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ABSTRACT

Particle filters (PF) and auxiliary particle filters (APF) are
widely used sequential Monte Carlo (SMC) techniques for
estimating the a posteriori filtering pdf in a Hidden Markov
Chain (HMC). These algorithms have been theoretically anal-
ysed from an asymptotical statistics perspective. In this pa-
per we provide anon asymptotical, finite number of samples
comparative analysis of two particular SMC algorithms : the
Sampling Importance Resampling (SIR) PF with optimal con-
ditional importance distribution (CID), and the fully adapted
APF (FA). Starting from a common set ofN particles, we
compute closed form expressions of the mean and variance of
the empirical Monte Carlo (MC) estimators of a moment of
the a posteriori filtering pdf. Both algorithms have the same
mean, but in the case where resampling is used, the variance
of the SIR algorithm always exceeds that of the FA algorithm.

Index Terms— Sequential Monte Carlo, Auxiliary Parti-
cle Filtering, non asymptotical analysis

1. INTRODUCTION

Let Xn andYn be respectively a hidden and an observed pro-
cess. Letp(xn|y0:n) (or in shortpn|n) denote the a pos-
teriori filtering pdf of xn given y0:n = {yi}n

i=0. We as-
sume that{Xn, Yn}n∈IN is an HMC :p(x0:n,y0:n) = p(x0)∏n

i=1 p(xi|xi−1)
∏n

i=0 p(yi|xi). Bayesian filtering consists
in computingp(xn|y0:n), or at least some approximation of
the measurep(dxn|y0:n) with densityp(xn|y0:n).

Recursive solutions are of particular interest, and indeed
pn|n can be computed frompn−1|n−1 by the well known re-
cursion (hereN stands for numerator) :

p(xn|y0:n) =
p(yn|xn)

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

p(yn|y0:n−1) =
∫
Ndxn

(1)
Many efforts have been devoted to the computation of eq. (1).
If exact computing is difficult or impossible, one needs to re-
sort to approximations. Among them PF and APF methods
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(see e.g. [1]-[4]) are SMC methods which propagate a dis-
crete approximation̂p(dxn|y0:n) of p(dxn|y0:n).

From a theoretical point of view, convergence results of
some SMC algorithms have been proven in a series of papers,
see e.g. [5]-[8] and references therein. These results have
been recently extended to the APF [9], and a tuning of the
first-stage weights of the APF from an asymptotical variance
analysis viewpoint has also been proposed in [10].

All these results are asymptotical, i.e. they hold if the
number of particles tends to infinity. In this paper, we pro-
pose anon asymptoticalcomparative analysis of one particu-
lar SMC algorithm : the SIR algorithm with so-called optimal
CID [11], versus the FA [3]. From a technical point of view,
such a finite samples analysis is indeed feasible because in
the case of this optimal SIR algorithm the incremental weight
does not depend on the particle which has just been sampled,
which enables closed form mean and variance computations.

From this finite samples analysis we derive the following
conclusion. Assume that we aim to compute some moment

Θn = Epn|n
(f(X)) (2)

(heref(.) is some function of interest) of the true pdfpn|n.
Starting from a common set of points (assumed to be at least
approximately sampled frompn−1|n−1), the MC empirical

estimateŝΘSIR
n andΘ̂FA

n of Θn computed respectively by the
SIR and FA algorithms have the same conditional mean, but
the conditional variance of̂ΘSIR

n always exceeds that of̂ΘFA
n .

This paper is organized as follows. The SIR and FA algo-
rithms are recalled in§2. Our analysis is performed in§3, and
we discuss the results in section§4.

2. TWO CLOSELY RELATED SMC FILTERS

Let us first recall the well known SIR algorithm with optimal
CID (see e.g. [11]). It consists of the succession of a sampling
stepS, a weighting stepW and an optional resampling step
R. The algorithm (which will simply be denoted as SIR in the
sequel) is as follows :

SIR algorithm (with optimal CID and Resampling at
each step).



Let p̂(dxn−1|y0:n−1) =
∑N

i=1
1
N

δ
x
SIR,i

n−1

(dxn−1).

S. For1≤ i≤N, samplexIS,i
n from p(xn|x

SIR,i
n−1 , yn);

W . For1≤ i≤N, computewi
n ∝p(yn|x

SIR,i
n−1 ),

∑N

i=1w
i
n =

1;

R. For1≤ i≤N, samplexSIR,i
n ∼

∑N

i=1 wi
nδ

x
IS,i
n

(dxn).

Thenp̂(dxn|y0:n) =
∑N

i=1
1
N

δ
x
SIR,i
n

(dxn) ≃ p(dxn| y0:n).
Let us now briefly recall the principle of APF [3] [4]

(see also [12] for recent developments). If exact computing
of (1) is not possible, a natural idea consists in replacing
p(dxn−1|y0:n−1) by a discrete approximation

∑N

i=1 wi
n−1

δxi
n−1

(dxn−1). Injecting into (1) we get a continuous approx-
imation ofp(xn|y0:n) :

πn(xn)=
N∑

i=1

wi
n−1p(yn|x

i
n−1)∑N

i=1w
i
n−1p(yn|xi

n−1)
p(xn|x

i
n−1, yn). (3)

In the view of deriving an SMC algorithm one should get sam-
ples from (3) in order to further proceed at timen + 1. If it is
not possible to sample fromπn one can use importance sam-
pling and we then get APF. Now, if direct sampling fromπn

is indeed feasible then we are in the so-calledfully-adapted
(FA) case, in the terminology of [3]. Remember that to get a
sample from a mixture

∑N

i=1 αipi(x) one can first draw an in-
dexj from

∑N

i=1 αiδi ((W,R) steps) and then samplex from
thepj(x) which has just been selected (S step). Applying to
(3) we get the

FA algorithm 1

Let p̂(dxn−1|y0:n−1) =
∑N

i=1
1
N

δ
x
FA,i

n−1

(dxn−1).

W . For1≤ i≤N, computewi
n ∝ p(yn|x

FA,i
n−1),

∑N

i=1w
i
n =

1;

R. For1≤ i≤N, samplẽxi
n−1∼

∑N

i=1 wi
nδ

x
FA,i

n−1

(dxn−1);

S. For1≤ i≤N, samplexFA,i
n from p(xn|x̃i

n−1, yn).

Thenp̂(dxn|y0:n) =
∑N

i=1
1
N

δ
x
FA,i
n

(dxn) ≃ p(dxn| y0:n).
As we see the FA algorithm is areorderingof the SIR

algorithm. In SIR the successive steps areS → W → R
while the recursive loop of FA is made of the successive steps
W → R → S.

3. A NON ASYMPTOTICAL ANALYSIS
OF THE SIR AND FA ALGORITHMS

3.1. Reformulating the SIR and FA algorithms

In view of §3.2 we first need to rewrite the algorithms in terms
of conditional pdf.

1In the view of§3 we setwi

n−1
=

1

N
for all i, i.e. we start from an

unweighted pdf.

• In FA, givenx
FA,{i}
n−1

def
= {xFA,i

n−1}
N
i=1 and givenyn, we

drawN independent pointsxFA,{i}
n from πn(.)defined

in (3).

• Let us now consider the SIR algorithm. Letp(yn|xi
n−1)=

p(yn|xi
n−1

)
∑

N
i=1

p(yn|xi
n−1

)
. In the (S) step, givenxSIR,{i}

n−1

def
=

{xSIR,i
n−1 }N

i=1 and givenyn, we independently drawN

particlesxIS,{i}
n

def
= {xIS,i

n }N
i=1. We next weight them,

and givenxSIR,{i}
n−1 andxIS,{i}

n , we drawN independent

samplesxSIR,{i}
n from this reweighted distribution (R

step). This algorithm can be rewritten as follows :

SIR algorithm. Let x
SIR,{i}
n−1

i.i.d.
∼ p(xn−1|y0:n−1).

Then

xIS,{i}
n

S
∼ p(xn|x

SIR,{i}
n−1 , yn)

=

N∏

i=1

p(xi
n|x

SIR,i
n−1 , yn); (4)

xSIR,{i}
n

(W,R)
∼ p(xn|x

IS,{i}
n ,x

SIR,{i}
n−1 , yn)

=
N∏

i=1

(
N∑

j=1

p(yn|x
SIR,j
n−1 )δ

x
IS,j
n

(xi
n)).(5)

3.2. Second order moments of the MC estimators

Let us now assume that our aim is to compute the moment
Θn defined in (2). So assume that at timen − 1 we have
at our disposal a set ofN pointsx{i}

n−1 (approximately) sam-
pled frompn−1|n−1. Starting from this common set of points,
the FA (resp. SIR) algorithm produces a new set of samples
X

FA,{i}
n (resp. X

IS,{i}
n andX

SIR,{i}
n ) which in turn can be

used to compute the following estimators ofΘn :

Θ̂FA
n (XFA,{i}

n ) =
1

N

N∑

i=1

f(XFA,i
n ), (6)

Θ̂IS
n (XIS,{i}

n ) =

N∑

i=1

p(yn|x
i
n−1)f(X IS,i

n ), (7)

Θ̂SIR
n (XSIR,{i}

n ) =
1

N

N∑

i=1

f(XSIR,i
n ); (8)

So in the case of the SIR algorithm̂ΘIS
n (resp.Θ̂SIR

n ) is the es-
timator built before (resp. after) the resampling step. Ouraim
in this section is to compare,for a finite number of samples
N , the mean and variances of estimators (6), (7) and (8).

Theorem 1 Let Θ̂FA
n , Θ̂IS

n andΘ̂SIR
n be defined as in(6)-(8),

andπn(.) be given by(3). Then givenx{i}
n−1 andyn,

E(Θ̂FA
n ) = Eπn

(f(X)), (9)

E(Θ̂IS
n ) = Eπn

(f(X)), (10)

E(Θ̂SIR
n ) = Eπn

(f(X)). (11)



Proof 1 Givenx
{i}
n−1 andyn, XFA,i

n are sampled fromπn(.)

by construction, whence(9). Next, givenx{i}
n−1 andyn,

E(Θ̂IS
n )

(4)
=

N∑

i=1

p(yn|x
i
n−1)

∫

IR

f(xi
n)p(xi

n|x
i
n−1, yn)dxi

n

=

∫

IR

f(x)

N∑

i=1

p(yn|x
i
n−1)p(x|xi

n−1, yn)

︸ ︷︷ ︸
πn(x)

dx

= Eπn
(f(X)), whence(10). Now from(5), for all i,

E(f(XSIR,i
n )|xIS,{i}

n ) = Θ̂IS
n (xIS,{i}

n ). (12)

So, givenx{i}
n−1 andyn,

E(f(XSIR,i
n )) = E(E(f(XSIR,i

n )|XIS,{i}
n ))

(12)
= E(Θ̂IS

n ) (13)
(10)
= Eπn

(f(X)), (14)

whence(11).

Theorem 2 Let Θ̂FA
n , Θ̂IS

n andΘ̂SIR
n be defined as in(6)-(8),

andπn(.) be given by(3). Then givenx{i}
n−1 andyn,

var(Θ̂FA
n ) =

1

N
varπn

(f(X)), (15)

var(Θ̂IS
n ) =

N∑

i=1

(p(yn|x
i
n−1))

2varp(.|xi
n−1

,yn)(f(X)), (16)

var(Θ̂SIR
n ) =

1

N
varπn

(f(X)) (17)

+
N−1

N

N∑

i=1

(p(yn|x
i
n−1))

2varp(.|xi
n−1

,yn)(f(X)).

Proof 2 Givenx
{i}
n−1 andyn, XFA,{i}

n are i.i.d. fromπn(.) by

construction, whence(15); and similarly from(4)XIS,{i}
n are

sampled independently, and each pointX IS,i
n is sampled from

p(.|x
{i}
n−1, yn), whence(16). Givenx

{i}
n−1 andyn, let us now

compute

var(Θ̂SIR
n ) =

1

N2

N∑

i=1

var(f(XSIR,i
n ))

+
1

N2

N∑

k,l=1
k 6=l

Cov(f(XSIR,k
n ),f(XSIR,l

n )).(18)

Let us begin with the first term. Let1 ≤ i ≤ N . From
(5), E(f2(XSIR,i

n )|x
IS,{i}
n ) =

∑N

i=1 p(yn|xi
n−1)f

2(xIS,i
n ); so

givenx
{i}
n−1 andyn,

E(f2(XSIR,i
n )) = E(E(f2(XSIR,i

n )|XIS,{i}
n ))

(4)
=

∫

IRN

(

N∑

i=1

p(yn|x
i
n−1)f

2(xi
n))

N∏

j=1

p(xj
n|x

j
n−1, yn)dx{i}

n

= Eπn
(f2(X)), and using(14) we see that the first term of

(18) is equal to 1
N

varπn
(f(X)). Let us now compute the

second term. Using(5) and (12), we see that for allk, l,
1 ≤ k, l,≤ N with k 6= l,

E(f(XSIR,k
n )f(XSIR,l

n )|xIS,{i}
n ) = (Θ̂IS

n (xIS,{i}
n ))2.

So givenx{i}
n−1 andyn, E(f(XSIR,k

n )f(XSIR,l
n )) =

E(E(f(XSIR,k
n )f(XSIR,l

n )|XIS,{i}
n ))

= E((Θ̂IS
n )2). Using (13), we conclude that givenx{i}

n−1 and
yn,

Cov(f(XSIR,k
n ), f(XSIR,l

n )) = var(Θ̂IS
n ). (19)

Injecting into(18)we finally get(17).

4. DISCUSSION

From Theorem 1, givenx{i}
n−1 andyn, the three estimators

Θ̂FA
n , Θ̂IS

n and Θ̂SIR
n have the same mean. So we compare

them from their conditional variances only.

4.1. SIR vs. FA algorithms.

From (15) and (17) we see that for allN ,

var(Θ̂SIR
n |x

{i}
n−1, yn) > var(Θ̂FA

n |x
{i}
n−1, yn).

Starting from a common set of points, it is thus preferable
to perform the(W,R,S)operations in that order, rather than
sampling first, then weighting and resampling.

4.2. SIR vs. IS algorithms.

Even though (17) decomposesvar(Θ̂SIR
n |x

{i}
n−1, yn) as the

sum of two positive terms, it should not be confused with
the Rao-Blackwell equality which in the context of this pa-
per reads

var(Θ̂SIR
n |x

{i}
n−1, yn) = var(Θ̂IS

n |x
{i}
n−1, yn) (20)

+ E((Θ̂SIR
n − Θ̂IS

n )2|x
{i}
n−1, yn).

Equation (20) enables to conclude, as is well known [8, p.
213], that

var(Θ̂SIR
n |x

{i}
n−1, yn) > var(Θ̂IS

n |x
{i}
n−1, yn).

So it is preferable to computêΘn from the weighted set of
points {(x

IS,{i}
n , p(yn|xi

n−1)}
N
i=1 rather than from the un-

weighted one{(xSIR,{i}
n , 1/N)}N

i=1; the second term in (20)
is the price we pay when resampling the particles.



Now, notice that in the context of this paper (20) can be
computed :var(Θ̂IS

n |x
{i}
n−1, yn) is given by (16), and

E((Θ̂SIR
n − Θ̂IS

n )2|x
{i}
n−1, yn) =

1

N
varπn

(f(X))

−
1

N

N∑

i=1

(p(yn|x
i
n−1))

2varp(.|xi
n−1

,yn)(f(X)).

4.3. IS vs. FA algorithms.

As we have just seen, givenx{i}
n−1 andyn comparingvar(Θ̂SIR

n )

to var(Θ̂FA
n ) andvar(Θ̂SIR

n ) to var(Θ̂IS
n ) is straightforward.

Interestingly enough, even if we have a closed form espres-
sion of

∆n = var(Θ̂IS
n ) − var(Θ̂FA

n )

(which describes the behavior of the SIR algorithmbefore re-
samplingas compared to the FA algorithm),∆n can be com-
puted explicitely for some functionsf and HMC models only,
and thus its sign is hard to predict in general. Finally as we
shall see from Fig. 1,∆n can be positive or negative, which
somehow confirms the conclusions (drawn from an asymptot-
ical analysis viewpoint) of [9].

4.4. Simulations

Let us finally perform a simulation. Let us consider the linear
and Gaussian model :

{
xn+1 = 0.2xn + un

yn = 5xn + vn
, (21)

in whichun andvn are i.i.d., mutually independent and inde-
pendent ofx0, with x0 ∼ N (0, 1). Let alsoun ∼ N (0, Q),
Q = 10 andvn ∼ N (0, R), R = 1. We run the FA algorithm
with N = 1000 particles; at each time step, we use the com-
mon set{xi

n−1}
N
i=1 produced by this algorithm and compute

the three estimators. In model (21) the true meanΘn can be
computed by the Kalman Filter, so for each algorithm we plot
the empirical MSE (averaged overP = 1000 realizations). In
Fig. 1 these empirical MSE are normalized w.r.t. that of the
FA algorithm, which is set to 1.
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