Supporting Material for the paper: Generalization of Whittle's formula to compound-Gaussian processes

Jean-Pierre Delmas and Habti Abeida

I. Proof of eq. (16)

We get straightforwardly
$\left[\mathbf{W}_{n}^{H} \boldsymbol{\Sigma}_{\mathbf{x}_{n}} \mathbf{W}_{n}\right]_{k, k}=\sum_{|p| \leq n-1}\left(1-\frac{|p|}{n}\right) r_{x}(p) e^{-i 2 \pi p(k-1) / n}$. Consequently, as n tends to $\infty,\left[\mathbf{W}_{n}^{H} \boldsymbol{\Sigma}_{\mathbf{x}_{n}} \mathbf{W}_{n}\right]_{1,1}$ tends to $S_{x}(0)=\sum_{p} r_{x}(p)$ according to the Cesaro summability property [3, A10]. Therefore, for $k>1$, we obtain:

$$
\begin{gather*}
\quad\left[\mathbf{W}_{n}^{H} \boldsymbol{\Sigma}_{\mathbf{x}_{n}} \mathbf{W}_{n}\right]_{k, k}-S_{x}\left(\frac{k-1}{n}\right)= \\
-\sum_{|p| \leq n-1} \frac{|p|}{n} r_{x}(p) e^{-i 2 \pi p(k-1) / n}-\sum_{|p| \geq n} r_{x}(p) e^{-i 2 \pi p(k-1) / n}, \tag{27}
\end{gather*}
$$

and the modulus of the two terms of (27) are respectively upper-bounded by $\frac{1}{n} \sum_{|p| \leq n-1}|p|\left|r_{x}(p)\right|$ and $\sum_{|p| \geq n}\left|r_{x}(p)\right|$. The first bound tends to zero as a consequence of the Cesaro summability property [3, A10], and the second term also tends to zeros as a reminder of the convergent series $\sum_{p}\left|r_{x}(p)\right|$.

II. Proof of eq. (17)

Suppose that $r_{x}(p)=0$ for $|p|>P$. We get straightforwardly for $k \neq \ell$ and $n>P$:

$$
\begin{gather*}
{\left[\mathbf{W}_{n}^{H} \boldsymbol{\Sigma}_{\mathbf{x}_{n}} \mathbf{W}_{n}\right]_{k, \ell}=\frac{1}{n} r_{x}(0) e^{i 2 \pi(k-\ell) / n} \sum_{q=1}^{n}\left[e^{-i 2 \pi(k-\ell) / n}\right]^{q}} \\
+\frac{1}{n} \sum_{0<p \leq P} r_{x}(p)\left(e^{i 2 \pi p(1-\ell) / n}+e^{-i 2 \pi p(1-\ell) / n}\right) \\
\left(\sum_{q=1}^{n-p}\left[e^{-i 2 \pi(k-\ell) / n}\right]^{q-1}\right), \tag{28}
\end{gather*}
$$

where $\quad \sum_{q=1}^{n}\left[e^{-i 2 \pi(k-\ell) / n}\right]^{q} \quad=\quad 0 \quad$ and $\left|\sum_{q=1}^{n-p}\left[e^{-i 2 \pi(k-\ell) / n}\right]^{q-1}\right|=\frac{|\sin (\pi(k-\ell)(n-p) / n)|}{|\sin (\pi(k-\ell) / n)|}$ tends to p when n tends to ∞.
Suppose now that $p r_{x}(p)$ is summable. This naturally implies (16) and for $k \neq \ell$, the second sum of (28) must be replaced by the unbounded sum $\sum_{0<p<n}$ where

$$
\mid r_{x}(p)\left(e^{i 2 \pi p(1-\ell) / n}+e^{-i 2 \pi p(1-\ell) / n}\right)
$$

$$
\begin{equation*}
\left(\sum_{q=1}^{n-p}\left[e^{-i 2 \pi(k-\ell) / n}\right]^{q-1}\right)|<2 p| r_{x}(p) \mid(1+\epsilon) \tag{29}
\end{equation*}
$$

for $n>N(\epsilon), \forall \epsilon>0$.

III. PROOF OF EQS. (22)-(23)

To prove (22)-(23), the concept of asymptotically equivalent sequences of matrices (denoted by \sim), introduced by Gray [2], is used to render Szego's theory [1] more accessible to a broader audience. This is achieved by the stronger assumption that the sequence $r_{x}(k)$ is absolutely summable (i.e., Wiener case).
Following Gray's notation, let $\mathbf{T}_{n}\left(S_{x}\right) \stackrel{\text { def }}{=} \boldsymbol{\Sigma}_{\mathbf{x}_{n}}$, and $\mathbf{C}_{n}\left(S_{x}\right)$ be an $n \times n$ circulant matrix with the top row $\left(c_{0}^{n}, \ldots, c_{n-1}^{n}\right)$ where $c_{\ell}^{n} \xlongequal{\text { def }} \frac{1}{n} \sum_{k=0}^{n-1} S_{x}\left(\frac{k}{n}\right) e^{-i 2 \pi \frac{k}{n}}$.

Assuming $S_{x}(f) \geq m>0$, [2, Th. 5.2 c$]$ implies that $\left[\mathbf{T}_{n}\left(S_{x}\right)\right]^{-1} \sim \mathbf{T}_{n}\left(S_{x}^{-1}\right)$. Then, it follows from [2, Th. 2.1.3] that

$$
\begin{equation*}
\left[\mathbf{T}_{n}\left(S_{x}\right)\right]^{-1} \mathbf{T}_{n}\left(S_{x, k}^{\prime}\right) \sim \mathbf{T}_{n}\left(S_{x}^{-1}\right) \mathbf{T}_{n}\left(S_{x, k}^{\prime}\right) . \tag{30}
\end{equation*}
$$

Furthermore, it follows from [2, Th. 5.3(a), eq. (5.17)] that

$$
\begin{equation*}
\mathbf{T}_{n}\left(S_{x}^{-1}\right) \mathbf{T}_{n}\left(S_{x, k}^{\prime}\right) \sim \mathbf{C}_{n}\left(S_{x}^{-1} S_{x, k}^{\prime}\right) \tag{31}
\end{equation*}
$$

Therefore, (23) follows from [2, Th. 5.3(a), eq. (5.19)] with $s=1$.

Applying (30) and [2, Th. 2.1.3], we obtain:

$$
\begin{align*}
& {\left[\mathbf{T}_{n}\left(S_{x}\right)\right]^{-1} \mathbf{T}_{n}\left(S_{x, k}^{\prime}\right)\left[\mathbf{T}_{n}\left(S_{x}\right)\right]^{-1} \mathbf{T}_{n}\left(S_{x, \ell}^{\prime}\right)} \\
& \quad \sim \mathbf{T}_{n}\left(S_{x}^{-1}\right) \mathbf{T}_{n}\left(S_{x, k}^{\prime}\right) \mathbf{T}_{n}\left(S_{x}^{-1}\right) \mathbf{T}_{n}\left(S_{x, \ell}^{\prime}\right) \tag{3}
\end{align*}
$$

which implies from [2, Th. 5.3(a), eq. (5.22)]:

$$
\begin{align*}
& \mathbf{T}_{n}\left(S_{x}^{-1}\right) \mathbf{T}_{n}\left(S_{x, k}^{\prime}\right) \mathbf{T}_{n}\left(S_{x}^{-1}\right) \mathbf{T}_{n}\left(S_{x, \ell}^{\prime}\right) \\
& \sim \mathbf{C}_{n}\left(S_{x}^{-1} S_{x, k}^{\prime} S_{x}^{-1} S_{x, \ell}^{\prime}\right) \tag{33}
\end{align*}
$$

and (22) follows from [2, Th. 5.3(a), eq. (5.23)] with $s=1$.

References

[1] U. Grenander and G. Szego, Toeplitz forms and their applications, Chelsea Publishing Compagny, New York.
[2] R. M. Gray, Toeplitz and Circulant Matrices: A Review, The essence of knowledge, Boston Delft, 2006.
[3] B. Porat Digital Processing of random variables, Prentice Hall, Inc, 1993.

