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Asymptotic Distributions Associated to Oja’s
Learning Equation for Neural Networks

Jean-Pierre Delmas and Jean-Fran¸cois Cardoso,Member, IEEE

Abstract—In this paper, we perform a complete asymptotic
performance analysis of the stochastic approximation algorithm
(denoted subspace network learning algorithm) derived from
Oja’s learning equation, in the case where the learning rate is
constant and a large number of patterns is available. This algo-
rithm drives the connection weight matrixWWW to an orthonormal
basis of a dominant invariant subspace of a covariance matrix.
Our approach consists in associating to this algorithm a second
stochastic approximation algorithm that governs the evolution
of WWWWWWT to the projection matrix onto this dominant invariant
subspace. Then, using a general result of Gaussian approximation
theory, we derive the asymptotic distribution of the estimated
projection matrix. Closed form expressions of the asymptotic
covariance of the projection matrix estimated by the SNL al-
gorithm, and by the smoothed SNL algorithm that we introduce,
are given in case of independent or correlated learning patterns
and are further analyzed. It is found that the structures of these
asymptotic covariance matrices are similar to those describing
batch estimation techniques. The accuracy or our asymptotic
analysis is checked by numerical simulations and it is found to
be valid not only for a “small” learning rate but in a very large
domain. Finally, improvements brought by our smoothed SNL
algorithm are shown, such as the learning speed/misadjustment
tradeoff and the deviation from orthonormality.

Index Terms—Adaptive estimation, eigenvectors, Oja’s learn-
ing equation, principal component analysis, subspace estimation.

I. INTRODUCTION

OVER the past decade, adaptive estimation of subspaces
of covariance matrices has been applied successfully in

different fields of signal processing, such as high-resolution
spectral analysis and source localization, see [1] and the refer-
ences therein, and more recently in the subspace approach used
in blind identification of multichannel finite impulse response
filters [2]. At the same time, and independently many neural
network realizations have been proposed for the statistical
technique of principal component analysis in data compression
and feature extraction and for optimal fitting in the total
least squares sense [3]. Among these realizations, several
stochastic approximation algorithms have been proposed by
many authors of the neural-network community.

To understand the performance of these neural network
unsupervised learning algorithms, it is of fundamental im-
portance to investigate how they behave in the case where
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a large number of training samples is available. It was rig-
orously established for constant [4] and for decreasing [5],
[3] learning rates that the behavior of these algorithms is
intimately related to the properties of an ordinary differential
equation (ODE) which is obtained by suitably averaging over
the training patterns. More precisely, if , , and denote,
respectively, the vector of network weights to be learned,
the training patterns and the learning rate at time, these
stochastic approximation algorithms can be written in the form

(1)

The key tool in the analysis of the sequenceis the so-called
interpolated process usually defined by

(2)

where

If tends to zero at a suitable rate, the interpolated process
of eventually follows a trajectory which is a solution of
the associated ODE with probability one [6], [7]. As such,
the study of the local or global stability of the equilibria
of the ODE is of great importance [3]. If the sequence of
learning rates is a small constant, the estimates usually
fail to stabilize, and the analysis of the interpolated processes
cannot be carried out for fixed Nevertheless, interesting
asymptotic behavior may be obtained by lettingtend to zero
because for “small enough,” these algorithms will oscillate
around the theoretical limit of the decreasing learning rate
scheme. In particular the corresponding interpolated processes
(2) converge weakly to the solution of the associated ODE [8]
when tends to zero. In practice, asis necessarily small, the
stochastic approximation algorithm (1) follows its associated
ODE from the start in a first approximation. This transient
phase is followed by an asymptotic phase where the random
aspect of the fluctuations becomes prominent with respect to
the evolution of the ODE. This second phase constitutes a
second approximation. Naturally, if the learning rateis cho-
sen larger [respectively, smaller], the learning speed increases
[respectively, decreases], but the fluctuations of the asymptotic
phase increase [respectively, decrease]. So a tradeoff naturally
arises between the learning speed and the variances of the
estimated network weights, often called misadjustment. In
stationary random input environments, it is desirable to keep

large at the beginning, to achieve fast learning, and subse-
quently to decrease its value in order to reduce the variance
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of the estimates So, it is of great importance to specify
these variances. A good tool for evaluating these variances
is a general Gaussian approximation result [9] which gives
the limiting distribution of the estimates when and
tend, respectively, to and zero. The purpose of this paper
is to determine the asymptotic distribution of the estimates by
using the approach developed in [10]–[13], for two algorithms:
the so-called SNL stochastic approximation algorithm [3],
derived from Oja’s learning equation, and the smoothed SNL
algorithm that we introduce. However, since these stochastic
approximation algorithms converge to any orthonormal basis
of the considered eigenspace of the covariance matrix of
the training patterns, and not to the eigenvectors themselves,
we need to develop a special methodology, obtained by
considering the stochastic approximation algorithm governed
by the associated projection matrix.

This paper is organized as follows. In Section II, we give
an overview of Oja’s learning equation and of its asso-
ciated stochastic approximation algorithm. Connections to
very similar algorithms are enlightened and a modification
of this stochastic approximation algorithm, denotedsmoothed
SNL algorithm, is introduced to improve the learning speed
versus misadjustment tradeoff. In Section III, after presenting
a brief review of a general Gaussian approximation result, we
consider the stochastic approximation algorithm that governs
the associated projection matrix. This enables us to derive
a closed form expression of the covariance of the limiting
distribution of the projection matrix estimator computed by the
SNL and by the smoothed SNL algorithms. These expressions
are further analyzed and compared to those obtained in batch
estimation, and some by-products such as mean square errors
are derived. The case of time-correlated training patterns is
studied in Section IV. Finally we present in Section V some
simulations with two purposes. On the one hand, we examine
the accuracy of the expressions of the mean square error of
the subspace projection matrix estimators and investigate the
domain of learning rate for which our asymptotic approach
is valid. On the other hand, we examine performance criteria
for which no analytic results were obtained in the preceding
sections. We thus show (by simulation) that the smoothed
SNL algorithm is better than the SNL algorithm as concerns
the learning speed/misadjusment tradeoff. Furthermore, it is
showed that the deviation from orthonormality is proportional
to and to for the SNL and the smoothed SNL algorithms,
respectively.

The following notations are used in the paper. Matrices
and vectors are represented by bold upper case and bold
lower case characters, respectively. Vectors are by default in
column orientation. stands transpose andis the identity
matrix. and denote the expectation,
the covariance, the trace operator and the Frobenius matrix
norm, respectively. is the “vectorization” operator that
turns a matrix into a vector consisting of the columns of
the matrix stacked one below another and is the
inverse of the “vectorization” operator that turns an-vector
into an matrix. They are used in conjunction with the
Kronecker product as the block matrix whose
block element is For a projection matrix denotes

the complementary projector is a
diagonal matrix consisting of the diagonal elements The
symbol denotes the indicator function of the condition
which assumes the value one if the condition is satisfied and
zero otherwise.

II. THE SNL AND SMOOTHED SNL ALGORITHMS

A. The Algorithm Associated to Oja’s Learning Equation

For a given covariance matrix of a
Gaussian distributed, zero mean real random training pattern
vector let denote the
eigenvalues of and the corresponding eigenvec-
tors. We consider the recursive updating of an (approximately)
orthonormal basis of the -dimensional dominant invariant
subspace of In neural networks, the integer stands for
the number of neurons, the number of inputs and the
connection weight matrix.

The algorithm that we consider was introduced indepen-
dently by Williams [14], Baldi [15], and Oja [16]. It was
reformulated in [3] and [17] as a stochastic approximation
counterpart of the “simultaneous iteration method” of numer-
ical analysis [18]. This stochastic approximation algorithm
reads

(3)

(4)

in which is a matrix whose
columns are orthonormal and approximate
dominant eigenvectors of We suppose that the learning
rate sequence satisfies the conditions

and

The matrix in (3) is an estimate of the covariance matrix
In (4), is a matrix depending on which

orthonormalizes the columns of Depending on the form
of and on the choice of the estimate of variants of the
basic stochastic algorithm are obtained. In the algorithm that
we consider, the instantaneous estimate is used for
and the matrix orthonormalizes the columns of in
(4) in a symmetrical way. Since has orthonormal columns,
for small the columns of in (3) will be linearly
independent, although not orthonormal. Then is
positive definite, and will have orthonormal columns if

When, assuming is small,
is expanded and when the term is neglected from its
expansion, the algorithm reads

(5)

The ODE associated to (5), calledOja’s learning equation,
enables us to study the convergence of the stochastic approx-
imation algorithm (5). It reads

(6)
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If , in which case is a vector, (5) gives the
simplified neuron model of Oja [19] and is the only
global asymptotically stable solution of (6). Furthermore, in
[17], it is shown that if the algorithm (5) is used with uniformly
bounded inputs remains inside some bounded subset.
Thus, applying Kushner’s ODE method [7], converges
almost surely either to or under these conditions. For

, Oja conjectured in [17] similar properties: namely,
tends to an orthonormal basis of the eigenspace generated by

Following Oja’s work, there has been considerable
interest generated in understanding (6). For exemple, Baldi
and Hornik [20] found the general form of equilibria

where and is
an orthogonal matrix. Krogh and Hertz [21] examined
the local properties of these equilibria and show that only

are locally stable. Lately, it is proved
in [22] that if is positive definite and if the initial
condition is of rank , the solution of (6) converges to
an orthonormal basis of the-dominant eigenspace of
More recently, Chenet al. [23] address a thorough study of the
global convergence of (6). Although this last result is a global
asymptotic analysis of (6), the question of the theoretical study
of the stochastic approximation algorithm (5) appears to be
extremely challenging.

B. Connections with Other Algorithms

Written in the form
, the SNL algorithm is quite similar to

the algorithm presented independently by Russo [24] and
Yang [25] and further analyzed in [26]. This latter algorithm,
which we will call the Yang algorithm, is a stochastic
gradient algorithm based on the unconstrained minimization
of , and it reads

(7)
in which the term between brackets is the symmetrization
of the term of the SNL algorithm. In
[25], it is shown that the Yang algorithm globally converges,
almost surely, to the set of the orthonormal bases of the-
dominant invariant subspace of Based on this observation,
the matrix that appears in (7) can be approximated
by We note in this case that the Yang algorithm gives
the SNL algorithm. Connected to the SNL algorithm, Oja
et al. [27] proposed an algorithm denotedweighted subspace
algorithm (WSA) similar to the SNL algorithm (5) except for

the diagonal matrix It reads

(8)

If for all this algorithm reduces to the SNL algorithm.
However, if all of them are chosen different and positive:

then it has been shown by Ojaet
al. [28] that the eigenvectors are the global
asymptotically stable solutions of the ODE associated to (8).
Thus Ojaet al. [28] conjectured that converge
almost surely to the eigenvectors

To improve the learning speed and misadjustment tradeoff,
we propose in this paper to use the following recursive

estimate for :

(9)

so that the modified SNL algorithm, which we call the
smoothed SNL algorithm, reads

(10)

(11)

is introduced in order to normalize both algorithms because
if the learning rate of (10) has no dimension, the learning
rate of (11) must have the dimension of the inverse of the
power of Furthermore can take into account a better
tradeoff between the misadjustments and the learning speed,
as we will see in Section V. We note that such a recursive
estimator was introduced by Owsley [29] in hisorthogonal
iteration algorithm.

III. A SYMPTOTIC PERFORMANCE ANALYSIS

A difficulty arises in the study of the behavior of be-
cause the set of orthonormal bases of the-dominant subspace
forms acontinuumof attractors: the column vectors of do
not in general tend to the eigenvectors and we have
no proof of convergence of to a particular orthonormal
basis of their span. Thus, considering the asymptotic distri-
bution of is meaningless. To solve this problem, in the
same way as Williams [14] did when he studied the stability

of in the dynamics induced by Oja’s learning
equation (6), viz

(12)

we consider the trajectory of the matrix whose
dynamics are governed by the stochastic equation

(13)

with

(14)

(15)

A remarkable feature of (13) is that the field and the
complementary term depend only on and not on
This fortunate circumstance makes it possible to study the
evolution of without determining the evolution of the
underlying matrix The characteristics of are indeed
the most interesting since they completely characterize the
estimated subspace. Since (12) has a unique global asymptot-

ically stable point [22], (13)
converges almost surely to if remains inside a bounded
subset. To evaluate the asymptotic distributions of the subspace
projection matrix estimators given by the previous algorithms,
we shall use a general Gaussian approximation result ([9,
Theorem 2, p. 108]) which we now recall for convenience
of the reader.
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A. A Short Review of a General Gaussian
Approximation Result

Consider a constant learning rate recursive stochastic algo-
rithm (we write for the sequence of estimates to emphasize
the dependence on

(16)

with , where is a Markov chain independent of
and with a uniformly bounded function for

in some fixed compact set. Suppose that the parameter vector
converges almost surely to the unique asymptotically

stable point in the corresponding decreasing learning rate
algorithm. Consider the continuous Lyapunov equation

(17)

and where and are, respectively, the derivative of the
mean field and the covariance of the field of the algorithm
(16)

(18)

(19)

If all the eigenvalues of the derivative of the mean field
have strictly negative real parts, then, in a stationary situation,
when and , we have

(20)

where is the unique symmetric solution of the Lyapunov
equation (17).

B. Asymptotic Distributions of Projection Matrix Estimators

1) Local Characterization of the Field:According to the
previous section and following the methodology explained in
[13], one needs to characterize two local properties of the
field the mean value of its derivative, and its
covariance, both evaluated at the point To proceed,
it will be convenient to define the following orthonormal
basis for the symmetric matrices is defined in
Section II-A and the inner product under consideration is

(21)

With this definition, a first-order approximation in the neigh-
borhood of of the mean field, and the eigenstructure of
the covariance matrix of the field, are given by the following
lemma.

Lemma 1: For , in case of independent
learning patterns

(22)

(23)

with, respectively,

and

(24)

2) Real Parameterization:To apply the Benveniste results
recalled in Section III-A, we must check that the required
conditions on and hold. Since

the required condition A3 (ii) for the
complementary term mentioned in [9, p. 216] is fulfilled. As
for the field we note from (24) that some eigenvalues of
the derivative of the mean field are positive real, whereas
the Benveniste results require strictly negative real parts for
these eigenvalues. To adapt these results to our needs, the

rank- symmetric matrix should be parameterized
by a vector of real parameters. Counting degrees of free-
dom, for example from the singular value decomposition,
shows that the set of rank- symmetric matrices is a

-dimensional manifold. Let us now consider
the parameterization of in a neighborhood of If

are the coordinates of
in the basis then

for (25)

(26)

The relevance of these parameters is shown by the following
lemma.

Lemma 2: If is an rank- symmetric matrix, then

(27)

where is the complement of i.e.,

and
There are pairs in and this is exactly

the dimension of the manifold of rank- symmetric
matrices. This point, together with (27), shows that the matrix
set is in fact anorthonormal basisof the
tangent plane to this manifold at point It follows that, in a
neighborhood of the rank- symmetric matrices are
uniquely determined by the vector

defined by: where denotes the
following matrix:

(28)

We note that the particular ordering of the pairs in the setis
irrelevant if this ordering is preserved for all the forthcoming
diagonal matrices indiced by If denotes the unique
(for small enough) rank- symmetric matrix such



1250 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

that the following one-to-one
mapping is exhibited for small enough :

(29)

3) Solution of the Lyapunov Equation:We are now in po-
sition to solve the Lyapunov equation in the new parameter

defined in the previous section. The stochastic equation
governing the evolution of this vector parameter is obtained by
applying the transformation
to the original (13), thereby giving

(30)

where the functions and turn out to be

(31)

(32)

where, like verifies the condition A3(ii) of [9, p. 216]. We
need to evaluate the derivative matrixof at point

, and since we consider only the case of independent
learning patterns, the covariance matrixof With
these notations, the results of Section II-B1 are recycled as
follows:

(33)

where the above summations are over The first
equality uses definition (31) and the linearity of the
operation, the second equality stems from property (29) of
the reparameterization, the third equality uses Lemma 1 and
the differentiability of , and the fourth equality is induced
by definitions (24) and (34). The final equality is due to the
orthonormality of the basis and enables us to conclude
that

with

and now

(34)

We now proceed with evaluating the covariance of the field
at

(35)

The first equality holds by definition of the second
equality is due to the bilinearity of the operator; the
third equality is obtained by noting that (23) also reads

with defined by (36).
The final equality is due to the orthonormality of the basis

, and it enables us to conclude that for independent
learning patterns

with

(36)

Thus both and are diagonal matrices. In this case, the
Lyapunov equation (17) reduces to uncoupled
scalar equations. Thus the solution is clearly

(37)

According to (19), By
(29), we have We
conclude that for and

with

(38)

The expression (38) of the covariance matrix in the
asymptotic distribution of may be written as an
explicit sum

(39)

From the definitions (24) of and and noting that
for and (39) is

finally rewritten as

(40)

This expression coincides with the expression of the covari-
ance matrix of the Yang algorithm (7) given in [13],
despite some differences in the expression of and
In fact the “symmetrization” of the SNL algorithm implies
that the terms remain invariant for
Furthermore, we note that the expression (40) is the limit when

tends to one for all of the expression of the covariance
matrix of the WSA algorithm given in [12].

C. Study of the Smoothed SNL Algorithm

To study the smoothed SNL algorithm, we note that (10)
and (11) take globally the form (16) if we set

Then, if we consider the trajectory of the associated matrix
, as remains symmetric (when the initial condition

is symmetric), it is natural to use the parameter

i.e., the respective coordinates of in the basis
and of in the basis , So,
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, in which

with

and As such, follows a
stochastic equation of the form (30). In this equation

and

where

(41)

(42)

(43)

Note first that converges almost surely to
when and So converges

almost surely to with for
and elsewhere. This type of coupled

algorithm introduces a form of relaxation: the solution of the
first equation is fed directly back into the second. According
to Section III-A, we must check that the required condition on

and holds and we need to characterize the mean value of
the derivative and the covariance of the field Like

verifies the condition mentioned in [9, A3(ii), p. 216]. To
evaluate the derivative matrix of at point

we need the following lemma.
Lemma 3: For

(44)

with

(45)

So, in the neighborhood of we have

(46)

and

(47)

where the second equality uses the differentiability ofwith
Lemmas 2 and 3, the third equality uses the diagonal matrix

for and the last
equality is due to the orthonormality of the basis Equation
(47) enables us to conclude that

(48)

with for We note that
like , the eigenvalues of are real and strictly negative. We
proceed with evaluating the covariance of at

(49)

with

(50)

The third equality uses (A.6), and the fourth equality

stems from (A.7), (A.10) and the definition
for Thus

(51)

The Lyapunov equation (17) then has a block triangular form,
the unique symmetric solution of which is

(52)

with

(53)

Then, as in Section III-B.3, we deduce From
the definition of and and noting that for

the matrix is finally written in a similar form

to (40), except for the term
yielding

(54)

D. Analysis of the Results

First, the expressions (40) and (54) can be compared to
the covariances of the asymptotic distributions obtained in
batch estimation. If denotes the batch
estimated orthogonal projection matrix, we have from [13]

(55)

when tends to with

(56)

which is also in close similarity with (40) and (54).
Second, a simple global measure of performance is the MSE

between and Indeed, since the projection matrix
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characterizes the estimated subspace, is a
measure of the distance between the estimated and the desired
principal component subspaces.

To give a MSE expression, we assume, as is customary, that
the first and second asymptotic moments of are those of
its asymptotic distribution. This implies

(57)

In particular, the MSE between and is given by the
trace of the covariance matrix of the asymptotic distribution
of Since trace is invariant under an orthonormal change
of basis with being an orthonormal
basis, we obtain from (39) and (54) that

(58)

where for the smoothed SNL algorithm and
for the SNL algorithm.

Finally, following the methodology explained in [13], a
finer picture of the MSE of can be derived from the
regular structure (40) and (54) of the covariance matrixby
decomposing the error into three orthogonal terms.
Furthermore, we note that as for the Yang algorithm, our
first-order analysis does not provide the order of deviation
from orthonormality. We show in Section V that this MSE of
orthonormality is, to a first-order approximation, proportional
to for the SNL algorithm, and to for the smoothed SNL
algorithm.

IV. EXTENSION TO CORRELATED TRAINING PATTERNS

This section gives explicit solutions for the case of real
correlated training patterns for the SNL algorithm; the exten-
sion to the modified SNL algorithm is straightforword. The
covariance of the field has a more involved expression: from
(A.5) we have

(59)

According to the following property ([30], p. 57) for Gaussian
real signals:

(60)

where , we have

(61)

Thus, we can write

(62)

where we define

(63)

To solve the Lyapunov equation for the asymptotic covariance
of , we resort to the parameterization of by a vector

as in Section III-B2). However, as the
matrix is no longer diagonal, we must use a component-wise
expression for the asymptotic covariance matrix This is

(64)

This may be simplified using the following properties: for any
pair , we have from (A.7), (A.9)
and finally the particular expressions of and This
results in (65) shown at the bottom of the page. Unfortunately,
no significantly simpler expressions seem to be available for

in the correlated case.
In order to proceed, we focus on the total MSE for As

above, this is closely related to Since ,
we have

(66)

Thus, for correlated learning patterns, expression (58) gener-
alizes to

(67)

where the additional (with respect to the independent case)
terms are

(68)

When with being an
MA , an AR or an ARMA stationary process, we
note that can be expressed as a finite closed form sum, as

for

elsewhere
(65)
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Fig. 1. Learning curves of the mean square errorEkPPPk�PPP �k2Fro; averaged
over 100 independent runs, for the SNL algorithm (1), and the smoothed SNL
algorithm for the following different values of the parameter�: � = 1 (2),
� = 0:3 (3), compared to the theoretical value
tr(CCCP ) (0).

shown in [10]. This particular case has practical implications in
system identification and in Karhunen–Loève decomposition
of time series.

V. SIMULATIONS

We now examine the accuracy of expressions (58) and (67)
of the mean square error of the projection matrix and inves-
tigate the domain of learning rate for which our asymptotic
approach is valid. Furthermore, we examine some performance
criteria for which no analytical results could be derived from
our first-order analysis, such as the speed of convergence and
the deviation from orthonormality.

In the first experiment, we consider the case
associated to Clearly,

the eigenvalues of are 1.75, 1.5, 0.5 and 0.25 and the
associated eigenvectors are the unit vectors in
and the entries of the initial value are chosen randomly
uniformly in [0, 1], then are normalized, and all
the learning curves are averaged over 100 independent runs.
First of all, in order to compare the SNL and the smoothed
SNL algorithm, we consider different values of that
provide the same value of Fig. 1 shows the learning
curves of the mean square error of for the SNL and the
smoothed SNL algorithms. We see that the smoothed SNL
algorithm with provides faster convergence than the
SNL algorithm. Fig. 2 shows the associated learning curves

of the deviation from orthonormality
As can be seen, the smoothed SNL algorithm provides

faster convergence as well, and a smaller deviation from
orthonormality. Fig. 3 shows the ratio of the estimated mean
square error over the theoretical asymptotic
mean square error as a function of for both the
SNL and the smoothed SNL algorithms and with
Our present asymptotic analysis is seen to be valid over a
large range of for the SNL algorithm and

for the smoothed SNL algorithm), and the domain

Fig. 2. Learning curves of the deviation from orthonormality
EkWWWT

k
WWWk � IIIrk2Fro; averaged over 100 independent runs, for the

SNL algorithm (1), and the smoothed SNL algorithm for the following
different values of the parameter�: � = 1 (2), � = 0:3 (3), compared
to 
tr(CCCP ) (0).

of “stability” is for the SNL algorithm and
for the smoothed SNL algorithm, for which this ratio is
closed to one. Fig. 4 reveals something which could not be
determined from our first-order analysis: the true order of
deviation from orthonormality. Indeed, our analysis yields
only In this figure, we plot
on a log-log scale as a function of
We find a slope equal to two1 for the SNL algorithm and
of 4 for the smoothed SNL algorithm, which means that,
experimentally, [respectively,
for the SNL [respectively, the smoothed SNL] algorithm.
Finally the learning speed is investigated through the iteration
number until “convergence” is achieved (the convergence is
considered achieved if the ratio of the estimated mean square
error over the theoretical asymptotic mean
square error is smaller than 1.1). Fig. 5 plots this
iteration number as a function of the asymptotic mean square
error (the learning rate is adjusted so that
keeps the same value for the different algorithms). As can
be seen, the smoothed SNL algorithm provides a much better
tradeoff between the learning speed and the misadjustment

So the various merits (deviation from orthonormality
and tradeoff between learning speed and misadjustment) of
the smoothed SNL algorithm can counterbalance its more
computationally demanding in some applications.

In the second experiment, we compare in Fig. 6 the learning
curves of the mean square error of the projection matrix on
the eigenspace generated by the first two eigenvectors, for
independent and then AR(1) learning patterns, produced from
the same covariance matrix

1This result agrees with the presentation of the SNL algorithn given in
Section II-A in which the termO(
2

k
) was omitted from the orthonormaliza-

tion of the columns ofWWWk:



1254 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Fig. 3. Ratio of the estimated mean square errorEkPPP k � PPP �k2Fro; averaged over 400 independent runs, over the theoretical asymptotic mean square error

tr(CCCP ), as a function of the learning rate
, for both the SNL algorithm and the smoothed SNL algorithm with� = 1:

with or 0.9 and We see that the
convergence speed of these mean square errors does not seem
to be affected by the correlation between the learning patterns

and that the misadjusments tend to values that agree with
the theoretical values (58) and (67), respectively. Fig. 7 shows,
for the same covariance matrix the theoretical mean square
error of (normalized by the learning rate for independent

or AR(1) learning patterns, as a function of the parameter
of the AR model of unit power. We observe that these errors
decrease when increases, that is when the eigenvalue spread
increases. We see that these errors are about 12 dB worse
for independent learning patterns than for correlated learning
patterns. This result was previously observed in parameterized
adaptive algorithms [10].
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Fig. 4. Deviation from orthonormalityd2(
)
def
= EkWWWT

k
WWWk � IIIrk2Fro at

“convergence,” estimated by averaging 100 independent runs, as a function
of the learning rate
 in log-log scales, for the SNL (1) and the smoothed
SNL algorithm with� = 1 (2).

Fig. 5. Iteration number until “convergence” is achieved, versus theoretical
asymptotic mean square error
tr(CCCP ); of the SNL algorithm(�), and of
the smoothed SNL algorithm with� = 1 (+); � = 0:2 (�) and� = 0:3 (o).

VI. CONCLUSION

We have performed in this paper a complete asymptotic
performance analysis of the SNL algorithm and of a smoothed
SNL algorithm that we have introduced, assuming a con-
stant learning rate, and in the case where a large number
of patterns is available. A closed form expression of the
covariance in distribution of the projection matrices onto the
principal component subspace estimators has been given in
case of independent or correlated learning patterns. We showed
that the misadjustment effects are sensitive to the temporal
correlation between successive learning patterns. The tradeoff
between the speed of convergence and misadjustment, as well
as the deviation from orthonormality, have also been inves-
tigated. Naturally the covariance of the limiting distribution
and consequently the mean square errors of any function of
the projection matrix could be obtained, such as the DOA’s

Fig. 6. Learning curves ofEkPPP k � PPP �k2Fro compared to
tr(CCCP ) aver-
aging 100 independent runs for real independent or AR(1) learning patterns
and for the parametera = 0:3 and a = 0:9 for the SNL algorithm with

 = 0:005:

Fig. 7. Mean square error of the projection matrix (normalized by the
gain factor 
) on the eigenspace generated by the first two eigenvectors
for independent or AR(1) consecutive learning patternsxxxk for the same
covariance matrixRRRx as a function of the parametera:

[1] or the finite impulse response [2] estimated by the MUSIC
algorithm.

APPENDIX

Proof of Lemma 1:As the field in definition (14) is
linear in its second argument, the mean field at any pointis

(A.1)

Using and a
substitution in (A.1) yields after simplification

(A.2)
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where is defined in (24). The lemma follows by using the
symmetry

At point definition (14) of the field reduces to

(A.3)

which, by vectorization and using
and thanks to the property

(A.4)

also reads

(A.5)

Now, for a Gaussian vector, we have ([30, p. 57]):

(A.6)

where is an block matrix acting as a permutation
matrix, i.e.,

(A.7)

for any vectors and Combining (A.5) and (A.6), we obtain

(A.8)

For any pair by simple substitution, we find

(A.9)

(A.10)

by using (A.4) and the properties
and and the identity

Combining
(A.8)–(A.10) and (A.7), it follows that

(A.11)

where the scalars are defined in the lemma. Using
, symmetrization of (A.11) completes the proof.

Proof of Lemma 2:Denote the singular
value decomposition of This one is not differentiable at
point because the eigenvalues of are degenerate.
However, results from ([31, Theorem 5.4 p. 111]) are available
for the perturbation of the orthogonal projector onto the
range of and of the eigenvalues. This is

(A.12)

(A.13)

Based on this, we derive thanks to (A.12) and
that , and thus

(A.14)

It follows from (A.14) and (A.13) that
And since

, this completes the proof of the
lemma.

Proof of Lemma 3:As the field in definition (14) is
linear in its second argument, we obtain

(A.15)

where we have used and , and
where is defined in (45). The lemma follows thanks to the
symmetry of
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