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Detailed proofs of theorems 1 and 2 given in [1]
Habti Abeida and Jean Pierre Delmas

I. BACKGROUND

A. Relations

We will make frequent use of the following well known relations which hold for any conformable matrices
A, B, C and D.

vec(ABC) = (CT ⊗A)vec(B), (1)

(A⊗B)(C⊗D) = AC⊗BD, (2)

Tr(AB) = (vec(AH))Hvec(B). (3)

B. General expression of the CRB

The stochastic CRB is writing through the compact expression of the FIM:

CRB−1sto(α) =
T

2

(
∂rỹ
∂αT

)H (
R−Tỹ ⊗R−1ỹ

)( ∂rỹ
∂αT

)
, (4)

where the vectorization of Rỹ = ÃRsÃ
H + σ2nI is given from (1) by

rỹ
def
= vec(Rỹ) = (Ã∗ ⊗ Ã)vec(Rs) + σ2nvec(I).

To begin the proofs of the two theorems, all the first steps of [17] apply. In particular, using the partition

(R
−T/2
ỹ ⊗R

−1/2
ỹ )

(
∂rỹ
∂ωT

| ∂rỹ
∂ρT

,
∂rỹ
∂σ2n

)
def
= (G|V,u), (5)

we can deduce from (4)
2

T
CRB−1sto(ω) = GHΠ⊥∆G, (6)

with ∆
def
= (V,u) and Π⊥∆

def
= I−Π∆, where Π∆ denotes the orthonormal projector on the columns of ∆.

Following [17, rel.(14)], it has been proved that

Π⊥∆ = Π⊥V −
Π⊥VuuHΠ⊥V

uHΠ⊥Vu
, (7)

where drỹ

dσ2
n

= vec(I) implies by using (1), that

u = (R
−T/2
ỹ ⊗R

−1/2
ỹ )vec(I) = vec(R−1ỹ ). (8)

Consequently using (6) and (7), if gk denotes the k-th column of G, the (k, l) element of 2
T CRB−1sto(ω) can

be written elementwise as

2

T

[
CRB−1sto(ω)

]
k,l

= gHk Π⊥Vgl −
gHk Π⊥VuuHΠ⊥Vgl

uHΠ⊥Vu
. (9)

To proceed, we need to determine the expressions of Π⊥V associated with the two parametrizations of the real
symmetric matrix Rs. But as the steps of the proof given in [17] do not apply, we have to elaborate a little bit.
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II. PROOF OF THEOREM 1

For arbitrary real symmetric matrix Rs, let rs,k denote the kth column of Rs. We get from Rỹ
def
= E(ỹtỹ

H
t ) =

ÃRsÃ
H + σ2nI,

dRỹ

dwk
=

(
0, ., ã

′

k, .,0
)

RsÃ
H + ÃRs


0T

...
ã

′H
k
...

0T


= ã

′

kr
T
s,kÃ

H + Ãrs,kã
′H
k .

where ã
′

k
def
= dãk/dωk. Hence using (1), the kth column of G in (5) is given by

gk = (R
−T/2
ỹ ⊗R

−1/2
ỹ )vec

(
dRỹ

dωk

)
= vec

(
R
−1/2
ỹ

dRỹ

dωk
R
−1/2
ỹ

)
= vec(ZHk + Zk), (10)

where
Zk

def
= R

−1/2
ỹ Ãrs,kã

′H
k R

−1/2
ỹ . (11)

Next, we determine V. The key observation to note here, is that the real-valued symmetric matrix Rs, using
[20, rel.(7.18)], can be written as

vec(Rs) = DKρ,

where DK is the so-called duplication matrix, and hence from (5)

V = (R
−T/2
ỹ Ã∗ ⊗R

−1/2
ỹ Ã)DK

def
= WDK , (12)

and consequently:

Π⊥V = I−V(VHV)−1VH = I−WDK(DT
KWHWDK)−1DT

KWH

= I−WDK(DT
K(U⊗U)DK)−1DT

KWH , (13)

using
WHW = (ÃTR−Tỹ Ã∗)⊗ (ÃHR−1ỹ Ã)

def
= U⊗U,

deduced from (2), where
U

def
= ÃHR−1ỹ Ã (14)

is an K ×K real symmetric non-singular matrix. Then it follows from [20, Theorem 7.38], and some simple
algebraic manipulations using [20, Theorem 7.37, rel.(c)] and [20, Theorem 7.34, rel.(d)], that (13) becomes

Π⊥V = I−W(U−1 ⊗U−1)WH . (15)

Now let us prove that uHΠ⊥Vgk = 0.
Using the formula (1), we get from (11)

WHgk = (ÃTR
−T/2
ỹ ⊗ ÃHR

−1/2
ỹ )vec(ZH

k + Zk)

= vec(ÃHR
−1/2
ỹ ZH

k R
−1/2
ỹ Ã) + ÃHR

−1/2
ỹ ZkR

−1/2
ỹ Ã)

= vec(bkcTk + ckbT
k )

def
= vec(Hk), (16)

where bk and ck are the K × 1 real-valued vectors given by

bT
k

def
= ã

′H
k R−1ỹ Ã and ck

def
= Urs,k. (17)
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From (10), (13) and (16) we obtain

Π⊥Vgk = gk −W(U−1 ⊗U−1)WHgk

= gk −W(U−1 ⊗U−1)vec(Hk)

= gk − vec(R
−1/2
ỹ ÃU−1HkU−1ÃHR

−1/2
ỹ )

= gk − vec(R
−1/2
ỹ ÃU−1(bkcTk + ckbT

k )U−1ÃHR
−1/2
ỹ )

= gk − vec(R
−1/2
ỹ ÃU−1bkcTk U−1ÃHR

−1/2
ỹ + R

−1/2
ỹ ÃU−1ckbT

k U−1ÃHR
−1/2
ỹ ). (18)

To simplify the expression (18), we need the following equality (19)

ÃU−1ÃH = Ã(ÃHR−1ỹ Ã)−1ÃH

= Ã(ÃHÃ)−1(ÃHÃRs + σ2
nI)ÃH

= ÃRsÃ
H + σ2

nΠÃ

= ΠÃRỹ, (19)

where ΠÃ
def
= Ã(ÃHÃ)−1ÃH . Using bT

k U−1ÃH = ã
′H
k ΠÃ and U−1ck = rs,k deduced from (19) and (17),

(18) can be simplified as

Π⊥Vgk = gk − vec(R
−1/2
ỹ Ãrs,kã

′H
k ΠÃR

−1/2
ỹ + R

−1/2
ỹ ΠÃã

′

krTs,kÃHR
−1/2
ỹ )

= gk − vec(Yk + YH
k ) = vec(Zk −Yk + ZH

k −YH
k ) (20)

where Yk
def
= R

−1/2
ỹ Ãrs,kã

′H
k ΠÃR

−1/2
ỹ . From (20) and (8) together with the identity (3), we get

uHΠ⊥Vgk = (vec(R−1ỹ ))Hvec(Zk −Yk + ZH
k −YH

k )

= Tr(R−1ỹ (Zk −Yk + ZH
k −YH

k ))

= Tr(R−1ỹ (Zk −Yk)) + Tr((ZH
k −YH

k )R−1ỹ )

def
= Tr(Fk) + Tr(FH

k ). (21)

Let us now prove that
Tr(Fk) = 0.

After replacing Zk and Yk by their expression, we obtain

Zk −Yk = R
−1/2
ỹ Ãrs,kã

′H
k Π⊥

Ã
R
−1/2
ỹ . (22)

Thus
Tr(Fk) = Tr(rs,kã

′H
k Π⊥

Ã
R−2ỹ Ã). (23)

Since
Π⊥

Ã
Rỹ = σ2

nΠ⊥
Ã

or equivalently Π⊥
Ã

R−1ỹ =
1

σ2
n

Π⊥
Ã
, (24)

we get

Π⊥
Ã

R−2ỹ Ã =

(
1

σ2
n

Π⊥
Ã

)(
R−1ỹ Ã

)
=

1

σ4
n

Π⊥
Ã

Ã = O, (25)

and thus from (23), we get Tr(Fk) = 0. It follows then from (21) that uHΠ⊥Vgk = 0.
This identity, together with (10) and (20) allows us to simplify (9) as

2

T

[
CRB−1sto(ω)

]
k,l

= gHk Π⊥Vgl

= (vec(ZHk + Zk))
Hvec(Zl −Yl + ZHl −YH

l )

= 2Re(Tr((Zk + ZHk )(Zl −Yl))). (26)
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Note from (11) and (22) that

Tr(ZHk (Zl −Yl)) = (ã
′H
l Π⊥

Ã
R−1ỹ ã

′H
k )(rTs,kÃ

HR−1ỹ Ãrs,l).

Using (24), we get

Tr(ZHk (Zl −Yl)) =
1

σ2n
(ã

′H
l Π⊥

Ã
ã

′H
k )(rTs,kÃ

HR−1ỹ Ãrs,l), (27)

and

Tr(Zk(Zl −Yl)) = (ã
′H
k R−1ỹ Ãrs,l)(ã

′H
l Π⊥

Ã
R−1ỹ Ãrs,k)

=
1

σ2n
(ã

′H
k R−1ỹ Ãrs,l)(ã

′H
l Π⊥

Ã
Ãrs,k) = 0. (28)

It follows then from (27) and (28) that (26) can be simplified as[
CRB−1sto(ω)

]
k,l

=
T

σ2n
Re
(
(ã

′H
k Π⊥

Ã
ã

′

l)(r
T
s,kÃ

HR−1ỹ Ãrs,l)
)
. (29)

Finally, writing (29) in matrix form, theorem 1 is proved.

III. PROOF OF THEOREM 2

For coherent sources for which Rs = ccT and ρ = c, we follow the steps similar to those in the proof of
theorem 1. First, we note that the k-th columns of G are still given by (10), but with now

Zk = ckR
−1/2
ỹ Ãcã

′H
k R

−1/2
ỹ . (30)

Second, vec(Rs) = c⊗ c implies that

∂vec(Rs)

∂cT
= c⊗ I + I⊗ c = 2NK(c⊗ I), (31)

where NK is the K ×K matrix defined in [20, Theorem 7.34]. Consequently (12) becomes

V = 2WNK(c⊗ I), (32)

which gives after some algebraic manipulation using [20, Theorem 7.34, rel.(d)]:

Π⊥V
def
= I−V(VHV)−1VH = I−V1V̄

−1VH
1 , (33)

with V1
def
= WNK(c⊗ I) and V̄

def
= (cT ⊗ I)NK(U⊗U)NK(c⊗ I) where U is defined by (14). V̄ can be

simplified as

V̄ = (cT ⊗ I)NK(U⊗U)(c⊗ I)

= (cT ⊗ I)NK(Uc⊗U)

=
1

2

(
κcU + UccTUT

)
, (34)

where the first equality follows from [20, Theorem 7.35, rel.(a)] and the third equality follows from [20,
Theorem 7.31, rel.(d)] using the definition of NK [20, Theorem 7.34] and κc

def
= cTUc. The inverse V̄−1 is

deduced from the matrix inversion lemma applied to (34)

V̄−1 =
2

κc

(
U−1 − 1

2κc
ccT

)
. (35)

Now let us prove that uHΠ⊥Vgk = 0.
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Using Ū
def
= ÃHR−2

ỹ Ã as a real-valued symmetric matrix and the identity (1), we get

uHV1 = (vec(R−1
ỹ ))H(R

−T/2
ỹ Ã∗ ⊗ R

−1/2
ỹ Ã)NK(c ⊗ I)

= (vec(Ū))T (c ⊗ I)

= cT Ū, (36)

where the second equality follows from [20, Theorem 7.34, rel.(c)] and the third equality uses (1). Furthermore:

VH
1 gk = (cT ⊗ I)NT

KWHgk

= ck(cT ⊗ I)NT
Kvec(bkcTUT + UcbT

k )

= ck(cT ⊗ I)vec(bkcTUT + UcbT
k )

= ck
(
κcbk + (bT

k c)Uc
)
, (37)

where the second equality follows from WHgk = ckvec(bkcT
k + ckbT

k ) deduced from (16) with ck defined in (17) is now
given be ckUc, and the third equality follows from [20, Theorem 7.34, rel.(c)] and the property that bkcTUT + UcbT

k is a
real-valued symmetric matrix. In similar way, we have

uHgk = 2ckã
′H
k R−2

ỹ Ãc. (38)

From (35) and (37), we get
V̄−1VH

1 gk = 2ckU−1bk. (39)

It follows from (33), (39), (36) and (38) that

uHΠ⊥Vgk = uHgk − uHV1V̄
−1VH

1 gk

= 2ckã
′H
k R−2

ỹ Ãc − 2ckcT ŪU−1bk

= 2ckã
′H
k R−2

ỹ Ãc − 2ckcT ÃHR−2
ỹ ã

′
k = 0,

where the third equality follows from the identity ŪU−1ÃH = ÃHR−1
ỹ obtained using (19) and (25) which is equivalent to R−2

ỹ Ã =

ΠÃR−2
ỹ Ã.

It follows that the elements of (6) reduce to
2

T

[
CRB−1sto(ω)

]
k,l

= gHk Π⊥Vgl = gHk gl − gHk V1V̄
−1VH

1 gl, (40)

where we get

gHk gl = vec(ZHk + Zk)
Hvec(ZHl + Zl)

= Tr[(ZHk + Zk)
H(ZHl + Zl)]

= 2ckcl

(
κcã

′H
k R−1ỹ ã

′

l + (bTk c)(bTl c)
)
, (41)

where the first equality is deduced from the definition (10) of gk associated with (30), the second equality
follows from the identity (3), and the third equality follows from the definition (17) of bk and the property
that ã

′H
k R−1ỹ ã

′

l is real-valued. On the other hand, we get

gHk V1V̄
−1VH

1 gl = 2ckcl
(
bTkU−1

) (
κcbl + (bTl c)Uc)

)
= 2ckcl

(
κcã

′H
k R−1ỹ ΠÃã

′

l + (bTk c)(bTl c
)
, (42)

where the first equality follows from (37) and (39) and the second equality is deduced from (19). Plugging
(41) and (42) into (40), we get:

2

T

[
CRB−1sto(ω)

]
k,l

=
2κc
σ2n

ckcl(ã
′H
k Π⊥

Ã
ã

′

l),

using R−1ỹ Π⊥
Ã

= 1
σ2
n
Π⊥

Ã
. Finally, writing (40) in matrix form, theorem 2 is proved.
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