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Robustness of Least-Squares and
Subspace Methods for Blind Channel
|dentification/Equalization with Respect to
Effective Channel Undermodeling/Overmodeling

Athanasios P. Liavas, Phillip A. Regali&enior Member, IEEEand Jean-Pierre Delmas

Abstract—The least-squares and the subspace methods areis stationary and blind channel identification/equalization
two well-known approaches for blind channel identification/ techniques must use, implicitly or explicitly, higher (than
equalization. When the order of the channel is known, the second) order statistics (HOS) in order to identify mixed

algorithms are able to identify the channel, under the so-called . . .
length and zero conditions. Furthermore, in the noiseless case, Phaseé channels. On the other hand, if the matched filter is

the channel can be perfectly equalized. Less is known about the Sampled faster than the symbol rate (fractionally spaced case),
performance of these algorithms in the practically inevitable then the resulting sequence éyclostationary and second-
cases in which the channel possesses long tails of “small” impulsegrder statistics (SOS) are sufficient for blind identification

response terms. We study the performance of themth-order of most channels. Working with SOS-based instead of HOS-
least-squares and subspace methods using a perturbation ’

analysis approach. We partition the true impulse response into Pased techniques is advantageous, especially in a time-varying
the mth-order significant part and the tails. We show that environment, because SOS can be estimated accurately with

the mth-order least-squares or subspace methods estimate anfar fewer data samples than their higher order counterparts.
impulse response that is “close” to themth-order significant The recent development of SOS-based blind identifica-

part. The closeness depends on the diversity of theeth-order .. g . - .
significant part and the size of the tails. Furthermore, we show tion/equalization methods under a single-input/multi-output

that if we try to model not only the “large” terms but also some  (SIMO) channel setting [1], derived either from fractional
“small” ones, then the quality of our estimate may degrade sampling (FS) of the receiver or from the use of an array

dramatically; thus, we should avoid modeling “small” terms. of sensors at the receiver, has been considered a major
Finally, we present simulations using measured microwave radio preakthrough and has spawned intensive research in the area.
channels, highlighting potential advantages and shortcomings of A It I'sch h b devel d that
the least-squares and subspace methods. s'a resuft, many ”OYe S?_ emes ave. ee_n eye ope . atcan
claim exact channel identification/equalization, in the noiseless
case, under the so-calletkro forcingconditions. The most
well-known approaches are the least-squares (LS) [2], the
I. INTRODUCTION subspace (SS) [3], and the linear prediction (LP) [4] methods.

. . . o Furthermore, SIMO implementations of implicity HOS-
gl]—cEeESbYMrBaStli_c;rI]Itezrafl(le::ir;l?\ené:sgulrsinthzi drisatlcigzgr;?:sﬁgased blind equalization techniques have resulted in very
. yp yafct 9si9 -Interesting schemes, such as the FS constant modulus algo-
Adaptive channel equalization has been a successful techniquée

toward the elimination of ISI. Traditional implementations o m (CMA), which avoid, in the noiseless case, drawbacks

. . - .~ “related to their traditional single-input/single-output (SISO)
adaptive equalizers are based on the periodic transmission_0 . )

L : . . . . counterparts, such as potentially large equalizer length and
a known training sequence, which permits the identification . -

o : otential convergence to local minima [5].
and/or equalization of the channel. However, there are impor-,;, . . .

L L ; . . While all the aforementioned methods claim exact channel

tant applications, such as digital TV broadcasting, in whic

S . |Gentification/equalization in the noiseless case, under the zero
the use of a training sequence is very costly. In these ca

Srbin conditions, their behavior may change dramaticall
blind equalization techniques have proved viable alternatives 9 ' y g y

It is well established that when the receiver's matched filté’lﬂder practically inevitable "less ideal” conditions such as

output is sampled at the symbol rate, the resulting sequencé the presence of non-negligible additive channel noise;
» the presence of long tails of “small” leading and/or
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respect to channel noise and/or channel “tails,” are in the early e
stages [6]-[10] and admit the following shortcomings.

« It is not always clear to what extent the results apply in
practice, due to various approximations and/or simplifi- hl zD
M

cations during the development of the analysis.

* The approaches often involve complicated techniques,
lacking the engineering insight necessary for a lucid un-
derstanding of the various phenomena and for suggesting h2
improved solutions.

These shortcomings have impeded a clear understanding of
the behavior of blind identification/equalization methods under n@
realistic operating conditions.

In this paper, we consider the behavior of theh-order
LS and SS algorithms in the two-channel, noiseless, exact
statistics case. In Section Il, we present the SIMO chann&k denote the impulse response of title channelj = 1, 2,
setting, and we review the LS and SS blind channel identificgy ni, 2 17 ...#{)]7 and the entire channel parameter
tion methods for the known channel order case. In Section I\I)ector byhy A [h}w
in order to study the behavior of thath-order LS and SS ) b3
methods, we decompose the true impulse response into thBY stacking the{L+-1) most recent samples of each channel,
mth-order significant part and the tails; we show that th&€ construct the data vector
mth-order LS and SS methods estimate an impulse response x7(i) A [xz(l)’ . xz(l_)L’ 372(2)’ . xEQ_)L]T
that is close to thenth-order significant part; the closeness
depends on the diversity of thesth-order significant part which can be expressed as
and the size of the tails. Furthermore, we show that when ) ) )
we try to model not only the “large” terms but also some xr(#) = Hr(har)spm (@) +nL(0)
“small"_ones, then the quality of our estimate may degracheSing input and noise vectors
dramatically. Thus, we should avoid modeling “small” terms.

:E(Q)

Fig. 1. Single-input/two-output channel setting.

We then assess the performance of the— 1)st-order “zero spn () 2 [y s Sir—m]",
forcing” equalizers. In Section IV, we check our theoretical LA ) R @) 17
results by simulations; furthermore, we present simulations np(i) = [ng 7, o ng g, ng e ]

using measured microwave radio channels, and we h|gh||g||fﬁe convolution matrixi,

h,,) is defined as
potential advantages and shortcomings of the methods in (Bar)

realistic cases. A [Fr(hl,)
Il. LS AND SS METHODS FORBLIND Fr(hy) ‘
CHANNEL |DENTIFICATION/EQUALIZATION hé”) hﬁ(}
A
A. Two-Channel Model ' héi) h}”} (L)X (M +D)
FL)x (M+L+

In this section, we describe the basic steps of the LS and )
the SS methods for blind channel identification for the singl? order to review the LS and the SS methods for the
input/two-output channel setting, which is presented in Fig. fdentification of h,,, we consider first the casé = M.
this setting can be obtained by channel oversampling byV¥ @ssume that the subchannels do not share common zeros,
factor of 2, which is quite common in telecommunicationguaranteeing their identifiability.
or by using two sensors at the receiver. If the true channel
order is}M, the output of thejth channelz!’’, for j = 1,2, B. LS Methods

is given by The SIMO channel structure implies that in the noiseless
case [2]
375]) =50 hgj) + 715]) = Z h;(j)si—k + ”S,J) xgl) = hgl) ® S5, xEQ) = 1152) ® s
k=0
yielding
Where 2 1 2 1 1 2
® convolution operator; Y @z =P o @5 = bV @, 1)
Si input sequence, which is assumed to be zero—meﬁgn i
we define

_Uunit-variance i.i.d. sequence;
hy’)  impulse response of thith channel; A [ 0 I]\4+1:|
n¥)  additive white channel noise. -
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wherel,,; is the(M + 1)-dimensional identity matrix, then In order to study the behavior of thaith-order LS/SS
(1) can be expressed, for all time indicgsas method, we partition the channel impulse response into the
. following parts:
i, T i) = 0.
2 Tarxar (0 1) the mth-order significant part which is usually found

The LS estimate is given by near the middle of the impulse response and contains
s A ] - i (m + 1) “consecutive large” terms; if the channel pos-
hyy = arg i E{[|b" Tyxam (92} sesses less tham(+-1) “large” terms, then thenth-order
significant part contains some “small” terms as well;

_ . : T v
A a h™ Ty Ry Thh 2) thetails, which is the complementary part to theth-

order significant part; this part is usually composed of
“small” leading and/or trailing impulse response terms;

Ry, 2 E[XM('L')X;‘Q('L')] if the channel possesses more thant{1) “large” terms,
then the tails contain some “large” terms as well.

where

is the data autocorrelation matrix. As shown in [11], in thisrhiS partition can be expressed notationally, 60K m; <
case, the LS estimate is given by / s T

me 2 my +m < M, as [10], [12]
hLS

= Tyny
M h]\4 = hfnl,rnz + dfnl,rnz (3)
where ny; is the eigenvector associated with the smallest
. . where
eigenvalue oR ;. In the noiseless or the temporally and spa-
tially white additive noise cases, the two-channel LS method . a [hZ ., dz A dz ., 4)
identifies the unknown channel, that is, 22 ’ ™, m2 2

my, ma

my, Mo my, Mo

113

h%

C. SS Methods ™, mo

Subspace methods are based on the orthogonality of the ) (j’)"*l 0 r
so-called noise and signal subspaces [3]. In the two-chann@fi,,m, = [hg” - fyi 1 0 Ol yy - D ]

case, the noise subspace is spanned fy whereas the signal - m+1 Mo
subspace is spanned by the columng+af (hy;). Thus i=1, 2 (6)

n%}H]w(h]w) = h%}H]w(n]w) = OT

Q- 0hF) hD OO, =12 (5)

my M—mo

With h,,, =,, we denote the corresponding nonzero-padded
where we have used the commutativity property of the coMectors, 1.e.,

. : g
volution. The subspace estimadt§? is computed as N a |:hT;nl,mz } W a WG RO T
1SS 2 arg min W7 M (np ) HE (np)h. mi,me 7

W = ars min | B Hyy () j=12 (7)
As shown in [11], in the two-channel case the LS and S8 the sequel, we study theth-order LS and SS methods, and
estimates coincide with probability 1. we explore the relationship between the “identifiedth-order

impulse response and the triiéth-order channeh,.

D. Zero Forcing Equalization Our principal concern is deducing the mean asymptotic

Having identified the channeh,;, we can equalize it performance obtainable using theth-order LS_and SS meth-
perfectly, in the noiseless case, by using the zero forcifgS- All results, therefore, are expressed in terms of true

equalizers of ordefM — 1) for delaysi = 0, ---, 2M — 1 as second-order statistics. An important practical issue, of course,
. L is to gauge the variances of different estimators versus the
gvi—1,i = Hy—1(har)e; (2) data length and their influence on the equalization quality.

By definition of variance, however, such calculations require
knowledge of mean values of estimators. In order to keep
a manageable presentation, we shall not pursue a variance
analysis for themth-order case in this work. We believe,
however, that our results, particularly those related to problem
conditioning, will prove very useful in subsequent variance
analyzes. We remark finally that spatially and temporally white

In the previous section, we reviewed ways for the identéhannel noise does not bias the mean asymptotic solution
fication/equalization of an unknown channel under the SIM@btained using the LS and SS methods (although such noise
framework, assuming that the channel order is given. We mumitl, of course, increase estimation variance) and, hence,
appreciate, nonetheless, that physical microwave radio chanm@l not alter expressions concerning mean asymptotic per-
lengths are not unambiguously determined, due to possilidlymance. For simplicity, we thus remove channel noise from
long “heads” and “tails” of small impulse response terms [7bur analysis.

wheree; denotes the vector with 1 at the + 1)st position
and zeros elsewhere.

I1l. UNDERMODELING/OVERMODELING

A. The Framework
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B. mth-Order LS/SS Blind Channel Identification HL (h? ). We denote byé,, the smallest nonzero

1, Mo
. . . H T H
If the true channel order is» and its impulse responseSingular value ofH; (b7, ... ), i.e.,
iS Iy, m,, then the autocorrelation matrix aof,,, which A .
is denoted byR,,, provides sufficient information for the 6m = oamt1 (Mo (D7, 100))- (10)

identification of theh,,,, ., via the sequence of computationssince(5 measures the distance in the matrix 2-norm of
m

T :
R = Hon(Mny my) HE (B, g ) — Dy — Hm(hf_nh,,%z) from the matrices of ra_nkzm [13, P 73],
thus violating our assumption concerning its rank, it may be
interpreted as a measure diversity of the channeh,,, .

Using (3), we identify the perturbation o’ (h? ) as

2 1, Mo

hrnl, me — Trnnrn

wheren,, denotes the minimum eigenvectorRf,,. If the true
channel impulse responsel, ,,., then it is easy to show

A T T z _ 2T z
that the autocorrelation matrix of,,, remainsR,,, because Ap = Ho(har) — Hi, (b ) =H,.(d )

M, Mo my, Mo

M, (2 YHE, (h? ) = Hon (s s YHE (g s ) which, using the matrix 2-normil-norm inequality [13, p. 57],
e S P the structure of+Z (d2, ,,.), and (8), yields
meaning that, in this particular case in which the subchan-

o T z T z
nels possess common zeros at infinity, théh-order LS or [Amllo = [ (5, )2 < HG () P
SS methods “identify” the nonzero part &f,, ., , namely =vm+1d7,, .l =emvVm+1=E, (11)

Iy, m,. This result is directly related to the blind nature of

the algorithm, that is, the exploitation of solely channel outplt the sequel, we shall use the concept of the angle between

statistics, and will prove very useful in the sequel. the unit 2-norm singular vectots,, andn,,, which is defined
Now, let us consider what happens when the true impuldé [14, p. 15]

response idy,, with ||hps||2 = 1, under the assumption that

. A T ~ .
dz, . is “small,” ie., (D, Dy,) = arCCos|nmnm,7r| with
, 0< (0, i) < = (12)
|47, myll2 = €m,  With ¢, < 1. (8) 2
In this case By definition, Z(n,,,, 1n,,) is @ measure of the dista_mce between
the subspaces spannediby, andn,,, and the cosine between
M2, e = By moll2 = V1 = €2, = 9. (9) mm andn,, is non-negative.
’ We can now proceed to the following theorem, which
The autocorrelation matrix aof,, is provides an upper bound fdt,,, — 0, ]|2-
. Theorem 1:Assume that rar@®{ (hz, .. )) = 2m +
R, = Hp (b)) Hy, () 1. Denote byn,, the minimum right singular vector of
=Hm(bs,, ., + A% o HEME, L o+d, ) HI(hZ ), by 6, the minimum nonzero singular value of
={Hm(b%,, ) + Hon(dZ,, )} HZ,;(ITI:,HW), and byn,, the minimum right singular vector
X AHE )+ HO( ) OF Hon(ag)- 1 £ < (6 /2). then
= R’" + E’" ||nrn - ﬁrn||2 < 2\/5 (2771 = Drn- (13)

m

where E,,, denotes the resulting perturbation. Theh-order
LS/SS blind channel identification method “identifidsy,, ..
through the sequence of computations

Proof: Under the assumptions of the theorem, we obtain
[15, p. 267, ex. 2], [16]
grn grn
<

an, - ﬁrn, - E-rn,l,rn,z = Trn,ﬁrn, sin Z(n"“ ﬁ"l) S m — 267”
where the variables with tildes denote perturbed quantities.Now, for the unit 2-norm vectora,,, andn,,,, we obtain
Here, the vecton,, is the minimum eigenvector &R,

At first, we address how cloge,, is ton,,,. For this purpose, [ — a3 = 2(1 — cos £(nym, Ap,))
we may considefR,, as a perturbation oR,, and apply
eigenvector perturbation results. However, singg andn,,

= - (24)

which, using (14), gives

are the minimum right singular vectors #f;, (b7, ,, ) and [ — A2 < 201 — /1 —a2,) < 202,

HT (hy,), respectively, it is preferable to use singular vector - e

perturbation results instead. We thus consitigr(h/) as a This verifies relation (13), to prove the theorem. [ |

perturbation of [ (h? . ), and we give an upper bound Corollary 1: Leth,,, ., be themth-order significant part

for ||n, — 0,2 of the true channel anﬂmhmz the estimate of thenth-order
We recall that under theno common zeroas- LS/SS method. Iff,, < (6,,/2), then

sumption, rankH;,(hZ, ,..)) = 2m + 1, yielding

oa(m+1)(Hom (b7, ) = 0, with associated right singular e,y = By s |2
vector n,,; in this case,n,, defines the null space of SA =) +DPm < 4D < e+ D =K. (15)
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Proof: If &, < (6,./2), then Theorem 1 holds. Then, Theorem 2:If §,,,, denotes the minimum nonzero singular

sincehym,, m, = Ym Tty By m, = Tralyy,, and T, is value of HE, (b ), then
orthogonal, (9) and (13) altogether give

||hml,mz - 1~lml,mz||2 by < min <\/(h571121)2 + (h;le)Q’ \/(h;lli)Q N (hgz)2> .

= ||(,anTrnnrn - Trnnrn) + Trn(nrn - ﬁrn)”? (17)
< (1 - ’an) + Drn < G,Qn + Drn <em+ Drn

¢ th I Proof: It is well known thaté,, is the distance in the
0 prove Ine coroflary. matrix 2-norm between thé2m’ + 1) x 2(m’ 4+ 1) matrix

Recapitulating, we may say that in order to study ther : : :

. (o h h rank:2. A I
performance of thenth-order LS/SS methods, we partltlonwg’ (to &écﬁgaasr;dt;eer:r?fg? mt ran) is 10 \rlwirl?/ifslr?ipr)s?
the impulse response into theth-order significant part and y ) Lty my

the tails. Results (13) and (15) neric that is, they are row by adding a perturbation matri, with only two nonzero
valid for everym, as long asn < M andé&,, < (6,,/2). They

elements éllt the apprgpriate positions of the first row, with
imply simply that if the diversity of thenth-order significant yalues _—hEni and ‘,hiﬁl- Using the matrix 2-norm/F-norm
part of the channes,, is sufficiently large and, at the sameneauality, we obtain
time, the size of the tails,, is sufficiently small, then the 3 3
mth-order LS and SS methods compute an impulse response IE|lz < |1E|lr = \/(hf}l)) + (hg)) .
that is close to thenth-order significant part of the channel. ! !

Two important questions that cannot be answered by (18h analogous statement holds for the case in which we null
are the following: the last row of?—lrﬂ,(hmfpmé). Sinced,, equals the minimum

O “Is it always possible to find am: such that thenth- 2-norm of a perturbation matrix, which decreases the rank of

order LS/SS method provides a good channel approfite, (B, mz ), (17) follows, which proves the theorem. m
mation?” Now, let us consider the implications of Theorem 2 to our

O “When this is possible, how can we find suchaf”  study. We recall that

To answer the first question, extensive experimentation with
measured microwave radio channels is required. The second
question is the topic of [20].

In the sequel, we show that we should favor, in general, t
“smallest possible’m. More specifically, we show that when

||dfnl7mz||2 =¢n, Withe, < 1.

Thus, since’zfﬁ and/orhﬁf} for j =1, 2 belong tod}, ..,
1 2 ’
I:}"?worem 2 implies that

we try to model not only the “large” impuls_e response t_erms Sy = Tomry1 (HT, (hm’lml’z)) = Olep,).
but also some “small” ones, then the quality of our estimate
may degrade dramatically. We recall that
Thus, let us imagine the hypothetical case in which we know -
a priori that the “large” channel terms occupy theth-order Ta(m+1) (Hpy (B ) = 0

part of the impulse response between indiees and mo, _ A _
implying thatd?,, .. fulfills (8), whereas we apply the/th- and that the perturbation,,, = H7,(d7,, ...) is O(en).

order LS/SS method, withw’ > m; hence,m’ = m), —m}, Physical considerations imply that fot’ > m
with m} < my andlorm} > mo.

In this case, the autocorrelation matrix a&f,, can be ||d:nq,m; ll2 & [|d7, s [l2 (18)
expressed as giving
Ry =My (b )HE, (pg) e (19)
=Hpr (hfn’l,rn’z + dfn’l,nl’z )Hrz;l’ (hfn’l, m), + dfn’l, rn’z) " "
= {Hm’(hfn;,mfz) + H"l’(dfn’l,m’z)} To justify this, recall that nowsr. is the correct order of the

actual significant part of the channel andt a hypothesized
order; thus, the assumed tails are the actual channel tails;

From (13) and (15), it becomes clear that the factor thgeasured microwave radio channels possess long tails of small
determines the accuracy of the estimatiorhgf, ../ is terms and decrease slowly [7]; this means that neighboring
v “small” terms are of the same order of magnitude, validating
Oy 2 02m’+1(H£z’(hm’l,mg)) (16) (18). L . . .
Hencen,,, which is the minimum right singular vector of
that is, the minimum nonzero singular value%ﬁ,(hmrl,mé). HZ,;,(hmfl,mfz), is a typical example of aill-conditioned or

The next theorem gives a relationship betwégn and hg) unstablesingular vector [13, p. 430] because theparation

G for i — hich id ianifi insight | ! h between its corresponding singular value, i.e., zero, and the
hyyy, for j = 1,2, which provides significant insight into the o aining singular values, i.65,., is O(en), which, due to
behavior of the algorithm, wheh”) and/orhif}z, forj=1,2 (19), is of the order of the perturbatioh”,(d”, ). The

’ r r
1 m mi,m;

are “small.” fact that minimum right singular vectors,,,, and n,,» and

X M (07r )+ Hop ()

’ r r r
mi, m) mi,mg
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channelshmf1 ,m, and]fimf1 ,m), are related through the orthog- Proof: The theorem can be proved as follows.
onal transformatiori,,,; implies that our estimathm/1 , is
unstable as well. tm1.ill2 =llemi+i — HE 1(har)gm1.ill2

In practice, in the majorlty' of the cases, the condition =||(7‘f3;71(flfnl ) —HE ()il
Em < (6,/2) of Theorem 1 is not satisfied, and the only T e, T
upper bound we can give fein /(n,,,, 1) is 1. This means < Hpo1 (0% my) — Hom (Bl 2]|8m—1, 4|2

that we do not have ang priori knowledge for the “distance”

betweenn,,,, and n,, and, consequently, for the distancavhere we have used (21). From the definition of the convo-
betweenh,,; ,; andh,,: ... This is analogous to what haslution matrix #,, ,(-), we have

been considered ahannel overmodelinl7], [18]. The role

of the “zero impulse response terms” in these studies is played Hf,;_l(fifnhmz) —HE _(hyy)
by the “small” terms in our study. In a numerical analysis —HT (flz L T )
parlance, we may say that efforts toward modeling “small”’ R
impulse response terms lead generically toilaoonditioned ieldin
or unstableproblem and, thus, should be avoided. y 9
From these considerations, we may define edfective -

ini M (] — b} —d7, o)l
channelthat part of the channel containing all the “large” m—L\ iy, mo my, Mg ma, ms /112
terms; let us denote its order by*. A case is calledun- <vm|hi, .o—hi o—dr ol
dermodelec{resp.,overmodele)jlithe assumed channel order < \/E(Hflrnl,rnz By, 12+ 1A%, oo ll2)
m is smaller (resp. larger) than*. In both the undermodeled
and overmodeled cases, good effective channel approximation S VMK + €m).

seems difficult; in the former cases, the approximation may

be poor due to large undermodeling error, whereas in thénally, from (20), we obtain

latter, it may be poor due to lack of diversity. Even assuming

that we knowm*, good effective channel approximation ingm_1 iz < IHZT L By )2 = 1 _

not guaranteed; the quality of the approximation depends on o ’ Tam(HE 1 (N my))

bm+ ande,,«. The fact that wecannotapproximate a channel

arbitrarily well by increasing the complexity of our model igo prove the theorem. |

probably a significant obstacle toward general applicability of In the sequel, we modify slightly bound (23), and we

these methods. provide a bound fof|r,,—1,;||2 in terms of quantities related
to the true channel and not to the computed estimates. Using

C. Zero Forcing Equalization the singular value perturbation bound [13, p. 428]

Having “identified” the mth-order channelﬂmhmz, we P -
can equalize it perfectly in the noiseless case, for delays|02m(Hmfl(hml,mz)) = o2 (Hpp 1 (B o))

i = 0,---,2m — 1, by using the “zero forcing” equalizers < HE By ) — HE By )2 < VKo
of order n — 1)

~ . T
Emo1.i=H L By my e (20) Wwe deduce that if/mK,, < oom(Hy_1 Nm, . m,)), then
Of course,g,,—1. ; does not, in general, equalize perfectly V(K + €m)
. . . ) < m Cm
the true channeh,,, even in the noiseless case, due to the [rm—1,ill2 < T _ :
. . . UQm(Hm—l(hml,mz)) W’Cm
influence of the tails. Since )
Mo (B, 1y )81, = €yt 1) I V(K + em) < (02m(Hi 1 (Bmy,m,))/2), then
and, under the assumptions stated in the previous subsection, Wy ey
h? .~ h% . we expect that ITmee1,ill2 < N m CmT h
T ‘72m(Hm—1( ml,mz))‘72m+l(Hm( ml,mz))
Hoe 1 (M )81, & €4 4/me
L . 24
and we denote the corresponding residual as o2m(HE 1 (M my ) @4
N T ‘
m—1,i = €myti = Moy (Br1)8m—1,5- @2)  1erm oom(HE 1 (hy,, m,)) May be interpreted as a measure

The next theorem provides an upper bound for this quantit@f diversity ofh,,,, ., just like oo, 11 (M, (D, m, ). These
Theorem 3:1If r,,_1 ; denotes the residual of the “zeroterms are not orderable, that is, one is not always larger than

forcing” equalizer of order s — 1), g—1, i, then fori = the other; extensive simulations have shown that they are very
0,-+,2m —1 close each other.
Ko + €m) Thus, the diversjty of thenth—order significant part of the .
[Tm—1,il2 < - . (23) channel and the size of the tails are the factors that determine

o2m(Hm—1 (B ms ) the performance of blind channel approximation/equalization.
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Estimation error and bound (15)
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Fig. 2. (a) Estimation errofihs, 4 — ha,4]|2 (solid line) and bound (15) (thick line). (b) Best-case residal ;||» (solid line) and bound (23) (thick

line) for varying the size of the tails.

IV. SIMULATIONS

In the previous section, we studied the behavior of the
mth-order LS and SS methods, and we derived bounds (15)
and (23), which provide a measure of their performance.
The bounds are not tight, in general. However, they are
given by reasonably simple expressions, which identify the
cases in which the algorithms perform well or may perform
poorly. In this section, we validate our theoretical results using
simulations.

In the first simulation, we provide results concerning blind
channel identification/equalization for varying the size of the
tails. The significant part of each subchannel startsat=
2 and has length 3, i.e., order 2; it is given I 4
[—0.6804, 0.1777, —0.0902; 0.4281, —0.2446, —0.5043]7. In
this caseg, = o5(H3 (h2 4)) = 0.4158 = O(1); this implies
that the significant part of the channel offers great diversity. In
order to study the influence of the tails on the estimation of the
significant part, relation (11) and Theorem 1 apply whenever
the 2-norm of the tails does not exceed= 0.12, which gives

03 42
20 log, o i =
0 1d3 42

We constructh;s by extending the impulse response of

> 18.3536 dB.

Subchannel zeros of h24

;
05
0 +
-05
-1
15 -1 05 0 05 1 15
()
1
05
0 +
-0.5
-1
15 -1 05 0 05 1 15
(b)

each subchannel by random tails, which are cpmposed of 38 3. (a) Subchannel zeros & .. (b) Subchannel zeros df» with
nonzero terms; we add two terms before and eight terms aft@fiog(||h% ,ll2/|[d5 4ll2) = 50.

the significant part; using the tails, we constrdét,, as in

(6). In order to get the desired|h3 ,|2/||d5 .l2) ratio, we well as bound (15). We observe that the bound provides a
adjust the size oh3 , anddj ,, Then, we apply the second-good estimation of the “identification” error. In Fig. 2(b), we

order LS/SS method oh;», and we compute the estimationplot the smallest residual, over the different delays, of the first-
error ho 4+ — hs 4. In Fig. 2(a), we plot||hs 4« — hy 4|2, as order “zero forcing” equalizer, i.e., the equalizer that equalizes
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Subchannel 1

Subchannel 2
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Fig. 4. (a), (b) Portion of the real part of subchannels. (c), (d) Subchannel outputs. (e) Best-case output of first-order zero forcing equaliedr compu
by impulse response estimated by second-order SS method.

perfectly f1274, in the noiseless case, and bound (23). W, can be equalized sufficiently well by the first-order LS/SS
observe that, at least for larggh? ,||2/||d5 ,|/2), bound (23) “zero forcing” equalizer. The reason for this is that if the
indicates that the channel can be equalized sufficiently welke of the tails is sufficiently small, as it is in our case, the
by a first-order equalizer. performance of the first-order equalizer is determined by the
In Fig. 3(a), we plot the zeros ‘bfgl)z; andhﬂ( ), where diversity of hy 4, which is sufficiently large, and the size of
ma d3 4, which is sufficiently small, and not by the diversity of
h%z s ( Z h(l) —(i—m1) hi2, which is very small.
’ F— In the final simulation, we process data obtained by us-
We observe that the subchannel zeroshef, are not close, ing the oversampled_ (b_y a factor of 2) r_nicrowave ra_dio
implying large diversity; we recall that the same fact is Imp“eahannelchan4 matwhich is found at http://spib.rice.edu/spib/
by the relatively large value af,. In Fig. 3(b), we plot most Microwave. html. The channel possesses long tails of small
of the subchannel zeros dfy», which is the one used in !€ading and trailing terms. In Fig. 4(a) and (b), we plot
Fig. 2, for 20 log;o(||h3 4[l2/[|d3. 4]l2) = 50 (two zeros of @ portion of the real part of the two subchannels; each
each subchannel are far away from the unit circle due $§bchannel possesses 150 nonzero terms; the “small” terms
the small leading terms). We observe that the subchanf@é® about two orders of magnitude smaller than the significant
zeros ofhy, are very close, implying thah,, offers very terms. In Fig. 4(c) and (d), we plot the output of each
small diversity; however, since, as we see in Fig. 2, ttmbchannel, in the noiseless case, with input 100 samples of an
corresponding residual is smaller thad=2, it is clear that i.i.d. 4-QAM signal. In order to estimate the effective channel
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length, we compute the “overmodele®;,, and we apply  Concerning the equalization part, we considered the perfor-

the AIC and MDL criteria [19], which, unfortunately, lead tomance of “zero forcing” equalizers; the diversity Inf,,

overmodeling. We found very useful the criterion and the “identification error” determine their performance.
Finally, we performed simulations that were in general

agreement with our theoretical results; more specifically, they

showed that sufficiently good equalization of unknown chan-

nels, using “zero forcing” equalizers of ordem(— 1), is

This criterion provides atable decomposition of the range possible, if the diversity of thenth-order significant part of

space of the data autocorrelation matrix into signal and noi true impulse response is sufficiently large and, at the same

subspaces; an extensive study of information theoretic critetige, the size of the unmodeled part is sufficiently small.

for rank detection, as well as the development and stu&ESU“S with a similar flavor concerning the LP method have

of (25), can be found in [20]. Using (25), we estimate theeen derived in [21].

effective channel order as 2, i.e., three taps. This estimate isThe fact that we cannot approximate a channel arbitrarily

not only intuitively satisfying, taking into account Fig. 4(ayell by increasing the complexity of our model is perhaps the

and (b), but it is also very useful since it will lead, as we shahost significant obstacle against general applicability of the

see shortly, to sufficiently good equalization dfan4.mat LS and SS methods.

We apply the second-order LS/SS to the outputs of the two

subchannels; then, we compute the corresponding first-order

zero forcing equalizers. The best-case output of the zero

forcing equalizers is plotted in Fig. 4(e). We see that wdl] L. Tong, G. Xu, and T. Kailath, “Blind identification based on second-

can open the eye by simply using first-order zero forcing \c/’g?ezgta;'st'gioéége ggT?ggipproac"EEE Trans. Inform. Theory,

equalizers. [2] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach to
Unfortunately, we did not manage to always reliably process blind channel identification,1EEE Trans. Signal Processingol. 43,

data obtained by some channels available at this site (fqs £ 2982-2993, Dec. 1995.

N1 (Rr)

L) =1, .-, 20 +1. (25)
N(RL)

ranKR ) = arg min
T
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