband beam-
forming with respect to bandwidth has been studied where the
criterion of the loss of performance of the standard narrowband
processing in terms of SINR, under the assumption of a nonzero
bandwidth environment, with respect to the narrowband case has
been proposed. Using results about the eigenvalues and eigen-
vectors of the covariance matrix for signals closely spaced in
frequency, this SINR loss has been related to the ratio between
the second eigenvalue of the jammer plus noise covariance ma-
trix and the noise eigenvalue. Thus, it has been shown that under
the assumption of a small fractional bandwidth, the SINR loss is
upper bounded by the ratio between the second eigenvalue of the
jammer plus noise covariance matrix and the noise eigenvalue,
for both zero-bandwidth and nonzero bandwidth target models.
Then, sufficient conditions for which the upper bound of the
SINR loss is nearly reached have been given.

APPENDIX I
PROOF OF RESULT 1

First, consider the EVD of

Using the spectral representation
of the complex envelope of the wide-sense stationary ban-
dlimited Gaussian target signals, approximated [11] by

with
and uncorrelated Gaussian random variables with

can be approximated as the spatial
covariance associated with a discrete sum of zero-bandwidth
signals closely spaced in frequency for low fractionalbandwidths

Consequently, the results of [5] apply. In particular

Therefore, for and
and the nonzero bandwidth target covariance matrix can be
approximated by the rank-two matrix

(22)

Injecting (22) in (4), we obtain

(23)
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Now, we derive a sufficient condition to neglect the second
term in (23). To proceed, let consider the following ratio:

and compare it to unity. Using the Cauchy-Schwartz inequality,
we have

Then, since and
where and are given by the EVD of

, we obtain

A sufficient condition to neglect the second term in (9) is,
therefore, that

and since for , this condition becomes

which proves Result 1.

APPENDIX II
PROOF OF (20)

With

deduced from (18), (20) is straightforwardly obtained from a
third-order expansion of and in and

, respectively, under the assumption that and
with constraint .
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