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I. PROOF OF EQ. (16)

We get straightforwardly

[WH
n ΣxnWn]k,k =

∑
|p|≤n−1

(
1− |p|

n

)
rx(p)e

−i2πp(k−1)/n.

Consequently, as n tends to ∞, [WH
n ΣxnWn]1,1 tends to

Sx(0) =
∑
p rx(p) according to the Cesaro summability

property [3, A10]. Therefore, for k > 1, we obtain:

[WH
n ΣxnWn]k,k − Sx(

k − 1

n
) =

−
∑
|p|≤n−1

|p|
n
rx(p)e

−i2πp(k−1)/n −
∑
|p|≥n

rx(p)e
−i2πp(k−1)/n,(27)

and the modulus of the two terms of (27) are re-
spectively upper-bounded by 1

n

∑
|p|≤n−1 |p||rx(p)| and∑

|p|≥n |rx(p)|. The first bound tends to zero as a conse-
quence of the Cesaro summability property [3, A10], and
the second term also tends to zeros as a reminder of the
convergent series

∑
p |rx(p)|.

II. PROOF OF EQ. (17)

Suppose that rx(p) = 0 for |p| > P . We get straightfor-
wardly for k 6= ` and n > P :

[W
H
n ΣxnWn]k,` =

1

n
rx(0)e

i2π(k−`)/n
n∑
q=1

[e
−i2π(k−`)/n

]
q

+
1

n

∑
0<p≤P

rx(p)(e
i2πp(1−`)/n + e−i2πp(1−`)/n)

(
n−p∑
q=1

[e−i2π(k−`)/n]q−1

)
, (28)

where
∑n
q=1[e

−i2π(k−`)/n]q = 0 and
|
∑n−p
q=1 [e

−i2π(k−`)/n]q−1| = | sin(π(k−`)(n−p)/n)|
| sin(π(k−`)/n)| tends to

p when n tends to ∞.
Suppose now that prx(p) is summable. This naturally

implies (16) and for k 6= `, the second sum of (28) must be
replaced by the unbounded sum

∑
0<p<n where

|rx(p)(ei2πp(1−`)/n + e−i2πp(1−`)/n)

n−p∑
q=1

[e
−i2π(k−`)/n

]
q−1

 | < 2p|rx(p)|(1 + ε), (29)

for n > N(ε), ∀ε > 0.

III. PROOF OF EQS. (22)-(23)
To prove (22)-(23), the concept of asymptotically equiv-

alent sequences of matrices (denoted by ∼), introduced
by Gray [2], is used to render Szego’s theory [1] more
accessible to a broader audience. This is achieved by the
stronger assumption that the sequence rx(k) is absolutely
summable (i.e., Wiener case).

Following Gray’s notation, let Tn(Sx)
def
= Σxn , and

Cn(Sx) be an n × n circulant matrix with the top row
(cn0 , ..., c

n
n−1) where cn`

def
= 1

n

∑n−1
k=0 Sx(

k
n )e
−i2π kn .

Assuming Sx(f) ≥ m > 0, [2, Th. 5.2c] implies that
[Tn(Sx)]

−1 ∼ Tn(S
−1
x ). Then, it follows from [2, Th.

2.1.3] that

[Tn(Sx)]
−1Tn(S

′
x,k) ∼ Tn(S

−1
x )Tn(S

′
x,k). (30)

Furthermore, it follows from [2, Th. 5.3(a), eq. (5.17)] that

Tn(S
−1
x )Tn(S

′
x,k) ∼ Cn(S

−1
x S′x,k) (31)

Therefore, (23) follows from [2, Th. 5.3(a), eq. (5.19)] with
s = 1.

Applying (30) and [2, Th. 2.1.3], we obtain:

[Tn(Sx)]
−1Tn(S

′
x,k)[Tn(Sx)]

−1Tn(S
′
x,`)

∼ Tn(S
−1
x )Tn(S

′
x,k)Tn(S

−1
x )Tn(S

′
x,`),(32)

which implies from [2, Th. 5.3(a), eq. (5.22)]:

Tn(S
−1
x )Tn(S

′
x,k)Tn(S

−1
x )Tn(S

′
x,`)

∼ Cn(S
−1
x S′x,kS

−1
x S′x,`) (33)

and (22) follows from [2, Th. 5.3(a), eq. (5.23)] with s = 1.
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