Detailed proofs of theorems 1 and 2 given in [1]

Habti Abeida and Jean Pierre Delmas

I. Background

A. Relations

We will make frequent use of the following well known relations which hold for any conformable matrices A, B, C and D.

$$
\begin{align*}
& \operatorname{vec}(\mathbf{A B C})=\left(\mathbf{C}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{B}), \tag{1}\\
& (\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=\mathbf{A C} \otimes \mathbf{B D}, \tag{2}\\
& \operatorname{Tr}(\mathbf{A B})=\left(\operatorname{vec}\left(\mathbf{A}^{H}\right)\right)^{H} \operatorname{vec}(\mathbf{B}) . \tag{3}
\end{align*}
$$

B. General expression of the CRB

The stochastic CRB is writing through the compact expression of the FIM:

$$
\begin{equation*}
\operatorname{CRB}_{\text {sto }}^{-1}(\boldsymbol{\alpha})=\frac{T}{2}\left(\frac{\partial \mathbf{r}_{\tilde{y}}}{\partial \boldsymbol{\alpha}^{T}}\right)^{H}\left(\mathbf{R}_{\tilde{y}}^{-T} \otimes \mathbf{R}_{\tilde{y}}^{-1}\right)\left(\frac{\partial \mathbf{r}_{\tilde{y}}}{\partial \boldsymbol{\alpha}^{T}}\right), \tag{4}
\end{equation*}
$$

where the vectorization of $\mathbf{R}_{\tilde{y}}=\widetilde{\mathbf{A}} \mathbf{R}_{s} \widetilde{\mathbf{A}}^{H}+\sigma_{n}^{2} \mathbf{I}$ is given from (1) by

$$
\mathbf{r}_{\tilde{y}} \stackrel{\text { def }}{=} \operatorname{vec}\left(\mathbf{R}_{\tilde{y}}\right)=\left(\widetilde{\mathbf{A}}^{*} \otimes \widetilde{\mathbf{A}}\right) \operatorname{vec}\left(\mathbf{R}_{s}\right)+\sigma_{n}^{2} \operatorname{vec}(\mathbf{I}) .
$$

To begin the proofs of the two theorems, all the first steps of [17] apply. In particular, using the partition

$$
\begin{equation*}
\left(\mathbf{R}_{\tilde{y}}^{-T / 2} \otimes \mathbf{R}_{\tilde{y}}^{-1 / 2}\right)\left(\left.\frac{\partial \mathbf{r}_{\tilde{y}}}{\partial \boldsymbol{\omega}^{T}} \right\rvert\, \frac{\partial \mathbf{r}_{\tilde{y}}}{\partial \boldsymbol{\rho}^{T}}, \frac{\partial \mathbf{r}_{\tilde{y}}}{\partial \sigma_{n}^{2}}\right) \stackrel{\text { def }}{=}(\mathbf{G} \mid \mathbf{V}, \mathbf{u}) \tag{5}
\end{equation*}
$$

we can deduce from (4)

$$
\begin{equation*}
\frac{2}{T} \mathrm{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})=\mathbf{G}^{H} \boldsymbol{\Pi}_{\Delta}^{\perp} \mathbf{G} \tag{6}
\end{equation*}
$$

with $\boldsymbol{\Delta} \stackrel{\text { def }}{=}(\mathbf{V}, \mathbf{u})$ and $\boldsymbol{\Pi}_{\boldsymbol{\Delta}}^{\perp} \stackrel{\text { def }}{=} \mathbf{I}-\boldsymbol{\Pi}_{\boldsymbol{\Delta}}$, where $\boldsymbol{\Pi}_{\boldsymbol{\Delta}}$ denotes the orthonormal projector on the columns of $\boldsymbol{\Delta}$. Following [17, rel.(14)], it has been proved that

$$
\begin{equation*}
\boldsymbol{\Pi}_{\Delta}^{\perp}=\boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp}-\frac{\boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp} \mathbf{u u}^{H} \boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp}}{\mathbf{u}^{H} \boldsymbol{\Pi}} \tag{7}
\end{equation*}
$$

where $\frac{d \mathbf{r}_{\tilde{y}}}{d \sigma_{n}^{2}}=\operatorname{vec}(\mathbf{I})$ implies by using (1), that

$$
\begin{equation*}
\mathbf{u}=\left(\mathbf{R}_{\tilde{y}}^{-T / 2} \otimes \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) \operatorname{vec}(\mathbf{I})=\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1}\right) . \tag{8}
\end{equation*}
$$

Consequently using (6) and (7), if \mathbf{g}_{k} denotes the k-th column of \mathbf{G}, the (k, l) element of $\frac{2}{T} \mathrm{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})$ can be written elementwise as

$$
\begin{equation*}
\frac{2}{T}\left[\mathrm{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})\right]_{k, l}=\mathbf{g}_{k}^{H} \boldsymbol{\Pi}_{\stackrel{\mathrm{V}}{ }}^{\perp} \mathbf{g}_{l}-\frac{\mathbf{g}_{k}^{H} \boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp} \mathbf{u} \mathbf{u}^{H} \boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp} \mathbf{g}_{l}}{\mathbf{u}^{H} \boldsymbol{\Pi}_{\mathbf{V}}^{\perp} \mathbf{u}} \tag{9}
\end{equation*}
$$

To proceed, we need to determine the expressions of Π_{V}^{\perp} associated with the two parametrizations of the real symmetric matrix \mathbf{R}_{s}. But as the steps of the proof given in [17] do not apply, we have to elaborate a little bit.

II. Proof of theorem 1

For arbitrary real symmetric matrix \mathbf{R}_{s}, let $\mathbf{r}_{s, k}$ denote the $k t h$ column of \mathbf{R}_{s}. We get from $\mathbf{R}_{\tilde{y}} \stackrel{\text { def }}{=} \mathrm{E}\left(\widetilde{\mathbf{y}}_{t} \widetilde{\mathbf{y}}_{t}^{H}\right)=$ $\widetilde{\mathbf{A}} \mathbf{R}_{s} \widetilde{\mathbf{A}}^{H}+\sigma_{n}^{2} \mathbf{I}$,

$$
\begin{aligned}
\frac{d \mathbf{R}_{\tilde{y}}}{d w_{k}} & =\left(\mathbf{0}, ., \tilde{\mathbf{a}}_{k}^{\prime}, ., \mathbf{0}\right) \mathbf{R}_{s} \tilde{\mathbf{A}}^{H}+\tilde{\mathbf{A}} \mathbf{R}_{s}\left(\begin{array}{c}
\mathbf{0}^{T} \\
\vdots \\
\tilde{\mathbf{a}}_{k}^{\prime} H \\
\vdots \\
\mathbf{0}^{T}
\end{array}\right) \\
& =\tilde{\mathbf{a}}_{k}^{\prime} \mathbf{r}_{s, k}^{T} \tilde{\mathbf{A}}^{H}+\tilde{\mathbf{A}} \mathbf{r}_{s, k} \tilde{\mathbf{a}}_{k}^{\prime} H .
\end{aligned}
$$

where $\tilde{\mathbf{a}}_{k}^{\prime} \stackrel{\text { def }}{=} d \tilde{\mathbf{a}}_{k} / d \omega_{k}$. Hence using (1), the $k t h$ column of \mathbf{G} in (5) is given by

$$
\begin{equation*}
\mathbf{g}_{k}=\left(\mathbf{R}_{\tilde{y}}^{-T / 2} \otimes \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) \operatorname{vec}\left(\frac{d \mathbf{R}_{\tilde{y}}}{d \omega_{k}}\right)=\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1 / 2} \frac{d \mathbf{R}_{\tilde{y}}}{d \omega_{k}} \mathbf{R}_{\tilde{y}}^{-1 / 2}\right)=\operatorname{vec}\left(\mathbf{Z}_{k}^{H}+\mathbf{Z}_{k}\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Z}_{k} \stackrel{\text { def }}{=} \mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{r}_{s, k} \tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-1 / 2} \tag{11}
\end{equation*}
$$

Next, we determine \mathbf{V}. The key observation to note here, is that the real-valued symmetric matrix \mathbf{R}_{s}, using [20, rel.(7.18)], can be written as

$$
\operatorname{vec}\left(\mathbf{R}_{s}\right)=\mathbf{D}_{K} \boldsymbol{\rho}
$$

where \mathbf{D}_{K} is the so-called duplication matrix, and hence from (5)

$$
\begin{equation*}
\mathbf{V}=\left(\mathbf{R}_{\tilde{y}}^{-T / 2} \tilde{\mathbf{A}}^{*} \otimes \mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}}\right) \mathbf{D}_{K} \stackrel{\text { def }}{=} \mathbf{W} \mathbf{D}_{K}, \tag{12}
\end{equation*}
$$

and consequently:

$$
\begin{align*}
\boldsymbol{\Pi}_{\mathbf{v}}^{\perp} & =\mathbf{I}-\mathbf{V}\left(\mathbf{V}^{H} \mathbf{V}\right)^{-1} \mathbf{V}^{H}=\mathbf{I}-\mathbf{W} \mathbf{D}_{K}\left(\mathbf{D}_{K}^{T} \mathbf{W}^{H} \mathbf{W} \mathbf{D}_{K}\right)^{-1} \mathbf{D}_{K}^{T} \mathbf{W}^{H} \\
& =\mathbf{I}-\mathbf{W} \mathbf{D}_{K}\left(\mathbf{D}_{K}^{T}(\mathbf{U} \otimes \mathbf{U}) \mathbf{D}_{K}\right)^{-1} \mathbf{D}_{K}^{T} \mathbf{W}^{H}, \tag{13}
\end{align*}
$$

using

$$
\mathbf{W}^{H} \mathbf{W}=\left(\tilde{\mathbf{A}}^{T} \mathbf{R}_{\tilde{y}}^{-T} \tilde{\mathbf{A}}^{*}\right) \otimes\left(\tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}}\right) \stackrel{\text { def }}{=} \mathbf{U} \otimes \mathbf{U}
$$

deduced from (2), where

$$
\begin{equation*}
\mathbf{U} \stackrel{\text { def }}{=} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \tag{14}
\end{equation*}
$$

is an $K \times K$ real symmetric non-singular matrix. Then it follows from [20, Theorem 7.38], and some simple algebraic manipulations using [20, Theorem 7.37, rel.(c)] and [20, Theorem 7.34, rel.(d)], that (13) becomes

$$
\begin{equation*}
\boldsymbol{\Pi}_{\mathbf{V}}^{\perp}=\mathbf{I}-\mathbf{W}\left(\mathbf{U}^{-1} \otimes \mathbf{U}^{-1}\right) \mathbf{W}^{H} \tag{15}
\end{equation*}
$$

Now let us prove that $\mathbf{u}^{H} \boldsymbol{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{k}=0$.
Using the formula (1), we get from (11)

$$
\begin{align*}
\mathbf{W}^{H} \mathbf{g}_{k} & =\left(\tilde{\mathbf{A}}^{T} \mathbf{R}_{\tilde{y}}^{-T / 2} \otimes \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) \operatorname{vec}\left(\mathbf{Z}_{k}^{H}+\mathbf{Z}_{k}\right) \\
& \left.=\operatorname{vec}\left(\tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2} \mathbf{Z}_{k}^{H} \mathbf{R}_{\tilde{\tilde{d}}}^{-1 / 2} \tilde{\mathbf{A}}\right)+\tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2} \mathbf{Z}_{k} \mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}}\right) \\
& =\operatorname{vec}\left(\mathbf{b}_{k} \mathbf{c}_{k}^{T}+\mathbf{c}_{k} \mathbf{b}_{k}^{T}\right) \stackrel{\text { def }}{=} \operatorname{vec}\left(\mathbf{H}_{k}\right), \tag{16}
\end{align*}
$$

where \mathbf{b}_{k} and \mathbf{c}_{k} are the $K \times 1$ real-valued vectors given by

$$
\begin{equation*}
\mathbf{b}_{k}^{T} \stackrel{\text { def }}{=} \tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \text { and } \mathbf{c}_{k} \stackrel{\text { def }}{=} \mathbf{U r}_{s, k} . \tag{17}
\end{equation*}
$$

From (10), (13) and (16) we obtain

$$
\begin{align*}
\boldsymbol{\Pi}_{\hat{\mathbf{v}}}^{\perp} \mathbf{g}_{k} & =\mathbf{g}_{k}-\mathbf{W}\left(\mathbf{U}^{-1} \otimes \mathbf{U}^{-1}\right) \mathbf{W}^{H} \mathbf{g}_{k} \\
& =\mathbf{g}_{k}-\mathbf{W}\left(\mathbf{U}^{-1} \otimes \mathbf{U}^{-1}\right) \operatorname{vec}\left(\mathbf{H}_{k}\right) \\
& =\mathbf{g}_{k}-\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{U}^{-1} \mathbf{H}_{k} \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) \\
& =\mathbf{g}_{k}-\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{U}^{-1}\left(\mathbf{b}_{k} \mathbf{c}_{k}^{T}+\mathbf{c}_{k} \mathbf{b}_{k}^{T}\right) \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) \\
& =\mathbf{g}_{k}-\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{U}^{-1} \mathbf{b}_{k} \mathbf{c}_{k}^{T} \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2}+\mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{U}^{-1} \mathbf{c}_{k} \mathbf{b}_{k}^{T} \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) . \tag{18}
\end{align*}
$$

To simplify the expression (18), we need the following equality (19)

$$
\begin{align*}
\tilde{\mathbf{A}} \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H} & =\tilde{\mathbf{A}}\left(\tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}}\right)^{-1} \tilde{\mathbf{A}}^{H} \\
& =\tilde{\mathbf{A}}\left(\tilde{\mathbf{A}}^{H} \tilde{\mathbf{A}}\right)^{-1}\left(\tilde{\mathbf{A}}^{H} \tilde{\mathbf{A}} \mathbf{R}_{s}+\sigma_{n}^{2} \mathbf{I}\right) \tilde{\mathbf{A}}^{H} \\
& =\tilde{\mathbf{A}} \mathbf{R}_{s} \tilde{\mathbf{A}}^{H}+\sigma_{n}^{2} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \\
& =\boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \mathbf{R}_{\tilde{y}} \tag{19}
\end{align*}
$$

where $\boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \stackrel{\text { def }}{=} \tilde{\mathbf{A}}\left(\tilde{\mathbf{A}}^{H} \tilde{\mathbf{A}}\right)^{-1} \tilde{\mathbf{A}}^{H}$. Using $\mathbf{b}_{k}^{T} \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H}=\tilde{\mathbf{a}}_{k}^{\prime}{ }^{H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}$ and $\mathbf{U}^{-1} \mathbf{c}_{k}=\mathbf{r}_{s, k}$ deduced from (19) and (17), (18) can be simplified as

$$
\begin{align*}
\boldsymbol{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{k} & =\mathbf{g}_{k}-\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{r}_{s, k} \tilde{\mathbf{a}}_{k}^{\prime H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \mathbf{R}_{\tilde{y}}^{-1 / 2}+\mathbf{R}_{\tilde{y}}^{-1 / 2} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \tilde{\mathbf{a}}_{k}^{\prime} \mathbf{r}_{s, k}^{T} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1 / 2}\right) \\
& =\mathbf{g}_{k}-\operatorname{vec}\left(\mathbf{Y}_{k}+\mathbf{Y}_{k}^{H}\right)=\operatorname{vec}\left(\mathbf{Z}_{k}-\mathbf{Y}_{k}+\mathbf{Z}_{k}^{H}-\mathbf{Y}_{k}^{H}\right) \tag{20}
\end{align*}
$$

where $\mathbf{Y}_{k} \stackrel{\text { def }}{=} \mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{r}_{s, k} \tilde{\mathbf{a}}_{k}^{\prime}{ }^{H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \mathbf{R}_{\tilde{y}}^{-1 / 2}$. From (20) and (8) together with the identity (3), we get

$$
\begin{align*}
\mathbf{u}^{H} \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{k} & =\left(\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1}\right)\right)^{H} \operatorname{vec}\left(\mathbf{Z}_{k}-\mathbf{Y}_{k}+\mathbf{Z}_{k}^{H}-\mathbf{Y}_{k}^{H}\right) \\
& =\operatorname{Tr}\left(\mathbf{R}_{\tilde{y}}^{-1}\left(\mathbf{Z}_{k}-\mathbf{Y}_{k}+\mathbf{Z}_{k}^{H}-\mathbf{Y}_{k}^{H}\right)\right) \\
& =\operatorname{Tr}\left(\mathbf{R}_{\tilde{y}}^{-1}\left(\mathbf{Z}_{k}-\mathbf{Y}_{k}\right)\right)+\operatorname{Tr}\left(\left(\mathbf{Z}_{k}^{H}-\mathbf{Y}_{k}^{H}\right) \mathbf{R}_{\tilde{y}}^{-1}\right) \\
& \stackrel{\text { def }}{=} \operatorname{Tr}\left(\mathbf{F}_{k}\right)+\operatorname{Tr}\left(\mathbf{F}_{k}^{H}\right) \tag{21}
\end{align*}
$$

Let us now prove that

$$
\operatorname{Tr}\left(\mathbf{F}_{k}\right)=0
$$

After replacing \mathbf{Z}_{k} and \mathbf{Y}_{k} by their expression, we obtain

$$
\begin{equation*}
\mathbf{Z}_{k}-\mathbf{Y}_{k}=\mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \mathbf{r}_{s, k} \tilde{\mathbf{a}}_{k}^{\prime H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \mathbf{R}_{\tilde{y}}^{-1 / 2} \tag{22}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbf{F}_{k}\right)=\operatorname{Tr}\left(\mathbf{r}_{s, k} \tilde{\mathbf{a}}_{k}^{\prime}{ }^{H} \boldsymbol{\Pi}_{\tilde{\tilde{A}}}^{\perp} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}}\right) \tag{23}
\end{equation*}
$$

Since

$$
\begin{equation*}
\boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \mathbf{R}_{\tilde{y}}=\sigma_{n}^{2} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \text { or equivalently } \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \mathbf{R}_{\tilde{y}}^{-1}=\frac{1}{\sigma_{n}^{2}} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \tag{24}
\end{equation*}
$$

we get

$$
\begin{equation*}
\boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}}=\left(\frac{1}{\sigma_{n}^{2}} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp}\right)\left(\mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}}\right)=\frac{1}{\sigma_{n}^{4}} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \tilde{\mathbf{A}}=\mathbf{O} \tag{25}
\end{equation*}
$$

and thus from (23), we get $\operatorname{Tr}\left(\mathbf{F}_{k}\right)=0$. It follows then from (21) that $\mathbf{u}^{H} \boldsymbol{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{k}=0$.
This identity, together with (10) and (20) allows us to simplify (9) as

$$
\begin{align*}
\frac{2}{T}\left[\mathrm{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})\right]_{k, l} & =\mathbf{g}_{k}^{H} \boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp} \mathbf{g}_{l} \\
& =\left(\operatorname{vec}\left(\mathbf{Z}_{k}^{H}+\mathbf{Z}_{k}\right)\right)^{H} \operatorname{vec}\left(\mathbf{Z}_{l}-\mathbf{Y}_{l}+\mathbf{Z}_{l}^{H}-\mathbf{Y}_{l}^{H}\right) \\
& =2 \operatorname{Re}\left(\operatorname{Tr}\left(\left(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H}\right)\left(\mathbf{Z}_{l}-\mathbf{Y}_{l}\right)\right)\right) \tag{26}
\end{align*}
$$

Note from (11) and (22) that

$$
\operatorname{Tr}\left(\mathbf{Z}_{k}^{H}\left(\mathbf{Z}_{l}-\mathbf{Y}_{l}\right)\right)=\left(\tilde{\mathbf{a}}_{l}^{H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{a}}_{k}^{\prime H}\right)\left(\mathbf{r}_{s, k}^{T} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \mathbf{r}_{s, l}\right) .
$$

Using (24), we get

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbf{Z}_{k}^{H}\left(\mathbf{Z}_{l}-\mathbf{Y}_{l}\right)\right)=\frac{1}{\sigma_{n}^{2}}\left(\tilde{\mathbf{a}}_{l}^{\prime H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \tilde{\mathbf{a}}_{k}^{\prime} H\right)\left(\mathbf{r}_{s, k}^{T} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \mathbf{r}_{s, l}\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Tr}\left(\mathbf{Z}_{k}\left(\mathbf{Z}_{l}-\mathbf{Y}_{l}\right)\right) & =\left(\tilde{\mathbf{a}}_{k}^{\prime} H \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \mathbf{r}_{s, l}\right)\left(\tilde{\mathbf{a}}_{l}^{\prime}{ }^{H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \mathbf{r}_{s, k}\right) \\
& =\frac{1}{\sigma_{n}^{2}}\left(\tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \mathbf{r}_{s, l}\right)\left(\tilde{\mathbf{a}}_{l}^{\prime}{ }^{H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \tilde{\mathbf{A}} \mathbf{r}_{s, k}\right)=0 . \tag{28}
\end{align*}
$$

It follows then from (27) and (28) that (26) can be simplified as

$$
\begin{equation*}
\left[\mathrm{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})\right]_{k, l}=\frac{T}{\sigma_{n}^{2}} \operatorname{Re}\left(\left(\tilde{\mathbf{a}}_{k}^{\prime H} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \tilde{\mathbf{a}}_{l}^{\prime}\right)\left(\mathbf{r}_{s, k}^{T} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{A}} \mathbf{r}_{s, l}\right)\right) \tag{29}
\end{equation*}
$$

Finally, writing (29) in matrix form, theorem 1 is proved.

III. Proof of theorem 2

For coherent sources for which $\mathbf{R}_{s}=\mathbf{c c}^{T}$ and $\boldsymbol{\rho}=\mathbf{c}$, we follow the steps similar to those in the proof of theorem 1. First, we note that the k-th columns of \mathbf{G} are still given by (10), but with now

$$
\begin{equation*}
\mathbf{Z}_{k}=c_{k} \mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-1 / 2} . \tag{30}
\end{equation*}
$$

Second, $\operatorname{vec}\left(\mathbf{R}_{s}\right)=\mathbf{c} \otimes \mathbf{c}$ implies that

$$
\begin{equation*}
\frac{\partial \operatorname{vec}\left(\mathbf{R}_{s}\right)}{\partial \mathbf{c}^{T}}=\mathbf{c} \otimes \mathbf{I}+\mathbf{I} \otimes \mathbf{c}=2 \mathbf{N}_{K}(\mathbf{c} \otimes \mathbf{I}), \tag{31}
\end{equation*}
$$

where \mathbf{N}_{K} is the $K \times K$ matrix defined in [20, Theorem 7.34]. Consequently (12) becomes

$$
\begin{equation*}
\mathbf{V}=2 \mathbf{W} \mathbf{N}_{K}(\mathbf{c} \otimes \mathbf{I}), \tag{32}
\end{equation*}
$$

which gives after some algebraic manipulation using [20, Theorem 7.34, rel.(d)]:

$$
\begin{equation*}
\boldsymbol{\Pi}_{\mathbf{V}}^{\perp} \stackrel{\text { def }}{=} \mathbf{I}-\mathbf{V}\left(\mathbf{V}^{H} \mathbf{V}\right)^{-1} \mathbf{V}^{H}=\mathbf{I}-\mathbf{V}_{1} \overline{\mathbf{V}}^{-1} \mathbf{V}_{1}^{H} \tag{33}
\end{equation*}
$$

with $\mathbf{V}_{1} \stackrel{\text { def }}{=} \mathbf{W} \mathbf{N}_{K}(\mathbf{c} \otimes \mathbf{I})$ and $\overline{\mathbf{V}} \stackrel{\text { def }}{=}\left(\mathbf{c}^{T} \otimes \mathbf{I}\right) \mathbf{N}_{K}(\mathbf{U} \otimes \mathbf{U}) \mathbf{N}_{K}(\mathbf{c} \otimes \mathbf{I})$ where \mathbf{U} is defined by (14). $\overline{\mathbf{V}}$ can be simplified as

$$
\begin{align*}
\overline{\mathbf{V}} & =\left(\mathbf{c}^{T} \otimes \mathbf{I}\right) \mathbf{N}_{K}(\mathbf{U} \otimes \mathbf{U})(\mathbf{c} \otimes \mathbf{I}) \\
& =\left(\mathbf{c}^{T} \otimes \mathbf{I}\right) \mathbf{N}_{K}(\mathbf{U c} \otimes \mathbf{U}) \\
& =\frac{1}{2}\left(\kappa_{c} \mathbf{U}+\mathbf{U} \mathbf{c c}^{T} \mathbf{U}^{T}\right), \tag{34}
\end{align*}
$$

where the first equality follows from [20, Theorem 7.35, rel.(a)] and the third equality follows from [20, Theorem 7.31, rel.(d)] using the definition of \mathbf{N}_{K} [20, Theorem 7.34] and $\kappa_{c} \stackrel{\text { def }}{=} \mathbf{c}^{T} \mathbf{U c}$. The inverse $\overline{\mathbf{V}}^{-1}$ is deduced from the matrix inversion lemma applied to (34)

$$
\begin{equation*}
\overline{\mathbf{V}}^{-1}=\frac{2}{\kappa_{c}}\left(\mathbf{U}^{-1}-\frac{1}{2 \kappa_{c}} \mathbf{c c}^{T}\right) . \tag{35}
\end{equation*}
$$

Now let us prove that $\mathbf{u}^{H} \boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp} \mathbf{g}_{k}=0$.

Using $\overline{\mathbf{U}} \stackrel{\text { def }}{=} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}}$ as a real-valued symmetric matrix and the identity (1), we get

$$
\begin{align*}
\mathbf{u}^{H} \mathbf{V}_{1} & =\left(\operatorname{vec}\left(\mathbf{R}_{\tilde{y}}^{-1}\right)\right)^{H}\left(\mathbf{R}_{\tilde{y}}^{-T / 2} \tilde{\mathbf{A}}^{*} \otimes \mathbf{R}_{\tilde{y}}^{-1 / 2} \tilde{\mathbf{A}}\right) \mathbf{N}_{K}(\mathbf{c} \otimes \mathbf{I}) \\
& =(\operatorname{vec}(\overline{\mathbf{U}}))^{T}(\mathbf{c} \otimes \mathbf{I}) \\
& =\mathbf{c}^{T} \overline{\mathbf{U}}, \tag{36}
\end{align*}
$$

where the second equality follows from [20, Theorem 7.34, rel.(c)] and the third equality uses (1). Furthermore:

$$
\begin{align*}
\mathbf{V}_{1}^{H} \mathbf{g}_{k} & =\left(\mathbf{c}^{T} \otimes \mathbf{I}\right) \mathbf{N}_{K}^{T} \mathbf{W}^{H} \mathbf{g}_{k} \\
& =c_{k}\left(\mathbf{c}^{T} \otimes \mathbf{I}\right) \mathbf{N}_{K}^{T} \operatorname{vec}\left(\mathbf{b}_{k} \mathbf{c}^{T} \mathbf{U}^{T}+\mathbf{U} \mathbf{c b}_{k}^{T}\right) \\
& =c_{k}\left(\mathbf{c}^{T} \otimes \mathbf{I}\right) \operatorname{vec}\left(\mathbf{b}_{k} \mathbf{c}^{T} \mathbf{U}^{T}+\mathbf{U c b}_{k}^{T}\right) \\
& =c_{k}\left(\kappa_{c} \mathbf{b}_{k}+\left(\mathbf{b}_{k}^{T} \mathbf{c}\right) \mathbf{U c}\right) \tag{37}
\end{align*}
$$

where the second equality follows from $\mathbf{W}^{H} \mathbf{g}_{k}=c_{k} \operatorname{vec}\left(\mathbf{b}_{k} \mathbf{c}_{k}^{T}+\mathbf{c}_{k} \mathbf{b}_{k}^{T}\right)$ deduced from (16) with \mathbf{c}_{k} defined in (17) is now given be $c_{k} \mathbf{U c}$, and the third equality follows from [20, Theorem 7.34, rel.(c)] and the property that $\mathbf{b}_{k} \mathbf{c}^{T} \mathbf{U}^{T}+\mathbf{U} \mathbf{c b}_{k}^{T}$ is a real-valued symmetric matrix. In similar way, we have

$$
\begin{equation*}
\mathbf{u}^{H} \mathbf{g}_{k}=2 c_{k} \tilde{\mathbf{a}}_{k}^{\prime}{ }^{H} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}} \mathbf{c} \tag{38}
\end{equation*}
$$

From (35) and (37), we get

$$
\begin{equation*}
\overline{\mathbf{V}}^{-1} \mathbf{V}_{1}^{H} \mathbf{g}_{k}=2 c_{k} \mathbf{U}^{-1} \mathbf{b}_{k} \tag{39}
\end{equation*}
$$

It follows from (33), (39), (36) and (38) that

$$
\begin{aligned}
\mathbf{u}^{H} \boldsymbol{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{k} & =\mathbf{u}^{H} \mathbf{g}_{k}-\mathbf{u}^{H} \mathbf{V}_{1} \overline{\mathbf{V}}^{-1} \mathbf{V}_{1}^{H} \mathbf{g}_{k} \\
& =2 c_{k} \tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}} \mathbf{c}-2 c_{k} \mathbf{c}^{T} \overline{\mathbf{U}} \mathbf{U}^{-1} \mathbf{b}_{k} \\
& =2 c_{k} \tilde{\mathbf{a}}_{k}^{\prime} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}} \mathbf{c}-2 c_{k} \mathbf{c}^{T} \tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{a}}_{k}^{\prime}=0,
\end{aligned}
$$

where the third equality follows from the identity $\overline{\mathbf{U}} \mathbf{U}^{-1} \tilde{\mathbf{A}}^{H}=\tilde{\mathbf{A}}^{H} \mathbf{R}_{\tilde{y}}^{-1}$ obtained using (19) and (25) which is equivalent to $\mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}}=$ $\boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \mathbf{R}_{\tilde{y}}^{-2} \tilde{\mathbf{A}}$.

It follows that the elements of (6) reduce to

$$
\begin{equation*}
\frac{2}{T}\left[\mathrm{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})\right]_{k, l}=\mathbf{g}_{k}^{H} \boldsymbol{\Pi}_{\stackrel{\mathbf{V}}{ }}^{\perp} \mathbf{g}_{l}=\mathbf{g}_{k}^{H} \mathbf{g}_{l}-\mathbf{g}_{k}^{H} \mathbf{V}_{1} \overline{\mathbf{V}}^{-1} \mathbf{V}_{1}^{H} \mathbf{g}_{l} \tag{40}
\end{equation*}
$$

where we get

$$
\begin{align*}
\mathbf{g}_{k}^{H} \mathbf{g}_{l} & =\operatorname{vec}\left(\mathbf{Z}_{k}^{H}+\mathbf{Z}_{k}\right)^{H} \operatorname{vec}\left(\mathbf{Z}_{l}^{H}+\mathbf{Z}_{l}\right) \\
& =\operatorname{Tr}\left[\left(\mathbf{Z}_{k}^{H}+\mathbf{Z}_{k}\right)^{H}\left(\mathbf{Z}_{l}^{H}+\mathbf{Z}_{l}\right)\right] \\
& =2 c_{k} c_{l}\left(\kappa_{c} \tilde{\mathbf{a}}_{k}^{\prime}{ }^{H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{a}}_{l}^{\prime}+\left(\mathbf{b}_{k}^{T} \mathbf{c}\right)\left(\mathbf{b}_{l}^{T} \mathbf{c}\right)\right) \tag{41}
\end{align*}
$$

where the first equality is deduced from the definition (10) of \mathbf{g}_{k} associated with (30), the second equality follows from the identity (3), and the third equality follows from the definition (17) of \mathbf{b}_{k} and the property that $\tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-1} \tilde{\mathbf{a}}_{l}^{\prime}$ is real-valued. On the other hand, we get

$$
\begin{align*}
\mathbf{g}_{k}^{H} \mathbf{V}_{1} \overline{\mathbf{V}}^{-1} \mathbf{V}_{1}^{H} \mathbf{g}_{l} & \left.=2 c_{k} c_{l}\left(\mathbf{b}_{k}^{T} \mathbf{U}^{-1}\right)\left(\kappa_{c} \mathbf{b}_{l}+\left(\mathbf{b}_{l}^{T} \mathbf{c}\right) \mathbf{U} \mathbf{c}\right)\right) \\
& =2 c_{k} c_{l}\left(\kappa_{c} \tilde{\mathbf{a}}_{k}^{\prime H} \mathbf{R}_{\tilde{y}}^{-1} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}} \tilde{\mathbf{a}}_{l}^{\prime}+\left(\mathbf{b}_{k}^{T} \mathbf{c}\right)\left(\mathbf{b}_{l}^{T} \mathbf{c}\right)\right. \tag{42}
\end{align*}
$$

where the first equality follows from (37) and (39) and the second equality is deduced from (19). Plugging (41) and (42) into (40), we get:

$$
\frac{2}{T}\left[\operatorname{CRB}_{\text {sto }}^{-1}(\boldsymbol{\omega})\right]_{k, l}=\frac{2 \kappa_{c}}{\sigma_{n}^{2}} c_{k} c_{l}\left(\tilde{\mathbf{a}}_{k}^{\prime} H \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp} \tilde{\mathbf{a}}_{l}^{\prime}\right)
$$

using $\mathbf{R}_{\tilde{y}}^{-1} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp}=\frac{1}{\sigma_{n}^{2}} \boldsymbol{\Pi}_{\tilde{\mathbf{A}}}^{\perp}$. Finally, writing (40) in matrix form, theorem 2 is proved.

References

[1] H. Abeida and J.P. Delmas, "Direct derivation of the stochastic CRB of DOA estimation for rectilinear sources," IEEE Signal Processing letters, vol. 24, no. 10, pp. 1522-1526, October 2017.
[2] P. Gounon, C. Adnet, and J. Galy, "Localization angulaire de signaux non circulaires," Traitement du Signal, vol. 15, no. 1, pp. 17-23, 1998.
[3] H. Abeida and J.P. Delmas, "MUSIC-like estimation of direction of arrival for non-circular sources," IEEE Trans. Signal Process., vol. 54, no. 7, pp. 2678-2690, July 2006.
[4] P. Chargé, Y. Wang, and J. Saillard, "A non-circular sources direction finding method using polynomial rooting," Signal Process., vol. 81, pp. 1765-1770, 2001.
[5] A. Zoubir, P. Chargé, and Y. Wang, "Non circular sources localization with ESPRIT," in Proc. Eur. Conf. Wireless Technology (ECWT), Munich, Germany, Oct. 2003.
[6] M. Haardt and F. Roemer, "Enhancements of unitary esprit for noncircular sources," Proc. ICASSP, vol. 2,pp. 101-104, Montreal, QC, Canada, May 2004.
[7] J. Steinwandt, F. Roemer, M. Haardt, and G. Del Galdo, "R-dimensional ESPRIT-type algorithms for strictly second-order noncircular sources and their performance analysis," IEEE Trans. Signal Processing, vol. 62, no. 18, pp. 4824-4838, Sept. 2014.
[8] J.P. Delmas and H. Abeida, "Stochastic Cramer-Rao bound for non-circular signals with application to DOA estimation," IEEE Trans. Signal Process., vol. 52, no. 11, pp. 3192-3199, Nov. 2004.
[9] H. Abeida and J.P. Delmas, "Efficiency of subspace-based DOA estimators," Signal Processing, vol. 87, no. 9, pp. 2075-2084, Sept. 2007.
[10] H. Abeida and J.P. Delmas, "Bornes de Cramer Rao déterministe et stochastique de DOA de signaux rectilignes non corrélés," Proc. GRETSI, Troyes, Sept. 2007, http://documents.irevues.inist.fr/bitstream/handle/2042/17736/GRETSI_2007_1245.pdf?sequence=1.
[11] F. Roemer and M. Haardt, "Deterministic Cramer Rao bounds for strict sense noncircular sources," Proc. Internat. ITG/IEEE Worshop on Smart Antennas (WSA'07), Vienne, Austria, Feb. 2007.
[12] J. Steinwandt, F. Roemer, M. Haardt, and G. Del Galdo, "Deterministic Cramer-Rao bound for strictly non-circular sources and analytical analysis of the achievable gains," IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4417-4431, Sept. 2016.
[13] D.T. Vu, A. Renaux, R. Boyer, and S. Marcos "Some results on the Weiss-Weinstein bound for conditional and unconditional signal models in array processing," Signal Processing, vol. 95, pp. 126-148, Feb. 2014.
[14] P. Stoica and A. Nehorai, "Performance study of conditional and unconditional direction of arrival estimation," IEEE Trans. Signal Process., vol. 38, no. 10, pp. 1783-1795, Oct. 1990.
[15] D. Slepian, "Estimation of signal parameters in the presence of noise," in Trans. IRE Prof. Grop Inform. Theory PG IT-3, pp. 68-89, 1954.
[16] W.J. Bangs "Array processing with generalized beamformers," Ph.D. thesis Yale University, New Haven, CT, 1971.
[17] P. Stoica, A.G. Larsson, and A.B. Gershman, "The stochastic CRB for array processing: a textbook derivation," IEEE Signal Process. letters, vol. 8, no. 5, pp. 148-150, May 2001.
[18] M. Jansson, B. Göransson, and B. Ottersten, "Subspace method for direction of arrival estimation of uncorrelated emitter signals," IEEE Trans. Signal Process., vol. 47, no. 4, pp. 945-956, April 1999.
[19] J. Sheinvald, M. Wax, and A.J. Weiss, "On maximum-likelihood localization of coherent signals," IEEE Transactions on Signal Processing, vol. 44, no. 10, pp. 2475-2482, Oct. 1996.
[20] J. R. Schott, Matrix analysis for statistics, Wiley, New York, 1997.
[21] P. Stoica and R. Moses, Spectral analysis of signals, Prentice-Hall, Upper Saddle River, NJ, 2005.
[22] P. Stoica and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons," IEEE Trans. Signal Process., vol. 38, no. 12, pp. 2140-2150, Dec. 1990.
[23] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, 1996.

