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ABSTRACT
Particle filters (PF) and auxiliary particle filters (APF)ear

widely used sequential Monte Carlo (SMC) techniques. In _
this paper we comparatively analyse the Sampling Impoganccommon set of points,,

The aim of this paper is to comparatively analyse two
closely related algorithms, the SIR algorithm with optimal
CID [3] and the FA-APF [2]. We show that starting from a

" L {z! 3N, sampled from

Resampling (SIR) PF with optimal conditional importanceP»—1j»—1, & new particle produced by either algorithm is
distribution (CID) and the fully adapted APF (FA-APF). Both marginally sampled from the same pdf, but the whole set of
algorithms share the same Sampliigy, Weighting (W) and  particles is (giver)c,{j_}1 andy,,) independent if produced by
Resampling R) steps, and only differ in the order in which FA-APF, while it is dependent if produced by SIR. This paper
these steps are performed. The order of the operations is nistorganized as follows. The SIR and FA-APF algorithms are

unsignificant : starting at time — 1 from a common set of
particles, we show that one single updated particle at time

recalled in§2. Our analysis is performed {8, and in§4 we
compare both algorithms via simulations.

will marginally be sampled in both algorithms from the same

probability density function (pdf), but as a whole the fudks
of particles will be conditionally independent if created b

2. TWO CLOSELY RELATED SMC FILTERS

the FA-APF algorithm, and dependent if created by the SIR et us first recall the well known SIR algorithm with optimal

algorithm, which results in support degeneracy.

Index Terms— Sequential Monte Carlo, Particle Filter-
ing, Auxiliary Particle Filtering, Conditional Indepenulee.

1. INTRODUCTION

Let {X,, }new and {Y, }new be respectively a hidden and
an observed process. Letz,|y,.,,) (or in shortp,,),
say, denote the pdf (w.rt. Lebesgue measureXgfgiven
Yon = {yi}l-o. We assumeglX,,,Y, } e is a Hidden
Markov Chain: p(xo.n,Yon) = p(wo) [y p(zi|zi—1)
[17_,p(yilz;). Bayesian filtering consists in computing
Pnjn, OF at least some approximation of the measuyg,
with densityp,,,,. Recursive solutions are of particular inter-
est, and indeeg,|,, can be computed from,,_;,,_; by the
well known recursion (herd/ stands for numerator) :

_ P(Yn|Tn) fp(wnmnfl)p(xnfl|YO:n—1)dxn71
B J Nday,
1)

p(xn|y0:n)

Many efforts have been devoted to the computation of eq. (1).
If exact computing is difficult or impossible, one needs to re

sort to approximations. Among them PF and APF methods
(see e.g. [1] [2]) are SMC methods which propagate a dis-

crete approximatiop,,|,, Of zi,,.

CID (see e.qg. [3]). It consists of the succession of a sargplin
stepS, a weighting steg// and an optionalresampling step
R. The algorithm (which will simply be denoted as SIR in the
sequel) is as follows :

SIR algorithm (with optimal CID and Resampling at
each step).

~ N .
Let Hn—1jn—1 = Zz’:l %51';71 apprOXImatmn—Hn—l-
S. For1<i<N, samplet!, ~ p(Z,|zt_1,yn);
W. Forl<i<N,computes’, ocp(y,|zi_,),S°N wi=1;
R. For1<i<N, sampler? ~ Zi’il w} 0z (diy,).

Thenji,, = S, %0,: approximates,,,,.
Let us now briefly recall the principle of APF (see e.g.

[2] [4], and also [5] for recent developments). If exact com-
puting of (1) is not possible, a natural idea consists in re-
placing s, 1,1 by a discrete approximatioﬁjﬁ\i1 wt
5%71. Injecting into (1) we get a continuous approximation
of p(znlyoun) :
N

D

i=1

W'y p(ynl|zh,_1)

N .
Y im Wi 1 P(Ynlzy, 1)

1For the purposes of this paper we will assume resamplingcit st@p,
but variants are available.

pealy_y,yn).  (2)




In the view of deriving an SMC algorithm one should get3.1. Reformulating the SIR and FA-APF algorithms

samples from (2) in order to further proceed at time- 1. plymlzi 1)
nlvn—1

If direct sampling fromr is difficult or impossible, one can Let i, = SN eier  PilEn) = p(anlal, 1, y,) and
approximater by the mixture pdf pi(xn) = plxa|E_,,y,). We first rewrite the algorithms
N . . in terms of conditional pdf. Both algorithms computéi}
gzn) = Mq(xnkcihl), @) fromx!7, viaan intermediate set of pointg’} < {7 1V
i=1 Zz 1 Wh1Th 1 (computed by th&step in SIR, and by th@/V,R) steps in FA-

APF), and so each algorithm can be written as the succession
sample fromg (the so-called first-stage weights!,_; o~  of two steps.
w! 7t | and pdfg are degrees of freedom used for design-

ing this importance density), and use importance sampling ® Let us begin with SIR. In theq) step, givenc'”,, we
(IS) in augmented dimension, which leads to the family of independently drawv particlesi,{f}. We next weight
APF algorithms, see e.g. [2] for detalls. them, and g|verx{ '} andx\”, we drawX indepen-

Now, if direct sampling fromr is indeed feasible then we
are in the so-calledully-adaptedFA) case, in the terminol-
ogy of [2]. Remember that to get a sample from a mixture
> oy aipi(x) one can first draw an indexfrom Zz 1 06; SIR algorithm. Letx,,
((W,R) steps) and then sampiefrom thep;(z) which has
just been selectedstep). Applying to (2) we get the

dent samplex % from this reweighted distribution}
step). This algorithm can be rewritten as follows :

{1} B kd.pn—ﬂn—l' Then

~{i S
X;{L} ~ p(xn|xn 15 yn le (4)
FA-APF algorithm 2 =1
Let fiy_1jn—1 = SN Lay approximatgu,, 1,1 Xn P &, 1y = HZO‘ 0zw)-(5)
n—1 1=15=1

7 1.
Wy =14,

W. Forl<i<N,computest ocp(yy,|zi_,),>N ;
- = putewy, o<p(ynlar—1): 2= e Now in FA-APF, givenx'”, andy,, we drawV in-

R. For1<i<N, samplei’_, ~ Eil\il Wis . (dn_1); depe_ndent pointx;{f’} f_rom 7(x, )defined in (2). The
not algorithm can be rewritten on the whole as follows :

S. Forl<i<N, sampler’, ~ p(x,|Z, 1, yn). FA-APF algorithm. Letx "}, &% Pn—1jn—1. Then
Thenji,, = SO, +0,: approximates,|,. 0

As we see the FA-APF algorithm is reorderingof the - (Xn Ix Ly HZO‘ il _)(6)
SIR algorithm. In SIR the successive stepséres W — R ==t
(or, equivalentlyW — S — R : stepsS andW commute (W S 7
since the incremental weighty,, |=*, _,) does not depend on xR ploaf il ya) = Hp’ @)

the new particlez? ), while the recursive loop of FA-APF is

made of the successive stefis— R — 5. Note that in FA-APF we sample from the discrete pdf (6) and

next from the continuous one (7), while this is the contrary i

3. ANALYSING THE SIR AND FA-APF SIR ((4) is continuous and (5) discrete). As we will see, this
ALGORITHMS will induce consequences on the degeneracy of the support
of {z¢}, produced by the SIR algorithm (see Remark 2
below).

In this section we analyse the SIR and FA-APF algorithms:.
Assume that at time: — 1 we haveN points {z,_;}N, . N
sampled fromp,,_1|,,_; (or at least from some approxima- 3.2. Marginal conditional pdf

tion p,,_1jn—1 Of Pr_1jn—1). Starting from this common set i
Pr—1jn-1 O Pn-1fn 1) 9 , =" We are now ready to computéz,,|x'” | 4,) for both algo-
of points, our aim is to compare the sampké,é} producedei- |ithms :

ther by the SIR algorithm, or by the FA-APF one. To that aim

we are g?mg to compute, for both algorithms, the conditionaProposition 1 Let {?, ;}N, ~ p,_1),,—1. Leta} (resp.
pdfp(xf7 [x7 1, yn). =) be a point computed by the SIR (resp. FA-APF)
algorithm.  Then both:5'" and =% are sampled from

n,t

p(wnIX;{f_}l, yn) = 7(x,) defined in(2).

2In the view of§3 we setw? _; = % for all ¢, i.e. we start from an
unweighted pdf.



Proof 1 By construction each sampig;’; computed by FA-
APF is drawn fromr. Let us adress SIR. For any Borel sét
€ B(R) let u(A) = P(XS® € A[x!Y 4,). Then

/IR j=1

N N
Sl / 631 (A) [ oy (2 )
i1 RY j=1

N , N 4 '
D i s, (][] pi(@])ax

N 2
=1

1(A)

N . . B B
Sl / L a(F pa( ) d
i=1 R

N .
/ Z O/ﬁ pl(xn) d{En,
Ai=1

(Tn)

sou has pdfr w.r.t. Lebesgue measure.

3.3. Joint conditional pdf

As we see from Proposition 1, given the old particiélé_}1
and the new observatiop,, each single point produced by
both algorithms ismarginallydrawn from the same condi-

tional pdfx. The difference appears when we consider thep (d)

joint conditional pdfp(x,[x? | 4,.). We begin with the fol-
lowing result :

1
n

Proposition 2 Let {z?, }¥| ~ p_1jp_1. LEtX} =2

and X 2 be the first two points computed by the SIR algorithmWherea andp are respectively given b§) and (10).

For any Borel setd € B(IR) let v(4) = P(X2 € A| x\",,

Yn,» xL). Thenv is the mixed (i.e., discrete and continuous)
probability measure

v([z,r + dr))=ad, ([, + dr))+(1 — a)p(z)dr, (8)
in which

N

D1
N .
27;:1 ol pi(x

(ot

a=PX2=al x|y, al) =

N
p(x) =Y B pi(x), (10)
=1

N N
By ocah, > adpi(xy), Y 8L =1 (11)
j=1 i=1

i

Proof 2 Let B(z) = (—o0,z), C(dz) = [z}, 2} + dz) and
pin(z,dz) = P(X2 € B(z), X! € C(dzx)| x,, yn). Asin

Proposition 1 we hava y (z, dx) =

N ] N N ) )
| TIn(S okt (B@IY ok, (Claalast=
i=1 k=1 j=1

n[B(x) x C(da)])dxi +

2]

2[B(@) x C(dw)])dx{?

pp(jﬁ)djﬁ]]lm>m}z+

k

n

*)di / p; (E)d
C(dz)
1

in which D(z,dr) = [z}, min(z} + dx,2)). A first-order
Taylor series expansion @fy (x, dz) givesuy (x, dz) =

N N
Wasar+> > aradp;(xy) g(k(i,’z)daéﬁ]dx
k=1j=1 x

J#k

N
(D {ah)?pp(e

+o(dz) with 2420 _, o whendz — 0. On the other hand,

from Proposition 1 we have

def 1 {i} _ 1 /

= P(X, € Cdx)|x.2 1, yn) = w(x,)dx + o' (dz)
with % — 0 whendz — 0. Finally P(X2 < z[x",, yn,

. pn(z,dx
)= (JEIBOW = aloay (1-a) fB(m)p(x)dx
|

1

Ln

Remark 1 (conditional independence.)Let us comment
this result. The SIR algorithm draws particl*se%}, reweights
them, and finally resamples, i.e. draWssampIes;;{f} which
are independent givey, ,xfﬁl andx’ (see (5)). But these
samples are no longer independent giyemndxfﬁl only:
since we resample from a discrete distribut@f;1 ol 0z,
once the first particle’’ has been drawn, the second arfe
is either equal tar. with probability« (given by (9)), or can

take any real value distributed according to the mixture pdf
p(x) defined in (10).

Proposition 3 (conditional independence.)Let {z! |}V,
~ Doapo1e Letx = {23, (resp. xfA, =

{54 }X)) be theN points computed by SIR (resp. FA-APF).
Then givenx'”, and y,, x4,y are iid. samples from
m(xn), while x}'%%, are identically distributed fromr(z,)
but are not independent.

Proof 3 Given xff_}l andy,, the FA-APF algorithm draws
independent samples by construction. That Mearticles
computed by the SIR algorithm are not independent is a con-
sequence of proposition 2. [ |



Remark 2 (support degeneracy.)As is well known, in a se-
guential IS algorithm weigths degenerate with time, so a lo
of effort is devoted to sampling particles which will be asso
ciated to vanishing weights. Resampling was introduced as
rescue to this problem, and indeed this technique elimsnate
particles associated with weights that are too low. Butesinc
in the SIR algorithm a point?, can be sampled several times,
{zi}N | is a subset of #{ } ;. So the SIR algorithm is not
computationally efficient, because the particiéswhich fi-
nally will not be selected during the step have indeed been
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drawn unnecessarily. More importantly, due to resampling

the support of the distribution shrinks, which is anothenfo
of degeneracy. Quantitatively this support degeneracypean
measured by the (conditional) average size of the suppert af
resamplingk(N'), defined as the expectation of the number
of points which have been (re-)selected at least once. Sinc
the total number of outcomes of each particle afterRtstep
follows a multinomial distribution with parameters,, we

have
N
N=N-> (1—ap)"
i=1

Now by contrast in FA-APF the support cannot degen-
erate. Of course, thR step still induces support shrinkage,
so{#! |}~ is asubset ofz’ 1}7 15 but next eachr?, is
drawn from the continuous pgf (x ), so particles:!, andx?,
will be different even ifii | = 7’

n—1

(12)

4. SIMULATIONS

We consider the ARCH state space model :

Tnt1 = /Po+ Bz X u, (13)
Yn = Ty + Up (14)

in which u,, ~ N(0,1), v, ~ N(0,R), andxg, {u,} and
{v,} are independent. For this modglz,, |z, 1,yn) ~

Bot+Bizl_  R(Bot+Biai_,)
N armrmer s mrmrpe ) andplylen-) ~ N (O,

R+ Bo + f1z2_,). We sampleX trajectories, and defing
K
> (
7j=1
23)?]2 (2d) anda:n‘n are respectively the true and estimated
state at timen for trajectoryj). We setgy = 1, 5, = 0.1,

R =3, P =400 andT = 50. Fig. 1 displays7 against the
number of particlesV. FA-APF gives better results and the
distance between the two methods decreaség mreases.
Note that7s;r(400) = Jrpa—apr(200) ~ 0.8970, so that

1

K

N
xn\n

T
as the empirical standard deviatigh= % > |

n=1

similar performances are obtained by FA-APF as compared

to SIR, but with half as many particles.

In the second experiment we s&¢ = 9, 5, = 5 and
R = 1 F|g 2 displays the empirical MSBR/SE(n) =
e E] (@, — x1)? as a function of time. As we see FA-
APF outperforms SIR for almost all values kf This is be-
cause we take few particlesV( = 50), and the support of

Fig. 1. Emp. Standard Deviatio¢ = 1, 51 = 0.1, R = 3)

Iog(MSE)

Fig. 2. Empirical MSE (3 =9, 51 =5, R =1)

particles for SIR is smaller than that of FA-APF (we checked
that for SIR the empirical mean is located arowid which
is consistent with the theoretical value (12)).
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