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Generalization of Whittle’s formula to
compound-Gaussian processes

Jean-Pierre Delmas and Habti Abeida

Abstract—This letter presents an extension of the well-
known Whittle’s formula for the asymptotic Fisher information
matrix (FIM) on the power spectrum parameters of zero-
mean stationary Gaussian processes to compound Gaussian
processes (CGP). The new formula includes a corrective factor
that depends on the considered CG distribution, in addition
to the usual Gaussian term.

Index Terms—Whittle’s formula, Slepian-Bangs’s formula,
Cramér-Rao bound, compound-Gaussian process, Elliptical
symmetric distributions, Student’s t processes.

I. INTRODUCTION

Parametric discrete-time CGP, also known as spherically
invariant random processes (SIRP), are widely used in many
statistical and engineering applications [1]. The CGP-based
estimation problem attracting considerable interest is that
of estimating its dependent parameters from a set of n
consecutive measurements. The Cramér-Rao bound (CRB),
which is typically computed as the inverse of the FIM,
enables the evaluation of the performance of various param-
eter estimation algorithms. It is important to note closed-
form expressions of the FIM, known as Slepian-Bangs
(SB) formulas have been derived for the real, circular and
noncircular complex Gaussian distributions in [2] [3], [4]
and [5], respectively. These formulas were recently extended
to circular and noncircular complex elliptically symmetric
(ES) distributions in [6], [7] and [8], respectively. These
latter formulas have been later extended when the density
generator is considered as an infinite-dimensional nuisance
parameter [9] or parameterized by a nuisance parameter
[10].

However, the direct computation of these SB formulas
roughly requires a number of operations proportional to n3

in most applications. Additionally, these formulas only allow
numerical values without providing any engineering insight
into the role of the different parameters. Alternatively,
Whittle’s asymptotic formula [11] was used to approxi-
mate the FIM for zero-mean non-deterministic stationary
Gaussian processes. This approximation has much lower
computational complexity and can be easily interpreted due
to its spectral expression. To the best of our knowledge,
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no work has yet addressed Whittle’s asymptotic formula for
zero-mean stationary CGPs.

This letter presents an alternative approximate expression
of the FIM and a limit of the FIM rate for zero-mean
stationary CGPs. The Toeplitz structure of the covariance
matrix of the measurement is profitably used to derive these
results, which generalize Whittle’s formula [11]

The remainder of this letter is organized as follows. In
Sec. II background on stationary CGPs is given, including
Bang’s formula and Whittle’s formula for Gaussian pro-
cesses. In Sec. III, some new results on Bangs’s formula
for CG distributed r.v.s. are brought. After proving the EVD
of the covariance matrix under various assumptions on the
correlation sequence in Sec. IV, an approximation of the
FIM and a limit of the FIM rate generalizing Whittle’s
formula are given for zero-mean stationary CGPs. Finally,
Sec. VI concludes this letter.

The following notations are used in the letter: x=d y and
x∼D mean that the r.v. x and y have the same distribution
and x follows the distribution D, respectively.

II. STATISTICAL BACKGROUND

A. Preliminaries on stationary CGPs

Let us first recall that a discrete-time random process
(xk)k∈Z is said to be Gaussian if every finite collection
of {xk1 , ..., xkn} forms a Gaussian random vector x

def
=

(xk1 , ..., xkn)
T ∈ Rn, denoted x ∼ Nn(µ,Σ), with p.d.f.

p(x) = (2π)−n/2|Σ|−1/2 exp(−1

2
(x− µ)TΣ−1(x− µ)). (1)

It is also natural to consider more general families of
ES processes (see e.g., [12]) by replacing the exponential
function in (1) by an arbitrary function gn(.) : R+ 7→ R+

such that
∫∞
0
tn/2−1gn(t)dt <∞ (called density generator)

to form the p.d.f. of an n-dimensional ES distributed r.v.

p(x) = |Σ|−1/2gn[(x− µ)TΣ−1(x− µ)]. (2)

In (2), it is assumed that the first and second-order moments
exist, with E(x) = µ and Cov(x) = Σ, in order to avoid
any scale ambiguity. Similarly, discrete-time ES random
processes can be defined. However, to define time-discrete
ES processes in such a way, not all ES distributed r.v.s can
be used. In fact, the sequence of density generators gn(.)
cannot be arbitrary, since it must satisfy the Kolmogorov
consistency condition according to which the ES distribution
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is closed under marginalization. This condition amounts to
the fact that if (2) is the p.d.f. of xn, then the p.d.f. of any
marginal xn of xm (where m > n) is always given by (2). A
necessary and sufficient condition for this property to hold
is given in [13, Th. 2.2], namely the existence of a positive
r.v. τ of cumulative distribution function Fτ(.) such that:

gn(t) = (2π)−n/2
∫ ∞
0

τ−n/2 exp(−t/2τ)dFτ (τ). (3)

A further equivalent condition [14] is given by the stochastic
representation of the ES distribution:

x =d µ+
√
QnΣ1/2u, (4)

where Qn is a positive r.v. whose distribution depends on
n which is independent of the r.v. u uniformly distributed
on the unit n-sphere, which has the particular form [15]:

x =d µ+
√
τΣ1/2n0, (5)

where the r.v τ is independent of the r.v. n0 ∼ Nn(0, I).
This is equivalent to state that the r.v.s Qn and τ in (4)-(5)
are related by Qn =d τχ

2
n where τ and χ2

n are independent.
This stochastic representation (5) characterizes the subclass
of CG distributions, whose associated discrete-time random
processes are called SIRP in the engineering literature.
Further equivalent conditions on gn(t) in (3) are given in
[15]–[17].

Throughout this paper, we consider only zero-mean sta-
tionary CG processes (xk)k∈Z ∈ R. Similar to Gaus-
sian processes, this property is ensured i.f.f. these pro-
cesses are zero-mean wide-sense stationary. Their distri-
bution is thus characterized by the distribution of the v.a.
τ and by the covariance matrix Cov(xn) = Σxn of
the r.v. xn = (xk+1, xk+2, ..., xk+n)

T , which is a sym-
metric Toeplitz positive definite matrix with (Σxn)k,` =

rx(` − k) where the sequence rx(k)
def
= E(x`x`+k) is

supposed absolutely summable. We assume that the spec-
trum Sx(f) =

∑
k rx(k)e

−i2πkf depends on a parameter
θ = (θ1, .., θq)

T ∈ Rq , which is omitted by simplicity.
Although it is assumed that the mapping θ 7→ Sx(f) is
differentiable in the vicinity of the true value of θ.

B. Reminder of results on Bangs’s formulas

This is a brief reminder of the Slepian-Bangs formula for
zero-mean ES distributed data xn ∈ Rn. The formula is re-
duced to Bang’s formula, where the density generator gn(t)
of the dependent distribution is either known or unknown
[10]. This Bang’s formula is given by the elementwise FIM
under usual regularity conditions on gn(t):

(Ixn(θ))k,` = a1,nTr(Σ
−1
xnΣ

′

xn,kΣ
−1
xnΣ

′

xn,`)

+ a2,nTr(Σ
−1
xnΣ

′

xn,k)Tr(Σ
−1
xnΣ

′

xn,`) (6)

with Σ
′

xn,k
def
=

∂Σxn

∂θk
. The weights a1,n and a2,n are free

from scalar ambiguity and given by

a1,n =
1

2
ξ1,n (7)

for both classic and semiparametric Bangs’s formulas, and

a2,n = aClas
2,n =

1

4
(ξ1,n−1), a2,n = aSePa2,n = − 1

2n
ξ1,n (8)

for classic and semiparametric Bangs’s formulas, respec-
tively where

ξ1,n =
E[Q2

nφ
2
n(Qn)]

n(n+ 2)
, (9)

with φn(t)
def
= 2

gn(t)
dgn(t)
dt .

For Gaussian distributions τ = 1 gives ξG1,n = 1, and
for Student’s t-distributions τ−1 ∼ Gam(ν/2, 2/ν) for
which ξSt1,n has been derived in the circular complex case
in [6], and in the real case in [10] using the real-to-complex
representation, yielding

ξSt1,n =
n+ ν

n+ ν + 2
, (10)

where ν > 2 is the degree of freedom parameter. For the
generalized Gaussian (GG) distributions, it was proved in
[19] that if the exponent s satisfies s ∈ (0, 1], then these
distributions belong to the subset of the CG distributions,
whose p.d.f. of

√
τ is given by [19, Th. 1]. The corre-

sponding ξGG
1,n was derived in the circular complex case in

[7], and in the real case in [10] using the real-to-complex
representation, giving

ξGG
1,n =

n+ 2s

n+ 2
. (11)

C. Whittle’s formula for Gaussian processes
The Whittle’s formula presented here provides the limit

of the FIM rate in the frequency domain for zero-mean
purely non-deterministic stationary Gaussian processes [11,
rel. (6.3)].

lim
n→∞

1

n
(Ixn(θ))k,` =

∫ 1

0

S−2x (f)S
′

x,k(f)S
′

x,`(f)df. (12)

with S
′

x,k(f)
def
= ∂Sx(f)

∂θk
.

Whittle first derived this formula using the asymptotic co-
variance least squares estimator in the multivariable frame-
work. Porat [30, Th. 5.3] later proved it in the univariable
framework using linear predictions.

III. BANGS’S FORMULAS FOR CG DISTRIBUTIONS

Using Qn =d τχ2
n for CG distributions, the general

expression (9) of ξ1,n can be rewritten in the following new
form:

ξ1,n =
1

n(n+ 2)

∫ ∞
0

∫ ∞
0

u2v2(∫∞
0
τ−n/2−1 exp(−uv/2τ)dFτ (τ)∫∞

0
τ−n/2 exp(−uv/2τ)dFτ (τ)

)2

dFτ (v)pχ2
n
(u)du,(13)
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depending on n and the distribution of the r.v. τ , under the
constraint E(τ) = 1 to ensure that Cov(xn) = Σxn . Note
that a direct calculation of the FIM was carried out in the
case of complex circular CG distributions [18, Eqs. (19b),
(20), (21b), (21c)] which leads to a much less compact
expression.

Moreover, it follows from [20, Appendix A] for complex
circular case, that for real-valued ES distributions

E[Q2
nφ

2
n(Qn)]

n(n+ 2)
= 1− 2

E[Q2
nφ
′

n(Qn)]
n(n+ 2)

, (14)

with φ
′

n(t)
def
= dφn(t)

dt . We get for CG distributions, using
φ
′

n(t) ≥ 0 proved in the Appendix, that 0 < ξ1,n ≤ 1,
and ξ1,n = 1 is equivalent to E[Q2

nφ
′

n(Qn)] = 0 ⇔
Q2
nφ
′

n(Qn) = 0 a.s. ⇔ φ
′

n(Qn) = 0 because Qn > 0
a.s., i.e., xn is Gaussian distributed. This allows us to state
the new result:

Result 1: For CG distributions, the parameters (a1,n, a2,n)
of the FIM satisfy the relations: 0 ≤ a1,n ≤ 1/2 and
a2,n ≤ 0, and xn is Gaussian distributed i.f.f. (a1,n, a2,n) =
(1/2, 0).

This property proves that the Gaussian distribution always
leads to the smallest stochastic CRB for CG distributions,
but not in the larger family of the ES distributions as shown
by the GG distributions associated with s > 1 (11). In
contrast, for parameterized mean, the Gaussian distribution
always yields the largest stochastic CRB for all second-order
distributions [21].

The asymptotic behavior of the sequence ξ1,n is gen-
erally difficult to analyze from the intricate expression
(13), However, in the next section, we will prove that
limn→∞ ξ1,n = 1.

IV. WHITTLE’S FORMULA FOR CG PROCESSES

A. Approximation formula

The following approximate eigenvalue decomposition
(EVD) of the Toeplitz structured matrix Σxn has been
derived and used for large n compared to the correlation
length of xk without rigorous theoretical support (see e.g.,
[22, eq. (9)], [23, eq. (5)] [24, p.186]):

WH
n ΣxnWn ≈ Diag(Sx(0), Sx(

1

n
), ..., Sx(

n− 1

n
)),

(15)
where Wn ∈ Cn×n is the discrete Fourier transform (DFT)
unitary matrix defined by [Wn]k,`

def
= 1√

n
ei2π(k−1)(`−1)/n.

But this approximation (15) can be justified by the fol-
lowing limits for a (k, `)-th fixed element of WH

n ΣxnWn,
which are proved in the Supporting Material under the
following conditions: For absolutely summable rx(k), one
obtains

lim
n→∞

[WH
n ΣxnWn]k,k − Sx(

k − 1

n
) = 0, (16)

and, additionally, for banded Toeplitz matrices Σxn

lim
n→∞

[WH
n ΣxnWn]k,` − δk,`Sx(

k − 1

n
) = 0, (17)

where is δk,` the Kronecker notation. Likewise,
(17) also remains valid for the strongest absolutely
summable condition krx(k). Using WH

n Σ
′

xn,kWn ≈
Diag(S

′

x,k(0), S
′

x,k(
1
n ), ..., S

′

x,k(
n−1
n )) deduced from (15),

we get if Sx(f) > 0 for f ∈ [0, 1):

Tr(Σ−1xnΣ
′

xn,kΣ
−1
xnΣ

′

xn,`) =

Tr[(WnΣ−1xnWH
n )(WnΣ

′

xn,kW
H
n )(WnΣ−1xnWH

n )

(WH
n Σ

′

xn,`Wn)] ≈ n
n−1∑
p=0

S−2x (
p

n
)S
′

x,k(
p

n
)S
′

x,`(
p

n
)
1

n
. (18)

We obtain for n sufficiently large, by replacing the Riemann
sum at the points for {0, 1

n , ...,
n−1
n } (18) with an integral,

the approximation

1

n
Tr(Σ−1xnΣ

′

xn,kΣ
−1
xnΣ

′

xn,`) ≈
∫ 1

0

S−2x (f)S
′

x,k(f)S
′

x,`(f)df.

(19)
Similarly, we have the following approximation

1

n
Tr(Σ−1xnΣ

′

xn,k) ≈
∫ 1

0

S−1x (f)S
′

x,k(f)df. (20)

Inserting (19) and (20) in (6), we immediately deduce the
following new result:

Result 2: The entries of the FIM for zero-mean stationary
CG processes are given for large n by the approximation:

1

n
(Ixn(θ))k,` ≈ a1,n

∫ 1

0

S−2x (f)S
′

x,k(f)S
′

x,`(f)df

+na2,n

∫ 1

0

S−1x (f)S
′

x,k(f)df

∫ 1

0

S−1x (f)S
′

x,`(f)df, (21)

where a1,n and a2,n are respectively given by (7) and (8),
which are expressed in terms of ξ1,n in (9).

B. Asymptotic formula

We consider here asymptotic properties of Toeplitz ma-
trices depending on specific conditions on the spectra of
xk. Under the condition that there exists an m such that
Sx(f) ≥ m > 0 and thanks to the notion of asymptotic
equivalence of sequences of Toeplitz and circulant structured
matrices with absolutely summable elements [27], [28], the
following limits are proved in the Supporting Material of
this paper:

lim
n→∞

1

n
Tr(Σ−1xnΣ

′

xn,kΣ
−1
xnΣ

′

xn,`)

=

∫ 1

0

S−2x (f)S
′

x,k(f)S
′

x,`(f)df (22)

lim
n→∞

1

n
Tr(Σ−1xnΣ

′

xn,k) =

∫ 1

0

S−1x (f)S
′

x,k(f)df.,(23)
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Limits (22) and (23) are also proved in [26, Th. 5.1] for
long-range dependent Gaussian processes, whose spectrum
Sx(f) and (S′x,k(f))k=1,..,q satisfy some conditions [26,
A2-A7]. However, since the proof only requires second-
order properties of xk, (22) and (23) remain valid for CG
ARMA processes.

Finally, for Gaussian ARMA processes, whose spectra

Sx(f) = σ2
∣∣∣A(e−i2πf )
B(e−i2πf )

∣∣∣2 such that A(z) =
∑p
k=0 akz

k and
B(z) =

∑q
k=0 bkz

k are both bounded away from zero for
|z| ≤ 1, the following stronger limits are proved in [25, Th.
1]:

1

n
Tr(Σ−1xnΣ

′

xn,kΣ
−1
xnΣ

′

xn,`)

=

∫ 1

0

S−2x (f)S
′

x,k(f)S
′

x,`(f)df +O(
1

n
) (24)

and

1

n
Tr(Σ−1xnΣ

′

xn,k) =

∫ 1

0

S−1x (f)S
′

x,k(f)df +O(
1

n
). (25)

These limits are still valid for CG ARMA processes for the
same reasons as previously stated.

Now consider, the FIM rate 1
nIxn(θ), whose limit as n

tends to ∞ exists from (6), (22) and (23) i.f.f limn→∞ a1,n
and limn→∞ na2,n exist. Proving these latter limits from
(13) is rather challenging. However, it is proven in [29, rel.
32] that limn→∞

1
nIxn(θ) exists for stationary processes

with finite Markov order (i.e., where there exists P ∈ N
such that p(xn/xn−1, xn−2, ...) = p(xn/xn−1, ..., xn−P )).

Thus, we conclude from naClas
2,n = n

4 (ξ1,n − 1) (8) that
for these processes limn→∞ ξ1,n = 1, which implies from
(7) that limn→∞ a1,n = 1/2, and that limn→∞ naClas

2,n =
c ≤ 0 from Result 1 and limn→∞ naSePa2,n = −1/2 from (8).
And furthermore, since more knowledge about the density
generator leads to a larger FIM, we get c ≥ −1/2. This
allows us to state the following new result, which is an
extension of Whittle’s formula [11, rel. (6.3)], [30, Th. 5.3]:

Result 3: For stationary CG processes of finite Markov
order, the FIM rate limit, which is a generalization of
Whittle’s formula for purely non-deterministic stationary
Gaussian processes, has the following expression

lim
n→∞

1

n
(Ixn(θ))k,` =

1

2

∫ 1

0

S−2x (f)S
′

x,k(f)S
′

x,`(f)df

+c

∫ 1

0

S−1x (f)S
′

x,k(f)df

∫ 1

0

S−1x (f)S
′

x,`(f)df, (26)

where c = −1/2 when gn(.) is unknown, and −1/2 ≤ c ≤
0, depending on the CG distribution when gn(.) is known.

From the values of ξ1,n given in Sec. II-B, c = 0, c =
−1/2, and c = −(1 − s)/2 for the Gaussian, Student’s t
and GG distributions with s ∈ (0, 1], respectively. We will
see in the next section that c = 0 for the ε-contaminated
Gaussian distribution.

V. NUMERICAL ILLUSTRATIONS

In this section, we assume that xk is a zero-mean ε-
contaminated Gaussian distributed with P (τ = τ1) = 1− ε
and P (τ = τ0) = ε under the constraint E(τ) = (1 −
ε)τ1 + ετ0 = 1, where (τ0, ε) are parameters that control
the heaviness of the tails relative the Gaussian distribution.
We assume an AR(1) spectrum, i.e., Sx(f) =

σ2
x(1−a

2)
|1−ae−i2πf |2

associated with rx(k) = σ2
xa
|k| and |a| < 1, where θ1

def
= a

is the only unknown parameter.
From numerical calculations, we can state that the ap-

proximations (19) and (20) are valid with a relative ac-
curacy of 1% for arbitrary values of |a| < 1, and that
limn→∞ na2,n = 0 as shown e.g. in Fig.1 for ε = 0.1
and some values of τ0. As τ0 increases, distribution of
xn deviates more from Gaussian distribution and na2,n
converges more slowly to 0.

n

10
1

10
2

10
3

10
4

n
a

2
,n

-10
-2

-10
-4

-10
-6

-10
-8

-10
-10

-10
-12

-10
-14

-10
-16

τ
0
=0.2

τ
0
=0.4

τ
0
=0.8

τ
0
=0.9

Fig.1 Coefficients na2,n as a function of n.

VI. CONCLUSION

This letter presents complementary results on Bangs’s
formula for CG distributed r.v.s. It provides an approxima-
tion of the FIM and a limit of the FIM rate, which is a
generalization of Whittle’s formula, for zero-mean stationary
CG distributed random processes. Research is underway
on extending Whittle’s formula to continuous-time and
multivariate stationary CG distributed random processes and
giving some applications.

APPENDIX

A. Proof of φ
′

n(t) ≥ 0

The first and second derivatives of gn(t) can be ob-
tained using (3), which yields g(k)n (t) = (−2)−k(2π)−n/2∫∞
0
τ−n/2−k exp(−t/2τ)dFτ (τ), k = 1, 2. Thus, from the

definition of φn(t), φ
′

n(t) ≥ 0⇔ g
(2)
n (t)gn(t) ≥ [g

(1)
n (t)]2,

which holds thanks to Cauchy-Schwarz inequality.
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