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ABSTRACT

Exact Bayesian filtering is impossible in Jump Markov

State Space Systems (JMSS), even in the simple linear

and Gaussian case. Suboptimal solutions include sequen-

tial Monte-Carlo (SMC) algorithms which are indeed pop-

ular, and are declined in different versions according to

the JMSS considered. In particular, Jump Markov Linear

Systems (JMLS) are particular JMSS for which a Rao-

Blackwellized (RB) Particle Filter (PF) has been derived.

The RBPF solution relies on a combination of PF and

Kalman Filtering (KF), and RBPF-based moment estima-

tors outperform purely SMC-based ones when the number

of samples tends to infinity. In this paper, we show that it

is possible to derive a new RBPF solution, which imple-

ments a further RB step in the already RBPF with optimal

importance distribution (ID). The new RBPF-based mo-

ment estimator outperforms the classical RBPF one what-

ever the number of particles, at the expense of a reasonable

extra computational cost.

1. INTRODUCTION

Let xn (resp. yn) be a sequence of hidden states (of ob-

servations) and let us consider the so called JMSS which

can be seen as a hidden Markov chain (HMC) in which

the transition and likelihood pdfs depend on a realization

of a discrete Markov chain (MC) rn:

p(r0:n,x0:n,y0:n) = p(r0)

n∏

k=1

p(rk|rk−1)×

p(x0)

n∏

k=1

fk|k−1(xk|xk−1, rk)

n∏

k=0

gk(yk|xk, rk) (1)

in which p(xk), say, is the pdf (w.r.t. Lebesgue measure)

of xk, x0:n = {xk}
n
k=0, fk|k−1(xk|xk−1, rk) is the tran-

sition pdf of MC {xk}k≥0 given r0:k, and gk(yk|xk) is

the likelihood of yk given xk and rk. In a JMSS ex-

act Bayesian filtering is either impossible (in the general

case) or an NP-hard problem (in the linear and Gaussian

case), so one has to use suboptimal techniques [1] [2]

[3]. Among them, SMC methods can be divided into two

classes:
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• The first class approximates pdf p(xn, r0:n|y0:n) by

a set of weighted samples {wi
n,x

i
n, r

i
0:n}

N
i=1, which

is propagated using Sequential Importance Sampling

(SIS). Let

Θn =

∫
φ(xn)p(xn|y0:n)dxn (2)

be a moment of interest. Then one can deduce from

{wi
n,x

i
n, r

i
0:n}

N
i=1 the following Monte Carlo esti-

mate of Θn (CL calls for classical):

Θ̂CL
n =

N∑

i=1

wi
nφ(x

i
n). (3)

• The second class relies on the assumption that ex-

pectation

Ep(xn|r0:n,y0:n)(φ(xn)) = Φ(r0:n) (4)

is computable. According to Bayes rule,

p(xn, r0:n|y0:n) = p(r0:n|y0:n)× p(xn|r0:n,y0:n)

so only p(r0:n|y0:n) is approximated by a set of

weighted samples. This solution is known as RBPF

[4] [5] [6]. An estimator of Θn is given by

Θ̂RB
n =

N∑

i=1

wi
nΦ(r

i
0:n). (5)

One can deduce from an asymptotical analysis and from

the Rao-Blackwell theorem that estimator Θ̂RB
n outper-

forms the classical one Θ̂CL
n [4] [7]. The RBPF is of prac-

tical interest in JMLS, i.e in JMSS where transitions (resp.

likelihoods) fk|k−1(xk|xk−1, rk) (resp. gk(yk|xk, rk))
are Gaussian and linear in xk−1 (resp. xk). In such mod-

els, p(xn|r0:n, y0:n) is computed by KF so Θ̂RB
n could be

derived for a large class of functions of interest φ.

In this paper we derive a new RBPF algorithm for

JMLS. More precisely, we start from the RBPF with op-

timal ID and show that a further RB step is indeed possi-

ble, at a reasonable extra computational cost. As a conse-

quence, the induced moment estimator outperforms Θ̂RB
n ,

whatever the number of particles N (i.e, our results are



not asymptotical). We next propose an extension of our

algorithm to nonlinear JMSS.

The paper is organized as follows. In section 2, we

recall the classical RBPF for JMLS, then we derive our

new RB estimator in section 3. The variance properties

and computational cost of both estimators are compared

in section 4. In section 5 we adapt our algorithms to JMSS

which are no longer conditionally linear and Gaussian.

We finally run simulations in section 6.

2. THE CLASSICAL RBPF FOR JMLS

Let us consider the following model:

rn is a discrete MC (6)

xn = Fn(rn)xn−1 +Gn(rn)un (7)

yn = Hn(rn)xn + Ln(rn)vn (8)

where x0, u1, · · · ,un and v0, · · · ,vn are independent

and independent of r0, · · · , rn. We set x0 ∼ N (m0,P0),
un ∼ N (0,Qn) and vn ∼ N (0,Rv

n). So model (6)-

(8) is nothing but a classical linear and Gaussian state-

space system, except that its dynamics (given by matrices

Fn(rn), Gn(rn), Hn(rn) and Ln(rn)) depends on the

realization of a discrete MC rn.

As is well known [8] [9], the exact computation of the

filtering pdf is not possible in such models because

p(xn|y0:n) =
∑

r0:n

p(r0:n|y0:n)p(xn|r0:n,y0:n)

is a Gaussian mixture which grows exponentially with time

n. To cope with this issue, suboptimal solutions have

been developed. The so called RBPF solutions propa-

gate a set of weighted samples {wi
n, r

i
0:n}

N
i=1 but assume

that E(φ(xn)|r0:n,y0:n) is computable [4]. We now re-

call their principle.

As in SMC algorithms, the problem consists in propa-

gating recursively the set {wi
n, r

i
0:n}

N
i=1. According to (5)

we should also compute the moments

{E(φ(xn)|r
i
0:n,y0:n)}

N
i=1 = {Φ(ri0:n)}

N
i=1. (9)

This is achieved by using SIS techniques and the KF. Let

us assume that at time n − 1 we have a set of weighted

particles {wi
n−1, r

i
0:n−1}

N
i=1, with ri0:n−1 ∼ q(r0:n−1),

that approximates p(r0:n−1| y0:n−1). Then one updates

this set of weighted particles as follows:

• Sample rin ∼ q(rn|r
i
0:n−1);

• Compute

wi
n ∝ wi

n−1

p(yn|y0:n−1, r
i
0:n)p(r

i
n|r

i
n−1)

q(rin|r
i
0:n−1)

,

with
∑N

i=1 w
i
n = 1.

In order to prevent the concentration of the total mass on

few particles, one can resample trajectories {ri0:n}
N
i=1 ac-

cording to weights {wi
n}

N
i=1 then set wi

n = 1/N [10] [11].

The optimal sampling distribution q(rn|ri0:n−1) which min-

imizes the variance of the weights given {ri0:n−1}
N
i=1 and

y0:n is

p(rn|r
i
0:n−1,y0:n) =

p(yn|y0:n−1, r
i
0:n−1, rn)p(rn|r

i
n−1)

p(yn|y0:n−1, ri0:n−1)
.

(10)

Next, given r0:n, model (6)-(8) is linear and Gaussian. So

let

p(xn−1|r
i
0:n−1,y0:n−1) =

N (xn−1;m
i
n−1|n−1;P

i
n−1|n−1),

where N (x;m;P) denotes the Gaussian pdf with vari-

able x, mean m and covariance P. Then p(yn|y0:n−1,
ri0:n−1, rn) is a Gaussian pdf whose moments are given

by the predicted observation mean and predicted observa-

tion covariance of the KF, i.e

p(yn|y0:n−1, r
i
0:n−1, rn) = N (yn; ỹ

i
n(rn);S

i
n(rn)),

where

ỹi
n(rn) = yn −Hn(rn)m

i
n|n−1(rn), (11)

Si
n(rn) = Hn(rn)P

i
n|n−1(rn)Hn(rn)

T

+ Ln(rn)R
v
nLn(rn)

T , (12)

mi
n|n−1(rn) = Fn(rn)m

i
n−1|n−1, (13)

Pi
n|n−1(rn) = Fn(rn)P

i
n−1|n−1F

T
n (rn)

+ Gn(rn)QnGn(rn)
T , (14)

so

p(yn|y0:n−1, r
i
0:n−1) =∑

rn

N (yn; ỹ
i
n(rn);S

i
n(rn))p(rn|r

i
n−1). (15)

In this case the new weights are given by

wi
n =

wi
n−1p(yn|y0:n−1, r

i
0:n−1)∑N

i=1 w
i
n−1p(yn|y0:n−1, ri0:n−1)

(16)

and thus do not depend on particles {rin}
N
i=1. Finally from

(5), estimator Θ̂RB
n deduced from this RBPF is given by

Θ̂RB
n =

N∑

i=1

wi
nΦ(r

i
0:n). (17)

3. A FURTHER RB STEP

We assume as previously that p(r0:n−1|y0:n−1) is approx-

imated by a set of weighted samples {wi
n−1, r

i
0:n−1}

N
i=1.

From model (1) we have

p(xn, rn|y0:n−1) =
∑

r0:n−1

p(rn|rn−1)p(r0:n−1|y0:n−1)×

∫
fn|n−1(xn|rn,xn−1)p(xn−1|r0:n−1,y0:n−1)dxn−1.

(18)



If we plug the Monte Carlo approximation of p(r0:n−1|
y0:n−1) in (18), we get an approximation p̃(xn, rn|y0:n−1)
of p(xn, rn| y0:n−1) given by:

p̃(xn, rn|y0:n−1) =
N∑

i=1

wi
n−1p(rn|r

i
n−1)×

∫
fn|n−1(xn|rn,xn−1)p(xn−1|r

i
0:n−1,y0:n−1)︸ ︷︷ ︸

N (mi

n−1|n−1
,Pi

n−1|n−1
)

dxn−1

=
N∑

i=1

wi
n−1p(rn|r

i
n−1)ξ

i
n|n−1(xn, rn) (19)

where

ξin|n−1(x, r) = N (x;mi
n|n−1(r);P

i
n|n−1(r)), (20)

where mi
n|n−1(r) and Pi

n|n−1(r) are respectively defined

in (13) and (14).

Next, according to Baye’s rule we have (here N ′ stands

for numerator):

p(xn, rn|y0:n) =
gn(yn|xn, rn)p(xn, rn|y0:n−1)∑

rn

∫
N ′(xn, rn)dxn

.

(21)

Plugging (19) into (21) we get an approximation p̃(xn, rn|
y0:n) of p(xn, rn|y0:n):

p̃(xn, rn|y0:n) =
∑N

i=1 w
i
n−1p(rn|r

i
n−1)gn(yn|xn, rn)ξ

i
n|n−1(xn, rn)∑

rn

∫
N ′(xn, rn)dxn

.

(22)

Since gn(yn|xn, rn) = N (yn;Hn(rn)xn;Ln(rn)R
v
n×

LT
n (rn)), we have

p̃(xn, rn|y0:n) =
∑N

i=1 w
i
n−1p(rn|r

i
n−1)N (yn; ỹ

i
n(rn);S

i
n(rn))ξ

i
n(xn, rn)∑

rn

∑N

i=1 w
i
n−1p(rn|r

i
n−1)N (yn; ỹi

n(rn);S
i
n(rn))

where ỹi
n(rn) and Si

n(rn) are defined respectively in (11)

and (12), and

ξin(xn, rn) = N (xn;m
i
n|n(rn);P

i
n|n(rn)), (23)

mi
n|n(rn) = mi

n|n−1(rn) +Ki
n(rn)ỹ

i
n(rn), (24)

Pi
n|n(rn) = (I−Ki

n(rn)Hn(rn))P
i
n|n−1(rn),(25)

Ki
n(rn) = Pi

n|n−1(rn)H
T
n (rn)S

i
n(rn)

−1. (26)

Finally, setting for all 1 ≤ i ≤ N

wi
n(rn) = wi

n−1p(rn|r
i
n−1)N (yn; ỹ

i
n(rn);S

i
n(rn)),

(27)

we get a new estimator Θ̂RB−2
n of Θn given by

Θ̂RB−2
n =

∑
rn

∑N

i=1 w
i
n(rn)Φn(r

i
0:n−1, rn)∑

rn

∑N

i=1 w
i
n(rn)

.(28)

One can next derive the approximation of p(r0:n|y0:n)
for the next iteration by using the optimal ID (10), since

p(yn|y0:n−1, r
i
0:n−1, rn) and p(yn| y0:n−1, r

i
0:n−1) have

already been computed.

4. DISCUSSION

4.1. Properties of Θ̂RB−2
n

Let us now compare the conditional mean and variance of

Θ̂RB
n and Θ̂RB−2

n . From (16), E(Θ̂RB
n |{ri0:n−1}

N
i=1,y0:n) =∑N

i=1 w
i
n

∑
rn

Φn(r
i
0:n−1, rn)× p(rn|r

i
0:n−1,y0:n). Ac-

cording to (16) and (10)

wi
n × p(rn|r

i
0:n−1,y0:n)

=

wi

n
(rn)︷ ︸︸ ︷

wi
n−1p(rn|r

i
n−1)p(yn|y0:n−1, r

i
0:n−1, rn)∑N

i=1

∑
rn

N ′(rn,xn)

=
wi

n(rn)∑N

i=1

∑
rn

wi
n(rn)

where wi
n(rn) is defined in (27). So

E(Θ̂RB
n |{ri0:n}

N
i=1,y0:n) = Θ̂RB−2

n . (29)

On the other hand, let us remark that

var(Θ̂RB−2
n |{r0:n−1}

N
i=1,y0:n) = 0. (30)

Consequently, removing the dependence in {ri0:n−1}
N
i=1

which have been sampled according to the same distribu-

tion for both estimators, we have

E(Θ̂RB
n |y0:n) = E(Θ̂RB−2

n |y0:n).

Applying the RB equality:

var(X) = var(E(X|Y )) + E(var(X|Y )),

to (29), we get var(Θ̂RB
n |y0:n) = var(Θ̂RB−2

n |y0:n)+

E(var(Θ̂RB
n |{r0:n−1}

N
i=1,y0:n)|y0:n). In conclusion our

RB estimator Θ̂RB−2
n outperforms the classical one Θ̂RB

n

recalled in Section 2 since both estimators have the same

mean but the variance of Θ̂RB−2 is lower or equal to that

of Θ̂RB.

4.2. Extra computational cost

The counterpart of this variance reduction is that it in-

volves an extra computational cost. However this extra

computational cost is not prohibitive, as we now see. Re-

member that computing Θ̂RB−2
n involves the computation

of {wi
n(rn)}

N
i=1 and {Φn(r

i
0:n−1, rn)}

N
i=1 for all different

values taken by rn.

First, observe that both estimators need the compu-

tation of (11)-(14). The only difference comes from the

computation of {Φn(r
i
0:n−1, rn)}

N
i=1 which has to be done

for all rn in the case of our estimator Θ̂RB−2
n , but only for

the new sampled particle rin in the case of the original esti-

mator Θ̂RB
n . However, the computation of Φn(r

i
0:n−1, rn)

is just given by the KF which has been partially computed

in (11)-(14). So if one needs to compute Φn(r
i
0:n−1, rn)

for all i, 1 ≤ i ≤ N and if K is the possible number of

values taken by rn our RB solution involves the computa-

tion of 3 × N × (K − 1) extra equations, see (24), (25)

and (26). However, if φ(xn) = xn, only the computation

of (24) and of (26) is necessary.



5. EXTENSION TO NONLINEAR JMSS

Our new RB estimator was developed for JMLS and does

not need any additional assumptions as compared to the

original RBPF [4]. In a nonlinear model, it is no longer

possible to compute wi
n(rn) and Φn(r

i
0:n−1, rn) for all i,

1 ≤ i ≤ N . However, remember that their computation

relies on the KF. So if given rn non linearities are not too

severe, it remains possible to compute our further RB esti-

mator Θ̂RB−2
n using well-known approximate techniques

such the Extended KF (EKF) or the Unscented KF (UKF)

[12].

Now, if nonlinearities are severe one needs to adapt

our RB methodology to the first class of SMC methods

for JMSS, see section 1. Remember that in this case we

do not compute Φn(r0:n) but rather look for propagating

an approximation of p(xn, r0:n|y0:n) [4] [13]. Let us as-

sume that the set {wi
n−1, r

i
0:n−1,x

i
n−1, }

N
i=1 is a discrete

approximation of p(xn−1, r0:n−1|y0:n−1). We next fol-

low the approach of Section 3. If we inject this discrete

approximation in (18) and incorporate the new observa-

tion yn (see (21)) then we get an approximation p̃(xn|
y0:n) (or simply p̃n|n) of p(xn|y0:n) given by

p̃n|n(xn)=

∑
rn

∑N

i=1w
i
n(rn)p(xn|xi

n−1,yn, rn)
∑

rn

∑N

i=1w
i
n(rn)

(31)

where

wi
n(rn) = wi

n−1p(rn|r
i
n−1)p(yn|x

i
n−1, rn),

p(yn|xn−1, rn) =

∫
gn(yn|xn, rn)×

fn|n−1(xn|xn−1, rn)dxn,

p(xn|xn−1,yn, rn) =
gn(yn|xn, rn)fn|n−1(xn|yn, rn)

p(yn|xn−1, rn)
.

So an RB estimator of Θnis given by:

Θ̂RB−2
n =

∑N

i=1

∑
rn
wi

n(rn)E(φ(xn)|xn−1,yn, rn)
∑N

i=1

∑
rn
wi

n(rn)
.

(32)

The computation of Θ̂RB−2
n for nonlinear JMSS requires

those of p(yn|xn−1, rn) and E(φ(xn)| xn−1,yn, rn). Let

us now discuss on some approximation techniques when

these terms are not computable.

• One can approximate p(yn|xn−1, rn) and the first

order moments of p(xn|xn−1,yn, rn) by using lo-

cal linearizations or the Unscented Transformation

[12], and next compute an approximation of Θ̂RB−2
n .

In the first paragraph of this section, we proposed

approximations based on these techniques. Con-

trary to the first paragraph where they were used to

run an EKF/UKF, here they are just used to compute

an approximation of the estimator, and we do not

propagate this approximation in time. The advan-

tage is that we avoid to propagate numerical errors

in time.

• The product

An = p(rn|rn−1)p(yn|xn−1, rn−1)×

E(φ(xn)|xn−1,yn, rn) (33)

can be rewritten as

An = p(rn|rn−1)×∫
φ(xn)fn|n−1(xn|xn−1, rn)gn(yn|xn, rn)dxn,

(34)

so if p(yn|xn−1, rn−1)E(φ(xn)| xn−1,yn, rn) is

not computable, then one can sample xrn,i
n ∼ fn|n−1

(xn|x
i
n−1, rn) for a given rn, and approximate the

RB estimator Θ̂RB−2
n by

Θ̂RB−3
n =

∑N

i=1

∑
rn
ŵi

n(rn)φ(x
i
n)∑N

i=1

∑
rn
ŵi

n(rn)
. (35)

where

ŵi
n(rn) = p(rn|r

i
n−1)gn(yn|x

rn,i
n , rn) (36)

which are now computable whatever the considered

model. Contrary to the classical SMC methods for

nonlinear JMSS where we sample {xi
n, r

i
n}

N
i=1 [4]

[13], we have just sampled {xrn,i
n }Ni=1 for all rn to

compute an estimator of Θn.

6. SIMULATIONS

We compute the empirical mean square error (MSE) at

each time step, averaged on P = 200 simulations, and

defined by MSE(n) = 1
P

∑P

i=1 ||Θ̂
j
n − Θj

n||
2. Here ||.||

is the euclidean norm, Θj
n is the true mean at j-th realiza-

tion computed by a PF with N = 105 particles, and Θ̂j

n|n

denotes either the estimate of Θj
n computed by the RBPF

with optimal ID or by our algorithm.

We test our algorithm for JMLS. We track a maneuver-

ing target described by its position and velocity in Carte-

sian coordinates, xn = [px, ṗx, py, ṗy]
T
n . The model is de-

scribed by equations (6)-(8); mode rn represents the be-

havior of the target (straight, left turn or right turn) and

parameters of the model are

F(r) =




1 sin(ωrT )
ωr

0 − 1−cos(ωrT )
ωr

0 cos(ωrT ) 0 − sin(ωrT )

0 1−cos(ωrT )
ωr

1 sin(ωrT )
ωr

0 sin(ωrT ) 0 cos(ωrT )


 ,

H =

[
1 0 0 0
0 0 1 0

]
, where ωr = 0 rad.s−1 when r = 1,

ωr = 3π/180 rad.s−1 when r = 2 and ωr = −3π/180
rad. s−1 when r = 3, Gk(rk) = I4×4, Lk(rk) = I2×2,

Q = σ2
v




T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T


 and R =

(
σ2
x 0
0 σ2

y

)
.



We set T = 2s, σv = 3m2/sec3 and σx = σy = 10m.

The Markovian transition probability is p(rk|rk−1) = 0.4
if rk = rk−1 and p(rk|rk−1) = 0.3 otherwise. A realiza-

tion of the target tracking scenario is displayed in Fig. 1.

We compute Θ̂RB
n and Θ̂RB−2

n . Since both algorithms are
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Fig. 1. Target Tracking Scenario - Jump Markov Linear

Model

computationally intensive (a KF is run for each particle),

we just take 100 particles and we perform a resampling

step at each time step. Results are displayed in Fig. 2(a)

and as expected Θ̂RB−2
n outperforms Θ̂RB

n . As we see, the

gap is important. This is because we use few particles and

because the Markovian transition probabilities are close.

Indeed, remember from (29) that

Θ̂RB−2
n = E(Θ̂RB

n |r1:N0:n−1,y0:n)

=

N∑

i=1

wi
n

∑

rn

Φn(r
i
0:n−1, rn)p(rn|r

i
0:n−1,y0:n),

in which p(rn|ri0:n−1,y0:n) is the optimal ID in (10). So

for each i, Θ̂RB
n is the estimator built by sampling one par-

ticle rin ∼ p(rn|r
i
0:n−1,y0:n), whereas Θ̂RB−2

n uses the

mean of Φn(r
i
0:n−1, rn) according to p(rn |ri0:n−1, y0:n).

So Θ̂RB−2
n will really outperform Θ̂RB

n if the a posteriori

distribution {p(rn|r
i
0:n−1,y0:n)}rn is almost uniform for

all 1 ≤ i ≤ N . According to (10), this can happen when

p(yn|y0:n−1, r
i
0:n−1, rn) and p(rn|rin−1) do not depend

too much on rn, i.e. when the dependency of the model in

MC {rn} is weak and the Markovian transition probabili-

ties are close.

In paragraph 4.2, we discussed on the extra computa-

tional cost for Θ̂RB−2
n . It is thus of interest to take into ac-

count the computation time. So we compute the efficiency

for both estimators at each time step defined as [14]

Eff(n) =
1

MSE(n)E(C(n))
, (37)

where C(n) is the CPU time to compute both estimators.

The efficiency is displayed for 10 ≤ n ≤ 50 (for smaller

values of n, the efficiency of Θ̂RB−2
n is approximately

105) in Fig. 2(b) and indeed we see that Θ̂RB−2
n is of

practical interest since its efficiency is greater than that of

Θ̂RB
n .

Let us now compare Θ̂RB−2
n computed with N2 = 50

particles to the the classical RB estimator Θ̂RB
n computed
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Fig. 2. MSE (a) - Efficiency (b) - JMLS - Close Marko-

vian transition probabilities - N = 100 φ(xn) = xn

with N1 = 200 particles. MSE and efficiency are dis-

played in Fig. 3. With 50 particles only Θ̂RB−2
n still out-

performs Θ̂RB
n , even if the gap is weaker in terms of MSE.

However, this is corrected by the computational cost since

we used less particles to compute Θ̂RB−2
n . As we see in

Fig. 3(b), the efficiency is not responsive to the decrease

of the number of particles.

We next increase the dependency of the model in {rn}
by setting ωr = 8π/180 rad.s−1 when r = 2 and ωr =
−8π/180 rad.s−1 when r = 3, and we take more dis-

persed transition probabilities by setting p(rk|rk−1) =
0.6 if rk = rk−1 and p(rk|rk−1) = 0.2 otherwise. Results

are displayed in Fig. 4 and as expected the gap between

Θ̂RB−2
n and Θ̂RB

n is less important than in the previous

simulation. However, Θ̂RB−2
n remains more efficient than

Θ̂RB
n as we see in Fig. 4(b).

7. CONCLUSION

In this paper we derived a new RB estimator of a moment

of a function of interest in JMLS. We proved that this esti-

mator is actually an RB version of the already RB estima-

tor with optimal ID, and as such outperforms the original

estimator. We discussed on the extra computational cost

needed by our approach, and we extended our algorithm

for nonlinear JMSS. Our approach was finally validated

by simulations.
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Fig. 3. MSE( a) - Efficiency( b) - JMLS -Close Markovian

transition probabilities - N1 = 200, N2 = 50 - φ(xn) =
xn
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