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ABSTRACT (see e.g. [1]-[4]) are SMC methods which propagate a dis-
. ) . . ) crete approximatiop(dz,, |yo.n) of p(dz,|yo.n)-
Particle filters (PF) and auxiliary particle filters (APF)ear From a theoretical point of view, convergence results of

Wid.ely PSEd sequential' M.OT“E _Carlo (SMC) f[echniques 1Eorsome SMC algorithms have been proven in a series of papers,
estimating the a posteriori filtering pdf in a Hidden MarkovSee e.g. [5]-[8] and references therein. These results have

Chain (HMC). These algorithms_ hgve been the_oreticallyfanaloeen recently extended to the APF [9], and a tuning of the
ysed from an asymptotical Ste}t'St'C.s perspecnve. In this p first-stage weights of the APF from an asymptotical variance
per we prpwde aon asymptotlcql, finite number of Samplesanalysis viewpoint has also been proposed in [10].

compgratwe analysis of two parUcuIar SMC qlgonthms: the All these results are asymptotical, i.e. they hold if the
Sampling Importance Resampling (SIR) PF with optimal CONMumber of particles tends to infinity. In this paper, we pro-

ditional importance distribution (CID), and the fully adeg pose anon asymptoticatomparative analysis of one particu-

APF (FA). Starting from a common set of particles, we SMC algorithm : the SIR algorithm with so-called optimal
compute_ c_:losed form expressions of_the mean and variance D [11], versus the FA [3]. From a technical point of view,
the empirical Monte Carlo (MC) estimators of a moment Ofsuch a finite samples analysis is indeed feasible because in

the a posteriori filtering pdf. Both algorithms have the Sa8M&he case of this optimal SIR algorithm the incremental weigh

n}eﬁn’sblgt 'T the_:r(]:asel where resa(rjnpl;]ng "C]i f’egAthle vqr;wanages not depend on the particle which has just been sampled,
ofthe algorithm always exceeds that of the FA algorithmy, i-y enaples closed form mean and variance computations.

Index Terms— Sequential Monte Carlo, Auxiliary Parti- From this finite samples analysis we derive the following
cle Filtering, non asymptotical analysis conclusion. Assume that we aim to compute some moment
On =Ep,, (f(X)) )

1. INTRODUCTION
(heref(.) is some function of interest) of the true pglf),,.

Let X,, andY;, be respectively a hidden and an observed prostarting from a common set of points (assumed to be at least
cess. Letp(zn|yo.,) (or in shortp,,) denote the a pos- approximately sampled from,,_,,,_1), the MC empirical
teriori filtering pdf of z,, given yo., = {yi}io. We @S- ggtimate®S™® andOFA of ©,, computed respectively by the
sume that Xy, Yo }new is an HMC :p(Xo:n, Yon) = P(20) IR and FA algorithms have the same conditional mean, but
Lz p(#ilzio1) [Lico p(yile:). Bayesian filtering consists he conditional variance @5™® always exceeds that 652
in computingp(, |yo:n ), Or at least some approximation of ;g paper is organized as follows. The SIR and FA algo-

the measurg(dzn|yo:,) with densityp(zy |yo.n)- _ rithms are recalled i2. Our analysis is performed §8, and
Recursive solutions are of particular interest, and indeege discuss the results in sectiph

Pn|n Can be computed from,,_;,,_; by the well known re-
cursion (hereV stands for numerator) :
2. TWO CLOSELY RELATED SMC FILTERS
_ p(yn|xn) fp(xn|xn—l)p(xn—l|y0:n—1)d$n—1 . . . .
p(znlyon) = 2nlyom1) = [ Nda Let us first recall the well known SIR algorithm with optimal
mmn " 1) CID(see e.g. [11]). It consists of the succession of a sargpli

Many efforts have been devoted to the computation of eq. (1f!€PS, a weighting step// and an optional resampling step
If exact computing is difficult or impossible, one needs to re - The algorithm (which will simply be denoted as SIR in the

sort to approximations. Among them PF and APF method§€duel) is as follows :

We would like to thank the French MOD DGA/MRIS for financiaisu ~ SIR algorithm (with optimal CID and Resampling at
port of the Ph.D. of Y.Petetin. each step).




Letp(den—1|yoin—1) = val N(Srm“(da:n_1)- e In FA, g|veanA Ai} def xFA VN and giveny,,, we
draw N independent pomtxFA { '} from 7 (.)defined

S. For1<i< N, sampler!>? from p(w,, 255", yn); in (3).
W. Forl<i< N, computew’, o p(yn|a>"5"), SN wi, = e Letus now consider the SIR algorithm. &Y., |«!,_,)=
1 | RN % In the (9 step, givenx; ;1 </
R. Forl<i<N,samplery ™'~ 321 | w)d,is.(den). {#2"5}HL, and  gvenyn, we independently drauy
Thenp(denyo) = S5, 46, (den) = plden o). s ) &7 (5], wenest weve,
Let us now briefly recall the principle of APF [3] [4] and givens> ™ 7, andeS U , we drawN independent

(see also [12] for recent developments). If exact computing
of (1) is not possible, a natural idea conS|sts in replacing
p(dx,—1|yo.n—1) by a discrete approxmaﬂoﬁjZ L W

samplemnIR{ % from this reweighted distributionR
step). This algorithm can be rewritten as follows :

n—1

3,1 (dz,—1). Injecting into (1) we get a continuous approx- SIR algorithm.  Let x> A3 %2 pa 1 lyom—1).
imation of p(z, [yo.n) Then

N i (Yn| i ) X£LS7{7:} R P(Xn|X,SZI,R1’{1}7yn)

Wy 1P\Yn|Tp—1 ]
T Tp) = N ——p(Tnlz;_1,9n).  (3) N ,
Zzl‘:ﬁﬁ—lp(ynmﬁ—ﬁ = Hp(xMx,slIRll,yn) 4)
=1

In the view of deriving an SMC algorithm one should get sam-
ples from (3) in order to further proceed at timer- 1. Ifitis

not possible to sample from, one can use importance sam- N N
pling and we then get APF. Now, if direct sampling frem = H(Z (yn|x5mﬂ) §_1s.5(2%)).(5)
is indeed feasible then we are in the so-callet-adapted =1 =1

(FA) case, in the terminology of [3]. Remember that to get a

sample from a mixtur§Y | a,;p;(z) one canfirstdrawanin- 3.2. Second order moments of the MC estimators

dexyj from Z?’:l a;0; ((W,R) steps) and then samplefrom
thep; (z) which has just been selectefi §tep). Applying to

xSTRAE (x| (SIAT )y

Let us now assume that our aim is to compute the moment
O,, defined in (2). So assume that at time— 1 we have

(3) we get the
_ at our disposal a set df pomtSX , (approximately) sam-
FA algorithm * pled fromp,,_1,—,. Starting from thls common set of points,
~ the FA (resp. SIR) algorithm produces a new set of samples
Letp(dexn_1|yomn_1) = iv (5 A dx,— , ; ;
( tyom—1) =21 v " i - XEAD (resp. X and XS which in turn can be
W. Forl<i< N, computew’ Ocp(yanFA 9, Zﬁlw; — used to compute the following estimatorsay :
1; N
1 ~ . ]_ .
, GFA XFA,{Z} - XFA,Z , 6
R. For1<i<N, samplet?,_ NZ L who A, L(da:n 1); n (X ) sz( ) ©)

S. For1<i< N, samplerf4- from p(xn|:E;_1, Yn)- OIS (X151

Thenp(dz,|yom) = 1L, 50,08 (d2n) = p(den| Youn).
As we see the FA algorithm is eeorderingof the SIR

y’ﬂ|xn 1 Xrlz&i)’ (7)

HMZ

algorithm. In SIR the successive steps are- W — R AR = N Z PG, (8)
while the recursive loop of FA is made of the successive steps =1
W —R—&. Soin the case of the SIR algorith@}° (resp.05'R) is the es-
timator built before (resp. after) the resampling step. &nr
3. A NON ASYMPTOTICAL ANALYSIS in this section is to compardor a finite number of samples
OF THE SIR AND FA ALGORITHMS N, the mean and variances of estimators (6), (7) and (8).

Theorem 1 LetOFA, 5 and @SR be defined as if6)-(8),

3.1. Reformulating the SIR and FA algorithms and, () be given by3). Then g|ven<{ it andy,,

In view of §3.2 we first need to rewrite the algorithms in terms @FA 9
of conditional pdf. E(©,") = Ex, (f(X)), )

1n the view of§3 we setw? = L forall 4, i.e. we start from an (@IS) M( (X)) (10)
unweighted pdf. n N ’ (@SIR) ( (X)) (11)




Proof 1 Givenx”, andy,, XFA are sampled fromr,,(.)
by construction, whend®). Next, g|verx{} andy,,,

N

~ A i
£(©'S) @ > Pl ) / ) p(a |y, yo)dt,

N
/ Z yn|xn 1 $|$n 17yn)d

Ton ()
=E., (f(X)), whencg10). Now from(5), for all 4,
E(f(GM ) = 05> ). (12)
So, giver1><,{7,i_]’1 andy,,
B(FOGT) = BEGEHXH)
@ pEw) (13)
O B, (F(X)), (14)
whencg11). ]

Theorem 2 LetOFA, O3 and©SIR be defined as if6)-(8),
andm,(.) be given by(3). Then g|ven<{ i 1 andyy,,

Var(@EA) = —var,, (f(X)), (15)

2,_.

Mz

var(9,5) = Y (P(ynla;, 1)) Var, i 0 (F(X)), (16)

1
var(O3™) = —var, (f(X)) 17)

N

IS Bl )P o FXD).

i=1

= ZIH‘H‘

+

A

Proof 2 Givenx;{ff}1 andy,,, EA’{Z} are i.i.d. fromm,, (.) by
construction, whencgl5); and similarly from(4) XLS’“} are
sampled independently, and each poﬁ’,{f i is sampled from

(|xn 1, Yn), Whence(16). leenx andyn, let us now
compute

N
(5% = 3 var(F (X))

1=

N
> Cov(f(X3F) F(XFT).(18)

k=1
k£l

1
+m

Let us begin with thelfirst term. Ldat < ¢ < N. From
(8) E(fA(XEM D) ) = S Blyalal,_y) f2(21); s0
glvenx{ }1 andy,,

B2 (X)) = B(B((ET)XES0))

N

N

4

@[ ke ), ) I ptebie o iet?
i=1

= E,, (f%(X)), and using(14) we see that the first term of
(18) is equal to-var,, (f(X)). Let us now compute the
second term. Using5) and (12), we see that for alk, [,
1<k, <Nwithk #1,

E(f(XSR) f(X SR x5 00) = (OI5 (115412,
so givenx!} | andy,, E(f(XSTRF) f(XSR1)) =
E(E(f(X5IF) (XS | XIS (i)

= E((615)2). Using (13), we conclude that giver!”, and

Yn
Cov(f(X;TH), f(XRI) = var(©7).  (19)

Injecting into(18) we finally get(17).

4. DISCUSSION

From Theorem 1, glvelx{ 4. and Yn, the three estimators
OFA, ©5 and ©5™® have the same mean. So we compare

them from their conditional variances only.
4.1. SIR vs. FA algorithms.
From (15) and (17) we see that for all,

var(@SIR|Xn 1:Yn) > var(@FA|xn 1> Yn)-

Starting from a common set of points, it is thus preferable
to perform the(W,R,S)operations in that order, rather than
sampling first, then weighting and resampling.

4.2. SIR vs. IS algorithms.

Even though (17) decomposem(@sm|xn 1,Yn) as the
sum of two positive terms, it should not be confused with
the Rao-Blackwell equality which in the context of this pa-
per reads

Var(@SIR|xn 1,Yn) = V&I‘(@IS|Xn 1:Yn) (20)
+ E((GEIR_@IS) |Xn 17yﬂ)

Equation (20) enables to conclude, as is well known [8, p.
213], that

Var(@SIR|xn 1:Yn) > V&I‘(@IS|Xn 15 Yn)-

So it is preferable to comput®,, from the weighted set of
points {(z" " B(yn|zi,_,)}Y, rather than from the un-

weighted on€{(z SIR {1} 1/N)}Y |; the second term in (20)
is the price we pay when resampling the particles.



Now, notice that in the context of this paper (20) ca
computed var(6Sx\", | 4,.) is given by (16), and

L var,, (f(X))

B(OF ~ 02 x!yn) =

N
1 - i
7 D o)Ay s (F(X)).
=1
4.3. 1S vs. FA algorithms.

As we have just seen, givalff_}1 andy,, comparingvar(©5}
to var(OF2) andvar(©5R) to var(©19) is straightforward.

Interestingly enough, even if we have a closed form espres-

sion of R R
A, = var(0®) — var(QF*)

(which describes the behavior of the SIR algorithafore re-
samplingas compared to the FA algorithm),, can be com-

puted explicitely for some functionsand HMC models only,
and thus its sign is hard to predict in general. Finally as we

Relative MSE

shall see from Fig. 1\,, can be positive or negative, which

somehow confirms the conclusions (drawn from an asymptot-

[5]

ical analysis viewpoint) of [9].

4.4. Simulations

Let us finally perform a simulation. Let us consider the linea

and Gaussian model :

{

0.22, + un
5T, + v ’

a:nJrl

" (21)

in whichw,, andv,, are i.i.d., mutually independent and inde-

pendent ofry, with zg ~ A(0,1). Let alsou,, ~ N(0,Q),

Q = 10 andv,, ~ N'(0, R), R = 1. We run the FA algorithm

with N = 1000 particles; at each time step, we use the com-
mon set{z! _,}~, produced by this algorithm and compute

the three estimators. In model (21) the true mé&gncan be

computed by the Kalman Filter, so for each algorithm we plot

the empirical MSE (averaged ovBr= 1000 realizations). In

Fig. 1 these empirical MSE are normalized w.r.t. that of the

FA algorithm, which is set to 1.
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