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Asymptotic Distributions Associated to Oja’s
Learning Equation for Neural Networks

Jean-Pierre Delmas and Jean-l@a,CardosoMember, IEEE

Abstract—In this paper, we perform a complete asymptotic a large number of training samples is available. It was rig-
performance analysis of the stochastic approximation algorithm orously established for constant [4] and for decreasing [5],
(denoted subspace network learning algorithm) derived from [3] learning rates that the behavior of these algorithms is

Oja’s learning equation, in the case where the learning rate is . .. . ) . .
constant and a large number of patterns is available. This algo- intimately related to the properties of an ordinary differential

rithm drives the connection weight matrix W to an orthonormal ~ €quation (ODE) which is obtained by suitably averaging over
basis of a dominant invariant subspace of a covariance matrix. the training patterns. More precisely @, xx, and~; denote,

Our approach consists in associating to this algorithm a second respectively, the vector of network weights to be learned,
stochastic approximation algorithm that governs the evolution the training patterns and the learning rate at tifethese

of WWT to the projection matrix onto this dominant invariant tochasti roximation algorithm n be written in the form
subspace. Then, using a general result of Gaussian approximationS ochastic approximation algo S can be e elo

theory, we derive the asymptotic distribution of the estimated _
projection matrix. Closed form expressions of the asymptotic Okt1 = Ok + f (On, z1)- (1)

covariance of the projection matrix estimated by the SNL al- ; : ; -
gorithm, and by the smoothed SNL algorithm that we introduce, The key tool in the analysis of the sequergis the so-called

are given in case of independent or correlated learning patterns Interpolated proces§®,), ¢ € R+, usually defined by

and are further analyzed. It is found that the structures of these tagpr — t t— 1
asymptotic covariance matrices are similar to those describing ©(t) = ——— O +

batch estimation techniques. The accuracy or our asymptotic Th+1 Th+1
analysis is checked by numerical simulations and it is found to \yhere

be valid not only for a “small” learning rate but in a very large

Ot1, tr <t <tpp1 (2)

domain. Finally, improvements brought by our smoothed SNL to =0, =71+ + .
algorithm are shown, such as the learning speed/misadjustment
tradeoff and the deviation from orthonormality. If v tends to zero at a suitable rate, the interpolated process

Index Terms—Adaptive estimation, eigenvectors, Oja’s learn- Of ©1 eventually follows a trajectory which is a solution of
ing equation, principal component analysis, subspace estimation. the associated ODE with probability one [6], [7]. As such,

the study of the local or global stability of the equilibria
of the ODE is of great importance [3]. If the sequence of
learning rates is a small constaptthe estimate®); usually
VER the past decade, adaptive estimation of subspag¢gs to stabilize, and the analysis of the interpolated processes
of covariance matrices has been applied successfullydannot be carried out for fixed. Nevertheless, interesting
different fields of signal processing, such as high-resolutigitymptotic behavior may be obtained by lettingend to zero
spectral analysis and source localization, see [1] and the refgécause for, “small enough,” these algorithms will oscillate
ences therein, and more recently in the subspace approach ygegéind the theoretical limit of the decreasing learning rate
in blind identification of multichannel finite impulse responsgcheme. In particu|ar the Corresponding interpo]ated processes
filters [2]. At the same time, and independently many neurgl) converge weakly to the solution of the associated ODE [8]
network realizations have been proposed for the Statisti%henry tends to zero. In practice, aﬂ's necessar"y small, the
technique of principal component analysis in data compressig@chastic approximation algorithm (1) follows its associated
and feature extraction and for optimal fitting in the totabpE from the start in a first approximation. This transient
least squares sense [3]. Among these realizations, seveyi@se is followed by an asymptotic phase where the random
stochastic approximation algorithms have been proposed gpect of the fluctuations becomes prominent with respect to
many authors of the neural-network community. the evolution of the ODE. This second phase constitutes a
To understand the performance of these neural netwaikcond approximation. Naturally, if the learning rates cho-
unsupervised learning algorithms, it is of fundamental insen |arger [respectively, smaller], the learning speed increases
portance to investigate how they behave in the case wheigspectively, decreases], but the fluctuations of the asymptotic

. . . hase increase [respectively, decrease]. So a tradeoff naturally
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of the estimate®,,. So, it is of great importance to specifythe complementary projectak — P. Diag(ay, -, a,) IS a
these variances. A good tool for evaluating these varianadisgonal matrix consisting of the diagonal elememisThe

is a general Gaussian approximation result [9] which giveymbol1,4 denotes the indicator function of the conditian

the limiting distribution of the estimate®, whenk and~ which assumes the value one if the condition is satisfied and
tend, respectively, ta-oc and zero. The purpose of this papeeero otherwise.

is to determine the asymptotic distribution of the estimates by

using the approach developed in [10]-[13], for two algorithms: || The SNL AND SMOOTHED SNL ALGORITHMS
the so-called SNL stochastic approximation algorithm [3],

derivgd from Oja’s_learning equation, anq the smoothed SI&{: The Algorithm Associated to Oja’s Learning Equation
algorithm that we introduce. However, since these stochastic ) ) ) T
approximation algorithms converge to any orthonormal basisFOr @ givenn x «n covariance matrix, = E(zz") of a

of the considered eigenspace of the covariance matrix @pussian distributed, zero mean real random training pattern
the training patterns, and not to the eigenvectors themsel&&StOrz, let Ay > --- > Ao > Ayy > --- > A, denote the

we need to develop a special methodology, obtained Bigenvalues off; andw,, - -, v, the corresponding eigenvec-

considering the stochastic approximation algorithm govern&fS- We consider the recursive updating of an (approximately)
by the associated projection matrix. orthonormal basi¥/;, of ther-dimensional dominant invariant

This paper is organized as follows. In Section II, we givéUPspace of.. In neural networks, the integer stands for
an overview of Oja's learning equation and of its assdh® number of neurons; the number of inputs an® . the
ciated stochastic approximation algorithm. Connections f@nnection weight matrix. , , ,
very similar algorithms are enlightened and a modification 1he algorithm that we consider was introduced indepen-
of this stochastic approximation algorithm, denogedoothed dently by Williams [14], Baldi [15], and Oja [16]. It was
SNL algorithm, is introduced to improve the learning sped@formulated in [3] and [17] as a stochastic approximation
versus misadjustment tradeoff. In Section I, after presentif@unterpart of the “simultaneous iteration method” of numer-
a brief review of a general Gaussian approximation result, Wfe! analysis [18]. This stochastic approximation algorithm

consider the stochastic approximation algorithm that goverﬁns"’lds

the associated projection matrix. This enables us to derive Lo =Wt R W, 3)
a closed form expression of the covariance of the limiting +
distribution of the projection matrix estimator computed by the
SNL and by the smoothed SNL algorithms. These expressiqas,hich Wi = (wi1,- -, wi,) € R™" is a matrix whose

are further analyzed and compared to those obtained in baefi,mns wy, € R* are orthonormal and approximate

estimation, and some by-products such as mean square ergySiinant eigenvectors oR,. We suppose that the learning
are derived. The case of time-correlated training patterns s, sequence; satisfies the conditions

studied in Section IV. Finally we present in Section V some

simulations with two purposes. On the one hand, we examine = .

the accuracy of the expressions of the mean square error of Z e =+oo and kll,l}foo =0

the subspace projection matrix estimators and investigate the =1

domain of learning rate for which our asymptotic approachhe matrix R, in (3) is an estimate of the covariance matrix

is valid. On the other hand, we examine performance crited®,. In (4), Si4+1 is a matrix depending oW’ ., which

for which no analytic results were obtained in the precedirgthonormalizes the columns ¥, ;. Depending on the form

sections. We thus show (by simulation) that the smoothedlS.+; and on the choice of the estimate®®f, variants of the

SNL algorithm is better than the SNL algorithm as concerrmsic stochastic algorithm are obtained. In the algorithm that

the learning speed/misadjusment tradeoff. Furthermore, itvi® consider, the instantaneous estimate; is used forR;,

showed that the deviation from orthonormality is proportionand the matrixSy.1 orthonormalizes the columns &7 ; in

to 2 and toy* for the SNL and the smoothed SNL algorithms(4) in a symmetrical way. Sincd® ;. has orthonormal columns,

respectively. for small v, the columns ofWj_, in (3) will be linearly
The following notations are used in the paper. Matricaadependent, although not orthonormal. THEf ., W7, is

and vectors are represented by bold upper case and botiditive definite, and¥ ., will have orthonormal columns if

lower case characters, respectively. Vectors are by defaultdp,; = (W}, Wi,,)'/%. When, assumingy, is small,S;

column orientationI” stands transpose arfdis the identity is expanded and when the terh(~3) is neglected from its

matrix. £(-), Cov(-), tr(-) and|| - ||rro denote the expectation, expansion, the algorithm reads

the covariance, the trace operator and the Frobenius matrix T T

norm, respectivelyVec(-) is the “vectorization” operator that Wiy = Wi+l — WiWi |z Wy ()

turns a matrix into a vector consisting of the columns

the matrix stacked one below another a¥ec™'(-) is the

inverse of the “vectorization” operator that turnsahvector

into ann x n matrix. They are used in conjunction with th

Kronecker productd @ B as the block matrix whoséi, ;) aw,

block element is;; ; B. For a projection matrid®, P+ denotes dt

Wi =W 150 )

the ODE associated to (5), call€dja’s learning equation
enables us to study the convergence of the stochastic approx-
eimation algorithm (5). It reads

=[I, -WWIR.W,. (6)
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If » = 1, in which caseW, is a vector, (5) gives the estimate forR;:
simplified neuron model of Oja [19] andw; is the only -
global asymptotically stable solution of (6). Furthermore, in Ryy1 = By + we(@rx), — Ry) )

[17], it is shown that if the algorithm (5) is used with uniformly » ) )

bounded inputs:,, W remains inside some bounded subset® that the modified SNL algorithm, which we call the
Thus, applying Kushner's ODE method [V, converges Smoothed SNL algorithareads

almost surely either te-v; or +v; under these conditions. For _ T

r > 1, Oja conjectured in [17] similar properties: nameiiy, Ryr =Ry + o (mim), — ng (10)
tends to an orthonormal basis of the eigenspace generated by Wi =Wi + nlln — WiWi [ B W,. (11)

vy, -- -, v,.. Following Oja’s work, there has been considerable

interest generated in understanding (6). For exemple, Baﬂifs introduped in order to normalize b_oth algorithms becayse
and Hornik [20] found the general form of equilibri& = it the learning rate of (10) has no dimension, the learning

[vi,,,v;,]Q wherel < i, < --- < i, < n andQ is rate of (11) must have the dimension of the inverse of the
an orthogonal x » matrix. Krogh and Hertz [21] examined POWer of x,. Furthermo_rea can take into account a better
the local properties of these equilibria and show that on deoff t_)etweel_'l the mlsadjustments and the learning spged,
W = [v1,---,v,]Q are locally stable. Lately, it is proved s we will see in Section V. We note that. sugh a recursive
in [22] that if R, is positive definite and if the initial €Simator was introduced by Owsley [29] in tisthogonal

condition W, is of rankr, the solution of (6) converges tot€ration algorithm.
an orthonormal basis of the-dominant eigenspace dR..
More recently, Cheet al.[23] address a thorough study of the lll. ASYMPTOTIC PERFORMANCE ANALYSIS

global convergence of (6). Although this last result is a global A difficulty arises in the study of the behavior &, be-

asymptotic analysis of (6), the question of the theoretical Stugguse the set of orthonormal bases ofitldominant subspace

of the stochastic approximation algorithm (5) appears to k?&ms acontinuumof attractors: the column vectors W ;, do
extremely challenging.

not in general tend to the eigenvecteis- - - , v,., and we have

no proof of convergence di¥; to a particular orthonormal

basis of their span. Thus, considering the asymptotic distri-
Written in the form Wy, = W, + wlzzi — bution of W, is meaningless. To solve this problem, in the

WkW}C:ck:c}f]Wk, the SNL algorithm is quite similar to same way as Williams [14] did when he studied the stability

the algorithm presented independently by Russo [24] apdl P, ' W, W7 in the dynamics induced by Oja’s learning

Yang [25] and further analyzed in [26]. This latter algorithmequation (6), viz

which we will call the Yang algorithm, is a stochastic

gradient algorithm based on the unconstrained minimization @ = (I, — P,)R,P, + P,R,(I, — P,) (12)

of E|jzx — WW7x, |2, and it reads dt mo ST e

B. Connections with Other Algorithms

T T T T T . . e
Wiy = Wity 2oz, — 2z WiW i, — Wi Wiz, IWr e consider the trajectory of the matd;, def WkW;‘C whose

) ) ) (_7) ~dynamics are governed by the stochastic equation
in which the term between brackets is the symmetrization

of the termzxi — W Wi z,xl of the SNL algorithm. In Piy1 = Py + W f(Pr,zixi) + 72 h(Py, mpxy)  (13)

[25], it is shown that the Yang algorithm globally converges,

almost surely, to the set of the orthonormal bases ofrthe with

dominant invariant subspace Hf,. Based on this observation, def

the matrix W7 W, that appears in (7) can be approximated f(P.M)=(I,-P)MP+PM(I,—-P) (14)

by I.. We note in this case that the Yang algorithm gives WP, M) def (I, - PYMPM(I, — P). (15)

the SNL algorithm. Connected to the SNL algorithm, Oja

et al. [27] proposed an algorithm denotexkighted subspace A remarkable feature of (13) is that the fielfl and the

algorithm (WSA) similar to the SNL algorithm (5) except for complementary ternk depend only onP;, and not on W,

the diagonal matrixA def Diag(f1,-- -, 3:). It reads This fortunate circumstance makes it possible to study the

_ evolution of P; without determining the evolution of the
Wisr = Wi+ [l - Wid Wilnag WiA. (8) underlying matrixW . The characteristics aP;, are indeed

If 3; = 1 for all 4, this algorithm reduces to the SNL algorithmthe most interesting since they completely characterize the

However, if all of them are chosen different and positiveestimated subspace. Since (12) has a unique global asymptot-

0 < < -+ < 3, then it has been shown by Ojt ically stable pointP, Lef [v1, -, v]fwr, 0] [22], (13)

al. [28] that the eigenvectorsw,,---,+w, are the global converges almost surely 8, if P; remains inside a bounded

asymptotically stable solutions of the ODE associated to (&ubset. To evaluate the asymptotic distributions of the subspace

Thus Ojaet al. [28] conjectured thatwy 1, - - -, wx , CONverge projection matrix estimators given by the previous algorithms,

almost surely to the eigenvectoss, - - -, v;.. we shall use a general Gaussian approximation result ([9,
To improve the learning speed and misadjustment tradedfheorem 2, p. 108]) which we now recall for convenience

we propose in this paper to use the following recursivef the reader.
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A. A Short Review of a General Gaussian Lemmal:Forl < ¢ < j < n, in case of independent
Approximation Result learning patterns
Consider a constant learning rate recursive stochastic algo- Ef(P,+ eSij,:vk:ﬂ;‘C) =i Sij + O(e2)

rithm (we write®] for the sequence of estimates to emphasize
the dependence om) (22)
Cov(Vec(f(P., 1zt ))) Vec(Si;) = vij Vec(Si;) (23)
Otsr = O T1/(O 20) + 7 M (O, @) (16) with, respectively,

with z;, = g(£,), whereg,, is a Markov chain independent of iy S Ai(Lis r — L)+ A (1 »— 1<) and

©, and with/;(©, ) a uniformly bounded function fqi©, z) def o B

in some fixed compact set. Suppose that the parameter vector i = 2(Licr = 1<) NNy (24)
©, converges almost surely to the unique asymptotically
stable point9, in the corresponding decreasing learning rate,
algorithm. Consider the continuous Lyapunov equation

2) Real ParameterizationTo apply the Benveniste results
called in Section IlI-A, we must check that the required
conditions onf andh hold. Since||h(Py,zrzl)|| < 4|1, —
Py|)?|| Pkl |lzx]|*, the required condition A3 (ii) for the
(17) complementary term mentioned in [9, p. 216] is fulfilled. As
for the field f, we note from (24) that some eigenvalues of
and whereD and G are, respectively, the derivative of thethe derivative of the mean field are positive real, whereas
mean field and the covariance of the field of the algorithfihe Benveniste results require strictly negative real parts for

DCo +CoD" +G=0

(16) these eigenvalues. To adapt these results to our needs, the
n x n rank+ symmetric matrix? should be parameterized
D af (@7“)} (18) by a vector® of real paramete_rs. Counting degrees of fr_ee-
7] o—o. dom, for example from the singular value decomposition,
oo shows that the set of x n rank+ symmetric matrices is a
G Z Cov[f (O, zr), f(O, x0)]- (19) (r/2)(2n —r +1)-dimensional manifold. Let us now consider

k=—00 the parameterization of’; in a neighborhood ofP,. If
{6;;(P)|1 £ i < j < n} are the coordinates aP — P,
If all the eigenvalues of the derivative of the mean fidd in the basisS; ;, then
have strictly negative real parts, then, in a stationary situation,

when~ — 0 andk — oo, we have 0:5(P) =tx{S;(P-P,)} forl1<i<j<n, (25)
. . P=P.+ > 6;(P)S;. (26)
— (0] —06.) = N(0,C 20 1<i<j<n
\/7( k ) (0,Co) (20)

The relevance of these parameters is shown by the following

whereCo is the unique symmetric solution of the Lyapunodemma. _ _ _
equation (17). Lemma 2:If P is ann x n rank+ symmetric matrix, then

P=P.+ Y 6,(P)S;+0(IP-P.») (27)
B. Asymptotic Distributions of Projection Matrix Estimators (. ))eP,

1) Local Characterization of the FieldAccording to the oo b s the complement of (i, j)|r < ¢ < j < n}, i.e.
previous section and following the methodology explained in or . . o i
[13], one needs to characterize two local properties of tHe_~ {6l si<j<nandi <) o
field f(P,zzT): the mean value of its derivative, and its 1"€re arg(r/2)(2n —r +1) pairs in P, and this is exactly
covariance, both evaluated at the paltt= P,. To proceed, ("€ dimension of the manifold ok x n ranks symmetric
it will be convenient to define the following orthonormalMatrices. This point, together with (27), shows that the matrix
basis for then x n symmetric matrices(v; is defined in S€t{5i|(4,J) € Ps} is in fact anorthonormal basisof the

Section IIl-A and the inner product under consideration [@ngentplane to this manifold at poifft.. It follows that, in a
neighborhood ofP,, then x n rank+ symmetric matrices are

def T
(4,B) = A"B) uniquely determined by theg/2)(2n—r+1) x 1 vector@(P)
viv? i= defined by:©(P) R Vec(P — P,), whereS denotes the
L] . ; 2 . . N
S, =4 vl + vl oy 21) following n* x (r/2)(2n — r + 1) matrix:
v2 SE [ Veo(Syy), -], (i) el (28

With this definition, a first-order approximation in the neighWe note that the particular ordering of the pairs in thef3eis
borhood of P, of the mean field, and the eigenstructure dfrelevant if this ordering is preserved for all the forthcoming
the covariance matrix of the field, are given by the followingiagonal matrices indiced ky, 5). If P(©) denotes the unique
lemma. (for ||©|] small enough): x n rank+ symmetric matrix such



1250 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

that STVec(P(©) — P.) = O, the following one-to-one {S;;}, and it enables us to conclude that for independent

mapping is exhibited for small enougl®.||: learning patterns
Vec(P(84)) = Vec(P.) + 8Oy, + O([|0x %) < G = Cov(4(0,)) = A,, with
_qT _
O =57 VeelPy = P.). (@9) A, Diag(- - vy, Yif) € P (36)

3) Solution of the Lyapunov EquatioVe are now in po-

sition to solve the Lyapunov equation in the new parametgPUS POthG and D are di;lgonal matnces.) In this caS(Ia,dthe
O defined in the previous section. The stochastic equatib}ﬁarunov eq.uatlon (hl7) rﬁ ucels(t?q/2)l(2nl—7—il-1) uncoupie
governing the evolution of this vector parameter is obtained |§>9a ar equations. Thus the solution is clearly
applying .th_e transformatioy, — 01 = ST Vec(Py, — P,) Co = _% AVAF—LI' 37)
to the original (13), thereby giving
According to (19),v~*/?0, —, N(0,—1 A,A7'). By
Op41 = 6y, (O, Tp, 2p(Op, T4, 30 1T 2 w
k1 = Ok + P(Ok, z1) + 1p(Or, 21)  (30) (29), we haveVec(Py) = Vee(Py) 4 S0k + O(|Ox]?). We

where the functiong) and+ turn out to be conclude that fory — 0 andk — +co
def
$(0,3) = ST Vec(f(P(0),z2")) (31) L (Veo(Py) = Vee(P.)) —¢ N(0.Cp) with
$(0,2) = ST Vec(W(P(O), z2T)) (32) .
. . . , Cp=38CeST =-2-5A,A;*ST. (38)
where, likeh, 1) verifies the condition A3(ii) of [9, p. 216]. We 2 #

need to evaluate the derivative matfikof E¢(©,x) at point  ne expression (38) of the covariance matf¥> in the

© = 0, and since we consider only the case of independefdymptotic distribution ofVec(P;) may be written as an
learning patterns, the covariance matfixof ¢(0,z). With explicit sum

these notations, the results of Section 1I-B1 are recycled as .

follows: Cr= ) Z—UVeC(Sij)Vec(sij)T. (39)
4 —2phij

E¢(©,z) = 8T VecEf(P(O),2z") Gper.

—sT VeCEf(P* +Z 6:;8:; + O(||©|?) :wT) From the definitions (24) ofs;; and v;;, and noting that
s ’ v = 0fori < j < r and Vec(vivf) =wv; ®u;, (39) is
=S Vee(Y G855 + O(O1)) finally rewritten as

=87 (84,0 +0(||9]*) = 4,0+ O(|e|*) cr= ¥ Aidj
(33) 1<i<r < j<n 200 = X))
where the above summations are oygrj) € P,. The first (i ©v; +v; ©v)(vi @Quj +v; @w)' . (40)

equality uses definition (31) and the linearity of thé&c . . o . . .
: : TPIS expression coincides with the expression of the covari-
operation, the second equality stems from property (29) gn e matrixCp of the Yang algorithm (7) given in [13]

the reparameterization, the third equality uses Lemma 1 and P 9 ag 9 '

: N L despite some differences in the expressionugf and v;;.
the differentiability of f, and the fourth equality is mducedln fact the “symmetrization” of the SNL algorithm implies

by definitions (24) and (34). The final equality is due to thfﬁat the terms(ui, /pui;) remain invariant for(i, ) € P
(¥ (] ’ A

orthonormality of the basiSy; }, and enables us to COhCIUOIeFurthermore, we note that the expression (40) is the limit when

that 5; tends to one for alf of the expression of the covariance
p det 9EH(O,7) A with matrix Cp of the WSA algorithm given in [12].
o0 00 -
A, Diag(---, juij, )i, j) € P, and now C. Study of the Smoothed SNL Algorithm
pi; < 0(i,7) € Ps. (34) To study the smoothed SNL algorithm, we note that (10)

and (11) take globally the form (16) if we set
We now proceed with evaluating the covariance of the field

ate =0 6, & [Vec(Rk) }
Vec(Wy)
Cov(¢(0,x)) = Cov(ST Vec(f(Ps,zx™)))
= 8T Cov(Vec(f(Ps, z5T)))S Then, if we cor_lsider the trf_zljectory of th_e_a_\ssociat_eq matrix
_STSA — A (35) Ry, as P, remains symmetric (when the initial conditid®y,
- v S is symmetric), it is natural to use the parameter
The first equality holds by definition of; the second O 4
equality is due to the bilinearity of th€ov operator; the O = |:@27k:|

third equality is obtained by noting that (23) also reads
Cov(Vec(f(P.,zx")))S = SA,, with A, defined by (36). i.e., the respective coordinates &, in the basisS;;,1 <
The final equality is due to the orthonormality of the basis < j < n and of P, in the basisS;;, (¢,7) € P;. So,
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O = S Vec(Ry), in which where the second equality uses the differentiabilityf ofith
; def . . Lemmas 2 and 3, the third equality uses the diagonal matrix
S"=1[--,Vec(S;),-- ], (4,4) € Py, with L dof ) i
et A, = Diag(---,n4,---) for (¢,4) € Py, and the last
Py ={@ )1 <i<j<n} equality is due to the orthonormality of the baSig. Equation
and O, = ST Vec(Py — P.). As such, @, follows a (47) enables us to conclude that
stochastic equation of the form (30). In this equation D& IEP(O, x) _ —aln-1y;2 0 (48)
o0 0-0 A0 A,
def | $1(Ox, xx) =0.
Ok, Tk) = o and . def . .
P2(O;, 1) with A, = Diag(---, kq,,---) for (i,5) € P,. We note that
(O ) def 0 like A, the eigenvalues db are real and strictly negative. We
Ak Tl = (O, 1) proceed with evaluating the covariance/d®, z) at® = O,
where Ny G Covp(O,,7) = [Cow/)lée*,z) 8} (49)
$1(0,1) = (ST Vec(zz™) — 0,) (41) A
def o1 —1l/ct wit
(/)2(97 ""-) d_fS Vec(f(P(@2),Vec (S @1))) (42) COV(f)l(Q*,.’L') —_ OéQCOV(S/T Vec(:c:cT) _ @17*)
$(6,2) = ST Vec(h(P(02), Vec H(8'04))).  (43) = 287 Cov(Vee(zz))S'
Note first thatR; converges almost surely tR, = R, = =a’ST(R, ® R,)I,: + K)S'

Yi<i<n AiSi; Wwheny — 0 andk — oco. So @y converges o 2aT ol A 6.2
almost surely t00; . = {61 5.4 }ijer, With 814, = A; for _ _ =20787 8 A; = 207 Ac. (50) _
1<4i<mnandf . =0 elsewhere. This type of coupledThe third equality uses (A.6), and the fourth equality
algorithm introduces a form of relaxation: the solution of thetems from (A.7), (A.10) and the definitiomA, def
first equation is fed directly back into the second. AccordinBiag(---,A;A;,---) for (¢,5) € Py. Thus
to Section IlI-A, we must check that the required condition on def 202A: 0
¢ and+ holds and we need to characterize the mean value of G = Covg(B,,z) = { 0 0}
the derivative and the covariance of the figlt, z1). Like  1he | yapunov equation (17) then has a block triangular form,
h,+ verifies the condition mentioned in [9, A3(ii), p. 216]. Toy,e unique symmetric solution of which is
evaluate the derivative matri® of E¢(©, x;,) at point Co ot

Co = [ ) @1:@2} (52)

0. [%] Co.or Co.

0 with
we need the following lemma. Co = —alal ) CAVIAZALA, 53
Lemma3:Forl < i< j<n Oz _ ( _ n(2n—r+1)/2 ) By S (53)
Then, as in Section 11I-B.3, we dedu€®> = SCg,ST. From

(51)

J(Pu; B + 68i5) = i Sij (44) " the definition ofuij, 144, and&;; and noting thats;; = 0 for
with i < j < r, the matrixCp is finally written in a similar form
Kij def Lico<i + 1j<rzie (45) 1o (40), except for the term;; ' (af(a+ A — Aj)) < 1,
So, in the neighborhood @, , we have ielding i Ao s
E¢1(6,7) = (O, — 0)) we) Cr= 2. = A Ajj)

1<i<r < j<n

and
. (112‘ Qv; + vy ®vi)(vi Qv; + vy ®‘UZ‘)T. (54)

E¢2(9, .’L')
D. Analysis of the Results

First, the expressions (40) and (54) can be compared to
the covariances of the asymptotic distributions obtained in
)) batch estimation. I, = %<, <, wy ;wy, ; denotes the batch

(4,4)CPs

= ST vee (f (P* + Z 927”’57‘,]' + O(H@Q”Q)’R*

+ Z (61,05 = O1,5,)Sis estimated orthogonal projection matrix, we have from [13]

(4,5)ED
vk (Vec(Py) — Vec(P,)) & N(0,Cp)  (55)
_ QT RTINS 2
=87 Vec (4;13 02,i51i58:5 + O(|[O2]7) when k tends to+oo with
Z7] E 3

1<i<r < j<n

+ Z (0155 — 01,554 )5S
(4,5)ED
—_ T 2 1 Al i
=57 (84,0, + O[O + 5'4,(01 = 61.1)) which is also in close similarity with (40) and (54).
= 4,02 + 0([|0]7) Second, a simple global measure of performance is the MSE
+ L 2n—rt1)/2: 0] AL (O1 — ©1 ) (47) betweenP; and P.. Indeed, since the projection matri;

AN
) Or= 2 Br

. (112‘ Ru;+v; @ TIZ‘)(TIZ‘ Qu; + vy ®11¢)T (56)
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characterizes the estimated subspaE§Pi — P.||%,, is a Thus, we can write
measure of the distance between the estimated and the desired

principal component subspaces. Z Cov[Vec(f( Py, zrxi)), Vec(f (P, Zoxd )]
To give a MSE expression, we assume, as is customary, that ,=—._
the first and second asymptotic momentsiyf are those of = QR+ K)Q (62)

its asymptotic distribution. This implies

5Py~ P, = o) i
Cov(Vec(Py)) =vCp + o(7). (57) = Z Ry 0 @ Ry . (63)

k=—o00

where we define

In particular, the MSE betweel?;, and P, is given by the

trace of the covariance matrix of the asymptotic distributio
of P;. Since trace is invariant under an orthonormal chan
of basis with{Vec(S;,)|1 < i < j < n} being an orthonormal
basis, we obtain from (39) and (54) that

To solve the Lyapunov equation for the asymptotic covariance
B¢ Py, we resort to the parameterization Bf, by a vector

= {0i;}i.5cp, as in Section Il-B2). However, as the
matrix I” is no longer diagonal, we must use a component-wise
expression for the asymptotic covariance maéiy. This is

BIPc-Pilb=r Y Y4 69) _ Ve(Si,)Y QRU + K)QVec(Si )
1<i<r < j<n —(pij + paryr)
def (4,5) € Ps, (i',5') € Ps. (64)
whereq;; < 1 for the smoothed SNL algorithm and; = 1
for the SNL algorithm. This may be simplified using the following properties: for any

Finally, following the methodology explained in [13], aPair (i,j), we haveK Vec(S;;) = Vec(S;;) from (A.7), (A.9)
finer picture of the MSE ofCp can be derived from the and finally the particular expressions pf; and p;;-. This
regular structure (40) and (54) of the covariance maftixby results in (65) shown at the bottom of the page. Unfortunately,
decomposing the erraP;, — P, into three orthogonal terms. no significantly simpler expressions seem to be available for
Furthermore, we note that as for the Yang algorithm, ofe in the correlated case.
first-order analysis does not provide the order of deviation In order to proceed, we focus on the total MSE 1&. As
from orthonormality. We show in Section V that this MSE ofbove, this is closely related toCp. SinceCp = SCeS”,
orthonormality is, to a first-order approximation, proportionave have

2 i 4
to~ _for the SNL algorithm, and te* for the smoothed SNL tr Cp = trCo = Z (Co)isij
algorithm. £
(4,5)CPs
Vec(8;)T RVec(S,;
IV. EXTENSION TO CORRELATED TRAINING PATTERNS = Z ( ;\)_ I ) (66)
e

. . . .. . 1<:<r i<n
This section gives explicit solutions for the case of real srersgsn

correlated training patterns for the SNL algorithm; the exterhus, for correlated learning patterns, expression (58) gener-
sion to the modified SNL algorithm is straightforword. Thellizes to
covariance of the field has a more involved expression: from

P E|IPy — Pl =7 1(Cp) + o(3)

(A.5) we have N4\
T T =7 Z e ?_ =+ o(7)
Cov[Vec(f(P.,xrxi, ), Vec(f (P, zoxy )] i e Ai — Ay
— QCov(Vec(mal), Vec(zozd))Q.  (59) 67)

According to the following property ([30], p. 57) for Gaussiawhere the additional (with respect to the independent case)
real signals: terms A; ; are

T T i
Con(Vec(zra). Vec(ase]) 2 3 R i)
=1

=Ry 0@ Ryo+ (Rio®@Ry0)K (60)
+ U?R‘ v (v Ry ov;). 68
where Ry, o < E(z;zl), we have ( 00 (0] R 0v) (68)
. . When x;, = (23, Tx_1, ", Th_nt1)’ With z; being an
Cov[Vec(f(Px, z1x1,)), Vec(f(Py, Zoxp )] MA(q), an AR(p) or an ARMA(p, q) stationary process, we
=Q(Ri,0Q Rio)I+ K)Q. (61) note that); ; can be expressed as a finite closed form sum, as
2(1i<1* - 1j<1’)2(1i’<1‘ - 1j’<1‘)2 T .oy .oy
= — — — 7 <' 1 < g 7, ] <
(Co)ijiry = { v =)+ O —2y0) Vec(S;;)" RVec(S,;) for1<i,i <r<j,j’<n (65)
0 elsewhere
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_2 . L 1 L L

1 1 1 i 1 1 1 L 1 0’B 1 1 1 L 1
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Iteration Number lteration Number

Fig. 1. Learning curves of the mean square efftji?, — P.||%, . averaged Fig. 2. Learning curves of the deviation from orthonormality

over 100 independent runs, for the SNL algorithm (1), and the smoothed SRIW W, — I.||2.,, averaged over 100 independent runs, for the

algorithm for the following different values of the parametera = 1 (2), SNL algorithm (1), and the smoothed SNL algorithm for the following

« = 0.3 (3), compared to the theoretical valger(Cp) (0). different values of the parameter: « = 1 (2), « = 0.3 (3), compared
to vtr(Cp) (0).

shown in [10]. This particular case has practical implications ir%
system identification and in Karhunen-&w® decomposition 0
of time series.

“stability” is v < 0.09 for the SNL algorithm and/ < 0.25

for the smoothed SNL algorithm, for which this ratio is

closed to one. Fig. 4 reveals something which could not be

determined from our first-order analysis: the true order of

deviation from orthonormality. Indeed, our analysis yields
We now examine the accuracy of expressions (58) and (&hlly E|WiW, — I,]|> = O(y). In this figure, we plot

of the mean square error of the projection matrix and invegn a log-log scaleF|Wi W, — I.|%,, as a function ofy.

tigate the domain of learning rate for which our asymptotigje find a slope equal to twWofor the SNL algorithm and

approach is valid. Furthermore, we examine some performange4 for the smoothed SNL algorithm, which means that,

criteria for which no analytical results could be derived froraxperimentally,E||WXW ), — I,||? o 72 [respectively,o 7]

our first-order analysis, such as the speed of convergence @gidthe SNL [respectively, the smoothed SNL] algorithm.

V. SIMULATIONS

the deviation from orthonormality. - Finally the learning speed is investigated through the iteration
In the first experiment, we consider the case= 4,7 = number until “convergence” is achieved (the convergence is
2 associated toR, = Diag(1.75,1.5,0.5,0.25). Clearly, considered achieved if the ratio of the estimated mean square

the eigenvalues of?, are 1.75, 1.5, 0.5 and 0.25 and therror E|| P, — P.||%,, over the theoretical asymptotic mean
associated eigenvectors are the unit vector®in Ry = O square errortr(Cp) is smaller than 1.1). Fig. 5 plots this
and the entries of the initial valu#, are chosen randomly jteration number as a function of the asymptotic mean square
uniformly in [0, 1], thenwo;,7 = 1,2 are normalized, and all error~tr(Cp) (the learning rate is adjusted so thagtr(Cp)

the learning curves are averaged over 100 independent ruggeps the same value for the different algorithms). As can
First of all, in order to compare the SNL and the smoothask seen, the smoothed SNL algorithm provides a much better
SNL algorithm, we consider different values ok, ~) that tradeoff between the learning speed and the misadjustment
provide the same value oftr(Cp). Fig. 1 shows the learing 4tr(C'1»). So the various merits (deviation from orthonormality
curves of the mean square error Bf;, for the SNL and the and tradeoff between learning speed and misadjustment) of
smoothed SNL algorithms. We see that the smoothed ShHte smoothed SNL algorithm can counterbalance its more
algorithm with « = 0.3 provides faster convergence than thgomputationally demanding in some applications.

SNL algorithm. Fig. 2 shows the associated learning curves|n the second experiment’ we compare in F|g 6 the |earning
of the deviation from orthonormality?(-y) = E||W{W, — curves of the mean square error of the projection matrix on
I,.||%,... As can be seen, the smoothed SNL algorithm providéise eigenspace generated by the first two eigenvectors, for
faster convergence as well, and a smaller deviation fromdependent and then AR(1) learning patterns, produced from
orthonormality. Fig. 3 shows the ratio of the estimated medhe same covariance matrix

square erro®|| Py, — P.||%,, over the theoretical asymptotic 1 a a?
mean square erroytr(Cp) as a function ofy, for both the R.=|a 1 a
SNL and the smoothed SNL algorithms and with= 1. a2 a 1

Our present asymptotic analysis is seen to be valid over ) ) ) ) o
This result agrees with the presentation of the SNL algorithn given in

large range ofy (y < 0.02 for the .SNL algorithm and _Section II-A in which the termO(~3) was omitted from the orthonormaliza-
~v < 0.2 for the smoothed SNL algorithm), and the domaifion of the columns o#¥ .
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1.5 M T - A T T T |

1.4F

1.3

ratio
-
n
T

00 N S S R
107° 107 10
learning rate

1.5 T L S S S S T L A S A S A
1.4

13} --...... smoothed SNL algorithm

09 RN N R I N
107 1072 107"

learning rate

Fig. 3. Ratio of the estimated mean square eB{jiP,, — P.||%,,. averaged over 400 independent runs, over the theoretical asymptotic mean square error
~tr(Cp), as a function of the learning ratg for both the SNL algorithm and the smoothed SNL algorithm with= 1.

with @« = 0.3 or 0.9 andy = 0.005. We see that the or AR(1) learning patterns, as a function of the parameter
convergence speed of these mean square errors does not seeime AR model of unit power. We observe that these errors
to be affected by the correlation between the learning pattehecrease whea increases, that is when the eigenvalue spread
xzy, and that the misadjusments tend to values that agree witkreases. We see that these errors are about 12 dB worse
the theoretical values (58) and (67), respectively. Fig. 7 shovisr independent learning patterns than for correlated learning
for the same covariance mati, , the theoretical mean squarepatterns. This result was previously observed in parameterized
error of P, (normalized by the learning ratge for independent adaptive algorithms [10].
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independent observations a=0.3

AR(1) observations a=0.3
et s Asa LN gy

deviation from orthogonality

independent observations a=0.9 :

107° 107 107 L AR(1) observations a=0.9

learning rate
10’5 N 1 1 1 1 1 L | 1
) o ing? () <" T oz 04 06 08 1 12 14 16 18 2
F|g. 4. DeV|at|on from orthonormalityd*(~) E\WlW, — I}, at Iteration Nurber < 10°

“convergence,” estimated by averaging 100 independent runs, as a function
of the learning ratey in log-log scales, for the SNL (1) and the smootheq:Ig 6. Learning curves off||Py — P.||2., compared toytr(Cp) aver-

SNL algorithm witha: = 1 (2). aging 100 independent runs for real independent or AR(1) learning patterns
and for the parameter = 0.3 anda = 0.9 for the SNL algorithm with
4 = 0.005.

v :tndependehtobservahorfs.- RIS

Iteration number

AR(1 } observations -

I L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
mse

10 1 1 1 1 I 1 1 1 1
Fig. 5. lIteration number until “convergence” is achieved, versus theoretical ~ ° 0.1 02 03 04 para?riZtera 06 o7 08 08 !

asymptotic mean square errotr(C ), of the SNL algorithm(—), and of
the smoothed SNL algorithm with = 1 (+),a« = 0.2 (x) anda = 0.3 (0).  Fig. 7. Mean square error of the projection matrix (normalized by the
gain factorv) on the eigenspace generated by the first two eigenvectors
for independent or AR(1) consecutive learning pattees for the same
VI. CONCLUSION covariance matrix®,. as a function of the parameter

We have performed in this paper a complete asymptotic
performance analysis of the SNL algorithm and of a smoothgt] or the finite impulse response [2] estimated by the MUSIC
SNL algorithm that we have introduced, assuming a coatgorithm.
stant learning rate, and in the case where a large number
of patterns is available. A closed form expression of the APPENDIX
covariance in distribution of the projection matrices onto the
principal component subspace estimators has been giver\l,
case of independent or correlated learning patterns. We sho 8
that the misadjustment effects are sensitive to the temporal Ef(P,xxl) = f(P, E(z1z)) = f(P,R,)

Proof of Lemma 1:As the field f in definition (14) is
gar in its second argument, the mean field at any pBirg

correlation between successive learning patterns. The tradeoff

. . = — P+PR.(I,—P) (Al
between the speed of convergence and misadjustment, as well (In = P)R, P + PRy ( )- (A1)
as the deviation from orthonormality, have also been inves-yging p,v; = Licy v and (I, — P)v; = 15, v, a

tigated. Naturally the covariance of the limiting distributioryypstitutionP = P, +ev;v" T'in (A.1) yields after simplification
and consequently the mean square errors of any function of
the projection matrix?;, could be obtained, such as the DOA’s  Ef(P, + ev,v; . 2%} ) = epijviv; + O(€7) (A.2)
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wherey;; is defined in (24). The lemma follows by using the
symmetry ji;; = fiji-
At point P = P,, definition (14) of the field reduces to
f(P,,zz") = PLtza" P, + P zz" Pt (A.3)
which, by vectorization and using def
and thanks to the property

PtoP,+P, 0Pt

Vec(ABC) = (A ® CT)Vec(B) (A.4)
also reads
Vec(f(Ps,zxt)) = Q Vec(zx®). (A5) [y
Now, for a Gaussian vectat, we have ([30, p. 57]): [2]
Cov(Vec(zz')) = R, @ R, + (R, @ R,)K. (A.6)

[3]
where K is ann? x n? block matrix acting as a permutation ”
matrix, i.e., [

K Vec(zy") = Vec(yz™) (A7)

(5]
for any vectorse andy. Combining (A.5) and (A.6), we obtain [g]
Cov(Vec(f(Py,zz™)))

= QCov(Vec(zzT ))Q"
=Q(R,® R,)(I,> + K)Q".

For any pairl < 4,5 < n, by simple substitution, we find

(7]

(8]
(9]

(A.8)

QVGC(UZ‘U?) = (1i§r — 1j§7,)2 VeC(Uﬂ}?XAg) (10]
(R @ R,) Vec(vw] ) = \A; Vec(v;v) ) (A.10) [11]
by using (A.4) and the propertieR,v,v] R. = \i\jvjv}
and Py’ Py = L, (1 - L<)vvl and the identity [12]
Li<r (1=1j<)+1<r (1-1i<p) = (Li<p—1;<,)*. Combining
(A.8)—(A.10) and (A.7), it follows that [13]
Cov(Vec(f(Psy,xz"))) Vec(viv?)
14
= % Vij (Vec(vw?) + Vec(vjv?)) (A.11) Elsi
where the scalars;; are defined in the lemma. Using; =
v;;, Symmetrization of (A.11) completes the proof. [16]
Proof of Lemma 2:Denote P = VAV” the singular [17]

value decomposition of?. This one is not differentiable at

point P = P, because the eigenvalues Bf are degenerate. ;o
However, results from ([31, Theorem 5.4 p. 111]) are available
for the perturbation of the orthogonal projecté¥* onto the [19]

range of P and of the eigenvalues. This is [20]
vvi =P, +P,(P—- P,)P-+P-(P-P,)P,
+O(||P - P.||») (A12) oy
A=TI,+O(|P - P,|). (A.13)
Based on this, we derive thanks to (A.12) aRdP = 0, 22]
that | PLV||? = to(PLVVTPL) = O(||P — P, ||?), and thus
PV =O(|P - P.|)). (A14) 23
It follows from (A.14) and (A.13) thatPrPPl =
PrvAavTPl = O(|P - P,|?). And since Pr PP} = [24

dor<icj<n Bii(P)Si, this completes the proof of the
lemma.
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Proof of Lemma 3:As the field f in definition (14) is

linear in its second argument, we obtain

T 1. T T pl
f(P«, Ry + v} ) =e( P, vv; P + P, Py )
(A.15)

= EIQZ‘]'UZ“U?

where we have useB,v; = 1<, v; andPivi = 1;>,v;, and
wherex;; is defined in (45). The lemma follows thanks to the
symmetry ofx;; = k.
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