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1. PROOF OF EQ. (16)
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We get straightforwardly
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Consequently, as n tends to co, [W 3, Wy]1,1 tends to
Sz(0) = >, 7x(p) according to the Cesaro summability
property [3, A10]. Therefore, for k£ > 1, we obtain:
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and the modulus of the two terms of (27) are re-
spectively upper-bounded by %Z|p|§n—1 Ip||r2(p)| and
> ip|>n |T=(p)|- The first bound tends to zero as a conse-
quence of the Cesaro summability property [3, A10], and
the second term also tends to zeros as a reminder of the
convergent series > [, (p)|. [ |

II. PROOF OF EQ. (17)

Suppose that 7, (p) = 0 for |p| > P. We get straightfor-
wardly for k£ # ¢ and n > P:
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where YU [em2m(k=0/n]a = 0 and

| sin(m(k—£)(n—p)/n)|
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Suppose now that pr,(p) is summable. This naturally
implies (16) and for k # ¢, the second sum of (28) must be
replaced by the unbounded sum ) <p<n Where
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for n > N(e), Ve > 0. |

III. PROOF OF EQS. (22)-(23)

To prove (22)-(23), the concept of asymptotically equiv-
alent sequences of matrices (denoted by ~), introduced
by Gray [2], is used to render Szego’s theory [1] more
accessible to a broader audience. This is achieved by the
stronger assumption that the sequence r, (k) is absolutely
summable (i.e., Wiener case).

Following Gray’s notation, let T, (S,) def Y, , and
C,(S;) be an n x n circulant matrix with the top row
(cfy e cl_y) where ¢p & LS 070G (kyemizni

Assuming S.(f) > m > 0, [2, Th. 5.2c] implies that
[T,.(Sz)]7! ~ T,(S; ). Then, it follows from [2, Th.
2.1.3] that

[Tn(Sz)]_lTn( ;:,k) ~ Tn(S;I)Tn( lzk) (30)
Furthermore, it follows from [2, Th. 5.3(a), eq. (5.17)] that
T (S, ) Tu(Ss 1) ~ Ca(S; 1S, 1) (€2
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Therefore, (23) follows from [2, Th. 5.3(a), eq. (5.19)] with
s=1. |
Applying (30) and [2, Th. 2.1.3], we obtain:

[T (S2)] ™ Ta(Sh 1) [T (S2)] T T (S5.0)
~ Tn(Sgl)Tn( g/c,k)Tn(S;l)Tn( ;,z)a(32)

which implies from [2, Th. 5.3(a), eq. (5.22)]:
T (S; )T (S5 1) T (S )T (S;,0)

x x
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and (22) follows from [2, Th. 5.3(a), eq. (5.23)] with s = 1.
|
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