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ABSTRACT

Particle filters (PF) and auxiliary particle filters (APF) are
widely used sequential Monte Carlo (SMC) techniques. In
this paper we comparatively analyse the Sampling Importance
Resampling (SIR) PF with optimal conditional importance
distribution (CID) and the fully adapted APF (FA-APF). Both
algorithms share the same Sampling (S), Weighting (W) and
Resampling (R) steps, and only differ in the order in which
these steps are performed. The order of the operations is not
unsignificant : starting at timen − 1 from a common set of
particles, we show that one single updated particle at timen

will marginally be sampled in both algorithms from the same
probability density function (pdf), but as a whole the full set
of particles will be conditionally independent if created by
the FA-APF algorithm, and dependent if created by the SIR
algorithm, which results in support degeneracy.

Index Terms— Sequential Monte Carlo, Particle Filter-
ing, Auxiliary Particle Filtering, Conditional Independence.

1. INTRODUCTION

Let {Xn}n∈IN and {Yn}n∈IN be respectively a hidden and
an observed process. Letp(xn|y0:n) (or in short pn|n),
say, denote the pdf (w.r.t. Lebesgue measure) ofXn given
y0:n = {yi}n

i=0. We assume{Xn, Yn}n∈IN is a Hidden
Markov Chain: p(x0:n,y0:n) = p(x0)

∏n
i=1 p(xi|xi−1)∏n

i=0 p(yi|xi). Bayesian filtering consists in computing
pn|n, or at least some approximation of the measureµn|n

with densitypn|n. Recursive solutions are of particular inter-
est, and indeedpn|n can be computed frompn−1|n−1 by the
well known recursion (hereN stands for numerator) :

p(xn|y0:n) =
p(yn|xn)

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

∫
Ndxn

(1)
Many efforts have been devoted to the computation of eq. (1).
If exact computing is difficult or impossible, one needs to re-
sort to approximations. Among them PF and APF methods
(see e.g. [1] [2]) are SMC methods which propagate a dis-
crete approximation̂µn|n of µn|n.

The aim of this paper is to comparatively analyse two
closely related algorithms, the SIR algorithm with optimal
CID [3] and the FA-APF [2]. We show that starting from a

common set of pointsx{i}
n−1

def
= {xi

n−1}
N
i=1 sampled from

pn−1|n−1, a new particle produced by either algorithm is
marginally sampled from the same pdf, but the whole set of
particles is (givenx{i}

n−1 andyn) independent if produced by
FA-APF, while it is dependent if produced by SIR. This paper
is organized as follows. The SIR and FA-APF algorithms are
recalled in§2. Our analysis is performed in§3, and in§4 we
compare both algorithms via simulations.

2. TWO CLOSELY RELATED SMC FILTERS

Let us first recall the well known SIR algorithm with optimal
CID (see e.g. [3]). It consists of the succession of a sampling
stepS, a weighting stepW and an optional1 resampling step
R. The algorithm (which will simply be denoted as SIR in the
sequel) is as follows :

SIR algorithm (with optimal CID and Resampling at
each step).

Let µ̂n−1|n−1 =
∑N

i=1
1
N

δxi
n−1

approximateµn−1|n−1.

S. For1≤ i≤N, samplẽxi
n ∼ p(x̃n|xi

n−1, yn);

W . For1≤ i≤N, computewi
n∝p(yn|xi

n−1),
∑N

i=1w
i
n =1;

R. For1≤ i≤N, samplexi
n∼

∑N

i=1 wi
nδx̃i

n
(dxn).

Thenµ̂n|n =
∑N

i=1
1
N

δxi
n

approximatesµn|n.
Let us now briefly recall the principle of APF (see e.g.

[2] [4], and also [5] for recent developments). If exact com-
puting of (1) is not possible, a natural idea consists in re-
placing µn−1|n−1 by a discrete approximation

∑N

i=1 wi
n−1

δxi
n−1

. Injecting into (1) we get a continuous approximation

of p(xn|y0:n) :

π(xn) =
N∑

i=1

wi
n−1p(yn|xi

n−1)
∑N

i=1w
i
n−1p(yn|xi

n−1)
p(xn|x

i
n−1, yn). (2)

1For the purposes of this paper we will assume resampling at each step,
but variants are available.



In the view of deriving an SMC algorithm one should get
samples from (2) in order to further proceed at timen + 1.
If direct sampling fromπ is difficult or impossible, one can
approximateπ by the mixture pdf

q(xn) =

N∑

i=1

wi
n−1τ

i
n−1

∑N

i=1 wi
n−1τ

i
n−1

q̃(xn|x
i
n−1), (3)

sample fromq (the so-called first-stage weights̃wi
n−1 ∝

wi
n−1τ

i
n−1 and pdfq̃ are degrees of freedom used for design-

ing this importance density), and use importance sampling
(IS) in augmented dimension, which leads to the family of
APF algorithms, see e.g. [2] for details.

Now, if direct sampling fromπ is indeed feasible then we
are in the so-calledfully-adapted(FA) case, in the terminol-
ogy of [2]. Remember that to get a sample from a mixture
∑N

i=1 αipi(x) one can first draw an indexj from
∑N

i=1 αiδi

((W,R) steps) and then samplex from thepj(x) which has
just been selected (Sstep). Applying to (2) we get the

FA-APF algorithm 2

Let µ̂n−1|n−1 =
∑N

i=1
1
N

δxi
n−1

approximateµn−1|n−1.

W . For1≤ i≤N, computewi
n∝p(yn|xi

n−1),
∑N

i=1w
i
n =1;

R. For1≤ i≤N, samplẽxi
n−1∼

∑N

i=1 wi
nδxi

n−1

(dxn−1);

S. For1≤ i≤N, samplexi
n ∼ p(xn|x̃i

n−1, yn).

Thenµ̂n|n =
∑N

i=1
1
N

δxi
n

approximatesµn|n.
As we see the FA-APF algorithm is areorderingof the

SIR algorithm. In SIR the successive steps areS → W → R

(or, equivalently,W → S → R : stepsS andW commute
since the incremental weightp(yn|xi

n−1) does not depend on
the new particlẽxi

n), while the recursive loop of FA-APF is
made of the successive stepsW → R → S.

3. ANALYSING THE SIR AND FA-APF
ALGORITHMS

In this section we analyse the SIR and FA-APF algorithms.
Assume that at timen − 1 we haveN points {xi

n−1}
N
i=1

sampled frompn−1|n−1 (or at least from some approxima-
tion p̂n−1|n−1 of pn−1|n−1). Starting from this common set

of points, our aim is to compare the samplesx
{i}
n produced ei-

ther by the SIR algorithm, or by the FA-APF one. To that aim
we are going to compute, for both algorithms, the conditional
pdf p(x

{i}
n |x

{i}
n−1, yn).

2In the view of§3 we setwi

n−1
=

1

N
for all i, i.e. we start from an

unweighted pdf.

3.1. Reformulating the SIR and FA-APF algorithms

Let αi
n =

p(yn|xi
n−1

)
∑

N
i=1

p(yn|xi
n−1

)
, pi(xn) = p(xn|xi

n−1, yn) and

p̃i(xn) = p(xn|x̃i
n−1, yn). We first rewrite the algorithms

in terms of conditional pdf. Both algorithms computex
{i}
n

fromx
{i}
n−1 via an intermediate set of points̃x{i}

n
def
= {x̃i

n}
N
i=1

(computed by theSstep in SIR, and by the(W,R)steps in FA-
APF), and so each algorithm can be written as the succession
of two steps.

• Let us begin with SIR. In the (S) step, givenx{i}
n−1, we

independently drawN particlesx̃{i}
n . We next weight

them, and givenx{i}
n−1 andx̃

{i}
n , we drawN indepen-

dent samplesx{i}
n from this reweighted distribution (R

step). This algorithm can be rewritten as follows :

SIR algorithm. Let x{i}
n−1

i.i.d.
∼ pn−1|n−1. Then

x̃
{i}
n

S
∼ p(x̃n|x

{i}
n−1, yn) =

N∏

i=1

pi(x̃
i
n); (4)

x
{i}
n

(W,R)
∼ p(xn|x̃

{i}
n ,x

{i}
n−1,yn)=

N∏

i=1

N∑

j=1

αj
nδ

x̃
j
n
(xi

n).(5)

• Now in FA-APF, givenx{i}
n−1 andyn, we drawN in-

dependent pointsx{i}
n from π(xn)defined in (2). The

algorithm can be rewritten on the whole as follows :

FA-APF algorithm. Let x{i}
n−1

i.i.d.
∼ pn−1|n−1. Then

x̃
{i}
n−1

(W,R)
∼ p(x̃n−1|x

{i}
n−1, yn)=

N∏

i=1

N∑

j=1

αj
nδ

x
j

n−1

(x̃i
n−1)(6)

x
{i}
n

S
∼ p(xn|x̃

{i}
n−1,x

{i}
n−1, yn) =

N∏

i=1

p̃i(x
i
n). (7)

Note that in FA-APF we sample from the discrete pdf (6) and
next from the continuous one (7), while this is the contrary in
SIR ((4) is continuous and (5) discrete). As we will see, this
will induce consequences on the degeneracy of the support
of {xi

n}
N
i=1 produced by the SIR algorithm (see Remark 2

below).

3.2. Marginal conditional pdf

We are now ready to computep(xn|x
{i}
n−1, yn) for both algo-

rithms :

Proposition 1 Let {xi
n−1}

N
i=1 ∼ p̂n−1|n−1. Let xSIR

n,i (resp.
xFA

n,i) be a point computed by the SIR (resp. FA-APF)
algorithm. Then bothxSIR

n,i and xFA
n,i are sampled from

p(xn|x
{i}
n−1, yn) = π(xn) defined in(2).



Proof 1 By construction each samplexFA
n,i computed by FA-

APF is drawn fromπ. Let us adress SIR. For any Borel setA

∈ B(IR) let µ(A) = P(XSIR
n ∈ A|x

{i}
n−1, yn). Then

µ(A) =

∫

IRN

[

N∑

i=1

αi
nδx̃i

n
(A)]

N∏

j=1

pj(x̃
j
n)dx̃{j}

n

=

N∑

i=1

αi
n

∫

IRN

δx̃i
n
(A)

N∏

j=1

pj(x̃
j
n)dx̃{j}

n

=
N∑

i=1

αi
n

∫

IR

1A(x̃i
n)pi(x̃

i
n)dx̃i

n

=

∫

A

N∑

i=1

αi
n pi(xn)

︸ ︷︷ ︸

π(xn)

dxn,

soµ has pdfπ w.r.t. Lebesgue measure.

3.3. Joint conditional pdf

As we see from Proposition 1, given the old particlesx
{i}
n−1

and the new observationyn, each single point produced by
both algorithms ismarginally drawn from the same condi-
tional pdf π. The difference appears when we consider the
joint conditional pdfp(xn|x

{i}
n−1, yn). We begin with the fol-

lowing result :

Proposition 2 Let {xi
n−1}

N
i=1 ∼ p̂n−1|n−1. Let X1

n = x1
n

andX2
n be the first two points computed by the SIR algorithm.

For any Borel setA ∈ B(IR) let ν(A) = P(X2
n ∈ A| x

{i}
n−1,

yn, x1
n). Thenν is the mixed (i.e., discrete and continuous)

probability measure

ν([x, x + dx))=αδx1
n
([x, x + dx))+(1 − α)p(x)dx, (8)

in which

α = P(X2
n =x1

n|x
{i}
n−1, yn, x1

n) =

∑N

i=1(α
i
n)2pi(x

1
n)

∑N

i=1 αi
n pi(x1

n)
,(9)

p(x) =

N∑

i=1

βi
n pi(x), (10)

βi
n ∝ αi

n

N∑

j=1
j 6=i

αj
npj(x

1
n),

N∑

i=1

βi
n = 1. (11)

Proof 2 Let B(x) = (−∞, x), C(dx) = [x1
n, x1

n + dx) and

µN (x, dx) = P(X2
n ∈ B(x), X1

n ∈ C(dx)| x
{i}
n−1, yn). As in

Proposition 1 we haveµN (x, dx) =

∫

IRN

N∏

i=1

pi(x̃
i
n)[

N∑

k=1

αk
nδx̃k

n
(B(x))][

N∑

j=1

αj
nδ

x̃
j
n
(C(dx))]dx̃{i}

n =

∫

IRN

N∏

i=1

pi(x̃
i
n)(

N∑

p=1

(αp
n)2δx̃

p
n,x̃

p
n
[B(x) × C(dx)])dx̃{i}

n +

∫

IRN

N∏

q=1

pq(x̃
q
n)(

N∑

k=1

N∑

j=1
j 6=k

αk
nαj

nδ
x̃k

n,x̃
j
n
[B(x) × C(dx)])dx̃{i}

n

= [

N∑

p=1

(αp
n)2

∫

D(x,dx)

pp(x̃
p
n)dx̃p

n]1x>x1
n
+

N∑

k=1

N∑

j=1
j 6=k

αk
nαj

n

∫

B(x)

pk(x̃k
n)dx̃k

n

∫

C(dx)

pj(x̃
j
n)dx̃j

n

in which D(x, dx) = [x1
n, min(x1

n + dx, x)). A first-order
Taylor series expansion ofµN (x, dx) givesµN (x, dx) =

[(

N∑

p=1

(αp
n)2pp(x

1
n))1x>x1

n
+

N∑

k=1

N∑

j=1
j 6=k

αk
nαj

npj(x
1
n)

∫

B(x)

pk(x̃k
n)dx̃k

n]dx

+o(dx) with o(dx)
dx

→ 0 whendx → 0. On the other hand,
from Proposition 1 we have

µD(dx)
def
= P(X1

n ∈ C(dx)|x
{i}
n−1, yn) = π(x1

n)dx + o′(dx)

with o′(dx)
dx

→ 0 whendx → 0. Finally P(X2
n < x|x

{i}
n−1, yn,

x1
n) = lim

dx→0

µN (x, dx)

µD(dx)
= α1x>x1

n
+ (1 − α)

∫

B(x)
p(x)dx

whereα andp are respectively given by(9) and (10).

Remark 1 (conditional independence.)Let us comment
this result. The SIR algorithm draws particlesx̃

{i}
n , reweights

them, and finally resamples, i.e. drawsN samplesx{i}
n which

are independent givenyn , x{i}
n−1 andx̃{i}

n (see (5)). But these

samples are no longer independent givenyn andx
{i}
n−1 only :

since we resample from a discrete distribution
∑N

i=1 αi
nδx̃i

n
,

once the first particlex1
n has been drawn, the second onex2

n

is either equal tox1
n with probabilityα (given by (9)), or can

take any real value distributed according to the mixture pdf
p(x) defined in (10).

Proposition 3 (conditional independence.)Let {xi
n−1}

N
i=1

∼ p̂n−1|n−1. Let x
SIR
n,{i} = {xSIR

n,i }
N
i=1 (resp. x

FA
n,{i} =

{xFA
n,i}

N
i=1) be theN points computed by SIR (resp. FA-APF).

Then givenx{i}
n−1 and yn, x

FA
n,{i} are i.i.d. samples from

π(xn), while x
SIR
n,{i} are identically distributed fromπ(xn)

but are not independent.

Proof 3 Given x
{i}
n−1 and yn, the FA-APF algorithm draws

independent samples by construction. That theN particles
computed by the SIR algorithm are not independent is a con-
sequence of proposition 2.



Remark 2 (support degeneracy.)As is well known, in a se-
quential IS algorithm weigths degenerate with time, so a lot
of effort is devoted to sampling particles which will be asso-
ciated to vanishing weights. Resampling was introduced as a
rescue to this problem, and indeed this technique eliminates
particles associated with weights that are too low. But since
in the SIR algorithm a pointxi

n can be sampled several times,
{xi

n}
N
i=1 is a subset of{x̃i

n}
N
i=1. So the SIR algorithm is not

computationally efficient, because the particlesx̃i
n which fi-

nally will not be selected during theR step have indeed been
drawn unnecessarily. More importantly, due to resampling
the support of the distribution shrinks, which is another form
of degeneracy. Quantitatively this support degeneracy canbe
measured by the (conditional) average size of the support after
resamplingE(N ′), defined as the expectation of the number
of points which have been (re-)selected at least once. Since
the total number of outcomes of each particle after theR step
follows a multinomial distribution with parametersαi

n, we
have

E(N ′) = N −
N∑

i=1

(1 − αi
n)N . (12)

Now by contrast in FA-APF the support cannot degen-
erate. Of course, theR step still induces support shrinkage,
so{x̃i

n−1}
N
i=1 is a subset of{xi

n−1}
N
i=1; but next eachxi

n is
drawn from the continuous pdf̃pi(x

i
n), so particlesxi

n andxj
n

will be different even ifx̃i
n−1 = x̃

j
n−1.

4. SIMULATIONS

We consider the ARCH state space model :

xn+1 =
√

β0 + β1x2
n × un (13)

yn = xn + vn (14)

in which un ∼ N (0, 1), vn ∼ N (0, R), andx0, {un} and
{vn} are independent. For this modelp(xn|xn−1, yn) ∼

N (
β0+β1x2

n−1

R+β0+β1x2

n−1

,
R(β0+β1x2

n−1
)

R+β0+β1x2

n−1

) and p(yn|xn−1) ∼ N (0,

R + β0 + β1x
2
n−1). We sampleK trajectories, and defineJ

as the empirical standard deviationJ = 1
T

T∑

n=1
[ 1
K

K∑

j=1

(x̂j

n|n−

xj
n)2]

1

2 (xj
n andx̂

j

n|n are respectively the true and estimated
state at timen for trajectoryj). We setβ0 = 1, β1 = 0.1,
R = 3, P = 400 andT = 50. Fig. 1 displaysJ against the
number of particlesN . FA-APF gives better results and the
distance between the two methods decreases asN increases.
Note thatJSIR(400) = JFA−APF (200) ≃ 0.8970, so that
similar performances are obtained by FA-APF as compared
to SIR, but with half as many particles.

In the second experiment we setβ0 = 9, β1 = 5 and
R = 1. Fig. 2 displays the empirical MSEMSE(n) =
1
K

∑K

j=1(x̂
j

n|n − xj
n)2 as a function of time. As we see FA-

APF outperforms SIR for almost all values ofk. This is be-
cause we take few particles (N = 50), and the support of
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Fig. 1. Emp. Standard Deviation (β0 = 1, β1 = 0.1, R = 3)
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Fig. 2. Empirical MSE (β0 = 9, β1 = 5, R = 1)

particles for SIR is smaller than that of FA-APF (we checked
that for SIR the empirical mean is located around31, which
is consistent with the theoretical value (12)).
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