Appendix A

Preconditioned Equations: The O-LSTS Model

In this appendix, we define the semantics of preconditions in OO ACT ONE by mapping them to the O-LSTS model. Preconditions are defined for STRUCTURE equations, CLASS equations and a syntactic sugar defines total equations.

Preconditioned Structure Equations

Preconditioned structure equations are defined for transformer, accessor and dual operation as follows.

I) Transformer preconditions, written as:
\[
\text{pre}_1(P_1, \ldots, P_n) \Rightarrow \text{sc}(P_1, \ldots, P_{n-1}), tr(P_j, \ldots, P_n) = \text{newstate}_1 \text{ OTHERWISE } \\
\text{pre}_{m-1}(P_1, \ldots, P_n) \Rightarrow \text{newstate}_{m-1} \text{ OTHERWISE } \\
\text{newstate}_m, \text{ for some } m, n, j \in \{1, 2, \ldots\}, m \geq 2
\]

correspond to the parameterised set of unvalued state-to-state transitions:

- \(< tr(p_j, \ldots, p_n), \text{newstate}_1 > \in \text{From}_{\text{sc}(p_1, \ldots, p_{j-1})}, \forall p_1, \ldots, p_n \) such that \(\text{pre}_1(p_1, \ldots, p_n) \)
- \(\forall k \in \{2, \ldots, m - 2\}: \)
 - \(< tr(p_j, \ldots, p_n), \text{newstate}_k > \in \text{From}_{\text{sc}(p_1, \ldots, p_{j-1})}, \forall p_1, \ldots, p_n \) such that \(\text{not}(\text{pre}_1(p_1, \ldots, p_n)) \) and \(\ldots \) and \(\text{not}(\text{pre}_{k-1}(p_1, \ldots, p_n)) \) and \(\text{pre}_k(p_1, \ldots, p_n) \)

• II) Accessor preconditions, written as:
\[
\text{pre}_1(P_1, \ldots, P_n) \Rightarrow \text{sc}(P_1, \ldots, P_{n-1}), \text{acc}(P_j, \ldots, P_n) = \text{result}_1 \text{ OTHERWISE } \\
\text{pre}_{m-1}(P_1, \ldots, P_n) \Rightarrow \text{result}_{m-1} \text{ OTHERWISE } \\
\text{result}_m, \text{ for some } m, n, j \in \{1, 2, \ldots\}, m \geq 2
\]

correspond to the parameterised set of valued state-to-state transitions:
These preconditioned equations correspond to the parameterised set of valued state-to-state transitions:

- \(<tr(p_j,\ldots,p_n),result_1,sc(p_1,\ldots,p_{j-1})>\in ValFrom_{sc(p_1,\ldots,p_{j-1})},\forall p_1,\ldots,p_n\) such that \(pre_1(p_1,\ldots,p_n)\)
- \(\forall k\in\{2,\ldots,m-2\}:\)<tr\>(p_j,\ldots,p_n),result_k,sc(p_1,\ldots,p_{j-1})>\in ValFrom_{sc(p_1,\ldots,p_{j-1})},\forall p_1,\ldots,p_n\) such that not\((pre_1(p_1,\ldots,p_n))\) and \(\ldots\) and not\((pre_{k-1}(p_1,\ldots,p_n))\) \((pre_k(p_1,\ldots,p_n))\)
- \(<tr(p_j,\ldots,p_n),result_m,sc(p_1,\ldots,p_{j-1})>\in ValFrom_{sc(p_1,\ldots,p_{j-1})},\forall p_1,\ldots,p_n\) such that not\((pre_i(p_1,\ldots,p_n))\), \(\forall i\in\{1,\ldots,m-1\}\)

III) Dual preconditions, written as:

\(\text{pre}_i(P_1,\ldots,P_n) \Rightarrow (P_1,\ldots,P_{m-1})\). \text{dual}(P_1,\ldots,P_n) = \text{newstate}_1\) AND result_1 \ OTHERWISE... \(\text{pre}_{m-1}(P_1,\ldots,P_n) \Rightarrow \text{newstate}_{m-1}\) AND result_{m-1} \ OTHERWISE \newstate_m\ AND result_m, for some \(m, n, j \in \{1, 2, \ldots\}, m \geq 2\)

correspond to the parameterised set of valued state-to-state transitions:

- \(<tr(p_j,\ldots,p_n),result_1,newstate_1>\in ValFrom_{sc(p_1,\ldots,p_{j-1})},\forall p_1,\ldots,p_n\) such that \(pre_1(p_1,\ldots,p_n)\)
- \(\forall k\in\{2,\ldots,m-2\}\):
- \(<tr(p_j,\ldots,p_n),result_k,newstate_k>\in ValFrom_{sc(p_1,\ldots,p_{j-1})},\forall p_1,\ldots,p_n\) such that not\((pre_1(p_1,\ldots,p_n))\) and \(\ldots\) and not\((pre_{k-1}(p_1,\ldots,p_n))\) \((pre_k(p_1,\ldots,p_n))\)
- \(<tr(p_j,\ldots,p_n),result_m,newstate_k>\in ValFrom_{sc(p_1,\ldots,p_{j-1})},\forall p_1,\ldots,p_n\) such that not\((pre_i(p_1,\ldots,p_n))\), \(\forall i\in\{1,\ldots,m-1\}\)

Preconditioned Class Equations

Preconditioned class equations are similar to preconditioned structure equations. The only difference is that a set of structure variable parameters are replaced by one parameter which represents all class values. For example, consider transformer preconditions, written generally as:

\(\text{pre}_i(P_1,\ldots,P_n) \Rightarrow \text{Class}1.tr(P_1,\ldots,P_n) = \text{newstate}_1\) \ OTHERWISE... \ OTHERWISE \newstate_m\)

These preconditional equations correspond to the parameterised set of unvalued state-to-state transitions:

- \(\forall\text{Class}1\in US(\text{Class}), k\in\{1,\ldots,m-2\}:\)<tr\>(p_j,\ldots,p_n),newstate_k>\in From_{Class1},\forall p_1,\ldots,p_n\) such that not\((pre_1(p_1,\ldots,p_n))\) and \(\ldots\) and not\((pre_{k-1}(p_1,\ldots,p_n))\) \((pre_k(p_1,\ldots,p_n))\)
- \(\forall\text{Class}1\in US(\text{Class}), <tr(p_j,\ldots,p_n),newstate_m>\in From_{Class1},\forall p_1,\ldots,p_n\) such that not\((pre_i(p_1,\ldots,p_n))\), \(\forall i\in\{1,\ldots,m-1\}\)

Accessor and dual preconditions are defined similarly.
Total Equations

The behaviour of all the elements of a class in response to an external attribute request can be defined to be equivalent using a preconditioned class equation in which the first precondition is true. For example, \[\text{true} \Rightarrow \text{Class1.tr} = \text{sle} \ \text{OTHERWISE} \ldots \] specifies that \(\forall c \in U\{\text{Class}\}, <\text{tr}, \text{sle}> \in \text{From}_c \). OO ACT ONE provides a more concise way of specifying this behaviour: \(\text{Class1.tr} = \text{sle} \). This is called a total equation.
Appendix B

Static Analysis of OO ACT ONE

B.1 Preprocessing: Removing Syntactic Sugar

The first step in the static analysis of an OO ACT ONE specification, after the syntax has been checked, is the removal of syntactic sugar. The following syntactic mechanisms have to be removed:

- Modules
- Renaming
- Class Invariants

The diagram in figure B.1 shows the way in which this is achieved.

Removing Modules

Removing modules is done in three steps:

- I) Check that all modules are uniquely identified. Return an error otherwise.
- II) For every instance of ‘MODULE Module-name’ in a class definition, ‘MODULE Module-name’ is replaced by the list of classes grouped together by the module definition. If Module-name is not defined in the specification then an error is reported.
After changing all module references to references to lists of classes, the module definitions are removed.

Removing Inclusions and Renamings

After removing generic class definitions and module definitions, the OO ACT ONE specification is made up of a list of class definitions. These class definitions may be mutually dependent, since one class can be defined to: include the operations and equations of another, or to rename the operations and equations of another. It is not possible, in general, to remove these interdependencies by one single pass through the specification. In a specification with \(n \) classes it may take up to \(n \) passes through the specification to remove all the interdependencies. Consequently, we define this preprocessing stage as a loop of passes through the specification. The first pass marks all classes which rename or include part of another class. When one class is marked to depend on another class which isn’t marked then this class can be redefined (by a simple syntactic relabelling of the appropriate operation labels) and then unmarked. At the end of every pass through the specification the number of classes marked is checked to see if it has decreased. If not, an error is reported. Once all classes are unmarked, all inclusion and renaming mechanisms have been removed.

Removing Class Invariants

Translating class invariants into sets of structure invariants is done in two stages.

- First check that all class invariants are true for all literal values in the classes in which the invariants are defined. This check requires a means of evaluating boolean state label expressions. The OO ACT ONE execution model (which formalises the meaning of such an evaluation) is defined by a mapping to ACT ONE. Consequently, this pre-processing stage is defined to generate a list of boolean expressions which must evaluate to true (in the ACT ONE framework of evaluation). When such a list is non-empty, a warning is given to say that class invariants for literal values will be checked at a later stage in the analysis (after the preprocessing is complete). Later, if an executable model has been successfully generated in ACT ONE, the literal requirements (expressed as boolean state label expressions) are evaluated and an error is returned if any of the expressions are false.
- Secondly, convert class invariants into sets of structure invariants. For every class definition containing a class invariant, represented as:

\[
\text{CLASS } c\text{name USING ...}
\]

\[
\text{STRUCTURES: } st1, \ldots, stn \ldots
\]

\[
\text{INVARIANTS: } c\text{name1...sle...EQNS ... ENDCLASS},
\]

the class is transformed by the preprocessor into:

\[
\text{CLASS } ... \ldots \text{INVARIANTS: } st1 \text{ REQUIRES } st1..sle\ldots, \text{ stn REQUIRES } stn..sle
\]

\[
\text{EQNS ... ENDCLASS}
\]
B.2 Static Semantic Checks of Unsugared OO ACT ONE

Static semantic checks of O-LSTS behaviour defined in an OO ACT ONE specification fall into two categories:

- Those which are concerned with ‘type checking’ equation definitions, and verifying the visibility of classes used in operation definitions. These checks are performed by a static analysis of the ACT ONE produced from the OO ACT ONE specification.
- Other checks are peculiar to the O-LSTS model and cannot be checked across the mapping to ACT ONE.

The remainder of this appendix examines each of these other requirements in turn and gives an overview of the mechanisms which make these checks.

- **Contravariance, Covariance and Subclassing**
 When a subclass is defined to exhibit contravariance and covariance properties with respect to its superclass (or vice versa), additional classification requirements have to be checked:

 - Structure parameters in the subclass must be explicitly defined (in the environment of the new class definition) as subclasses of the corresponding structure parameters in the superclass.
 - Result parameters in the subclass must be explicitly defined (in the environment of the new class definition) as subclasses of the corresponding result parameters in the superclass.
 - Attribute parameters in the subclass must be explicitly defined (in the environment of the new class definition) as superclasses of the corresponding attribute parameters in the superclass.

 To make these checks, it is first necessary to create the explicit class hierarchy for each class. Then, the existence of the required subclassing relationships between subclass and superclass parameters is easily verified. An error is returned if the required relationships are not fulfilled.

 Note that it may not be possible to generate a class hierarchy if the OO ACT ONE is not well defined. For example, one class may be defined in terms of another class which is defined in terms of the original class. This type of circular dependency is checked for when removing the renaming and inclusion syntactic sugar. It is also tested for during the generation of the class hierarchy (in a similar way). An error is returned if the list of classes being analysed do not have a well defined hierarchical structure with respect to the explicit class relationships specified between them.

- **Checking the use of hidden operations**
 As ACT ONE does not facilitate the definition of local operations, it is necessary to check an OO ACT ONE specification to ensure that hidden operations are used only in the class in which they are defined. For every class in an OO ACT ONE specification, the state label expressions
in the equations are analysed to check that operations on classes, other than the one being
defined, are not defined as hidden. This analysis is achieved by first producing a list of the
hidden operations in each class. An error is returned if a hidden operation of one class is used
in the definition of another class.

- **Additional Syntactic Constraints**
Section 3.2.1.1 defines some additional syntactic constraints for O-LSTS specifications. The
constraints specify the way in which string identifiers for state constructors and transition names
can be defined. Correspondingly, in OO ACT ONE there are syntactic constraints placed on
the naming of operations:

All operations must be uniquely categorised (as literal, structure, accessor, transformer or dual) and appear once only in the operation definition.

Another syntactic constraint placed on the O-LSTS model is that the result of a service request
and the new state of an object after servicing a service request must be defined using state
label expressions. Correspondingly, in OO ACT ONE, we require that:

The right hand side of equation definitions must be expressed as state label expres-
sions.

This check is carried out as part of the completeness analysis (see below). An error is returned
if either of these conditions are not met.

- **The Definition of the Behaviour of a Class is not Distributed Between Other Classes**
We require that the equations in one class do not specify behaviour for members of another class.
Consequently, the left hand side of all equations must be state label expressions which have
the server equal to a member of the class in which the equation is found. This requirement is
easily checked by enforcing that all equations have one of the following forms (where literal
and structure are literals or structures respectively of the class in which the equations are
defined):

\[
\text{literal}.\text{att} = \ldots \text{or literal}.\text{att} = \ldots \text{or structure}(\ldots)\text{.att} = \ldots \text{or structure}(\ldots = \ldots)
\]

This requirement is verified during the completeness analysis (see below).

- **Completeness Analysis**
The O-LSTS model requires that all states in a class have one, and only one, state transition
defined from that state for every attribute of the class. This is called the completeness
condition. It is more formally defined in section 3.2. Such a requirement cannot be guaranteed
through static analysis of the ACT ONE code which is generated from the OO ACT ONE
specification.

The completeness analysis of OO ACT ONE specifications depends on the definition of two
new concepts: the Completeness Set of a class and the parameterisation of an operation. These are defined below.
Definition. Parameterisation:
The parameterisation of an operation, op say, written $Par(op)$:

$$Par(op) = op \iff op \text{ is unparameterised.}$$

Given a parameterised operation, written $op < C_1, \ldots, C_n>$, $Par(op) = \langle op(C_1 x_1, \ldots, C_n x_n)\rangle$, where

$$x_i \in \{1,2,\ldots\} \text{ for } i \in \{1,\ldots,n\}, \text{ and } x_i = 1 + x_j \text{ if } j < i \text{ and } C_j = C_i \text{ and } j \notin \{j+1,\ldots,i-1\} \text{ such that } C_k = C_i. \text{ Otherwise, } x_i = 1.$$

Definition. Completeness Set:
The completeness set of a class C, written $CS(C)$, is defined as:

$$\{lit.Par(trdl) \mid trdl \text{ is a transformer or dual of } C \text{ and } lit \text{ is a literal operation of } C\} \cup$$

$$\{lit..Par(accdl) \mid accdl \text{ is an accessor or dual of } C \text{ and } lit \text{ is a literal operation of } C\} \cup$$

$$\{Par(str).Par(trdl) \mid trdl \text{ is a transformer or dual of } C \text{ and } str \text{ is a structure oper-}$$

$$\text{ation of } C\} \cup$$

$$\{Par(str)..Par(accdl) \mid accdl \text{ is an accessor or dual of } C \text{ and } str \text{ is a structure oper-}$$

$$\text{ation of } C\}$$

We first consider the completeness analysis of classes which are
not defined explicitly as subclasses or superclasses of already existing classes. In a class C which is not defined using the explicit class relationships we require that:

- **Given** $trans$, a transformer operation of C, either:
 - a) $trans$ is defined by a preconditioned class equation
 - b) $trans$ is partly defined by preconditioned structure equations on a set of structure operations, PS say, and $\forall lit \in$ the set of literal operations of C, $lit.Par(trans) \in CS(C)$ and $\forall st \not\in PS$, where st is a structure of C, $Par(str).Par(trans) \in CS(C)$.

- **Given** ace, an accessor operation of C, either:
 - a) ace is defined by a preconditioned class equation
 - b) ace is partly defined by preconditioned structure equations on a set of structure operations, PS say, and $\forall lit \in$ the set of literal operations of C, $lit..Par(ace) \in CS(C)$ and $\forall st \not\in PS$, where st is a structure of C, $Par(str)..Par(ace) \in CS(C)$.

- **Given** dl, a dual operation of C, either:
 - a) dl is defined by a preconditioned class equation
 - b) dl is partly defined by preconditioned structure equations on a set of structure operations, PS say, and $\forall lit \in$ the set of literal operations of C, $lit.Par(dl) \in CS(C)$ and $lit..Par(dl) \in CS(C)$ and $\forall st \not\in PS$, where st is a structure of C, $Par(str).Par(dl) \in CS(C)$ and $Par(str)..Par(dl) \in CS(C)$.

- The expressions on the left hand sides of equation definitions in C do not have any repeated entries. In other words, each equation must be uniquely defined.
Completeness analysis for classes defined using the explicit classification mechanisms is based on the analysis above. In an object based specification, the explicit classification mechanisms define only syntactic sugarings of the inclusion mechanisms. Completeness checks are not concerned with subclassing properties in the OO ACT ONE specification. Consequently, to check the completeness of a class defined using an explicit classification mechanism we generate an intermediate class which exhibits the object based behaviour of the original class but does not include the explicit subclassing mechanism. (The means of generating such a class is similar to the mechanism for removing inclusion syntactic sugar.) This intermediate class is then tested for completeness\(^1\) (as above). It plays no further role after completeness checks terminate.

\(^1\)We accept that more efficient completeness checks can be formulated for classes defined explicitly to exhibit a class relationship with a class which has already been tested for completeness.
Appendix C

Mapping OO ACT ONE to ACT ONE

C.1 Object Based Requirements

I: Classes and Sorts
Every class in an ACT ONE specification is translated into an ACT ONE sort. Each ACT ONE sort is defined inside a type bearing its name. In other words, in the generated ACT ONE code, types are used only as containers for single sorts. Dependencies between classes are mapped into dependencies between the types containing the corresponding sorts. For example,

```
Class USES Class1, ..., Classn
```

is translated into

```
TYPE Class IS Class1, ...Classn SORTS Class OPNS....
```

The types in the ACT ONE specification are necessary for the modelling of object based dependencies between classes, since in ACT ONE it is not possible to explicitly define dependencies between sorts.

II: Operations
There is a direct correspondence between the operations of an OO ACT ONE class and the operations in the generated ACT ONE code.

- All OO ACT ONE LITERALS map to ACT ONE literal values. For example, if `lit` is defined as a literal of class `C` then, in the definition of TYPE `C`, there is an operation defined as `lit: C`.
- STRUCTURES in an OO ACT ONE class `C`, written `st<c1, ..., cn>`, map to ACT ONE operations `st: c1, ..., cn -> C`.
- TRANSFORMERS in class `C` map to ACT ONE operations in two different ways:
 - An unparameterised transformer of `C`, `tr` say, maps to an operation `tr:C -> C`.
 - A parameterised transformer of `C`, `tr<C1, ..., Cn>` say, maps to the operation `tr:C, C1, ..., Cn -> C`.
- ACCESSORS in class `C` also maps to ACT ONE operations in two different ways:
"An unparameterised accessor of C, acc \rightarrow C' say, maps to an operation
\texttt{acc: C \rightarrow C} (* dual accessor \texttt{C'} *).

A parameterised accessor of C, \texttt{acc<\texttt{C1},\ldots,\texttt{Cn}> \rightarrow C'} say, maps to the operation
\texttt{acc: C, \texttt{C1},\ldots,\texttt{Cn} \rightarrow C} (* dual accessor \texttt{C'} *)

- **DUALS** in class C map to \texttt{ACT ONE} operations as follows:

 - An unparameterised dual of C, \texttt{dl \rightarrow C'} say, maps to an operation
 \texttt{dl: C \rightarrow C} (* dual \texttt{C'} *).

 - A parameterised accessor of C, \texttt{dl<\texttt{C1},\ldots,\texttt{Cn}> \rightarrow C'} say, maps to the operation
 \texttt{dl: C, \texttt{C1},\ldots,\texttt{Cn} \rightarrow C} (* dual \texttt{C'} *).

III: Hidden Operations

Internal (hidden) operations are mapped as above except that the hidden operations are commented as such in the \texttt{ACT ONE} code. The static analysis of the \texttt{OO ACT ONE} from which the \texttt{ACT ONE} was developed guarantees that hidden operations are used only in the specification of internal behaviour.

IV: Equations

Consider the mapping of total equations, literal equations, unpreconditioned structure equations, preconditioned structure equations and preconditioned class equations.

- **1) Total Equations**

The translation of a total equation from a class definition (C say) to a sort definition of the same name (with a **result type** D where appropriate), is given below:

- \texttt{C1.tr = s1e \rightarrow \texttt{tr(C1) = s1e}};
- \texttt{C1.tr(p1,\ldots,pn) = s1e \rightarrow \texttt{tr(C1,p1,\ldots,pn) = s1e}};
- \texttt{C1.acc = s1e \rightarrow \texttt{tr(C1) = dualCD(C1,s1e)}};
- \texttt{C1.acc(p1,\ldots,pn) = s1e \rightarrow \texttt{tr(C1,p1,\ldots,pn) = dualCD(C1,s1e)}};
- \texttt{C1.dl = s1e1 AND s1e2 \rightarrow \texttt{dl(C1) = dualCD(s1e1, s1e2)}};
- \texttt{C1.dl(p1,\ldots,pn) = s1e1 AND s1e2 \rightarrow}
 \texttt{dl(C1,p1,\ldots,pn) = dualCD(s1e1, s1e2)};

Note that the equations generated from the translation are defined in terms of variable parameters. It is a simple, though vital, part of the translation of this and all other equation types to define these variables in the **forall** clause at the beginning of the \texttt{ACT ONE} equation definitions for each sort. We have shown the mappings for all six forms of total equations. The mappings are very similar and so, for conciseness, we consider only a subset of the equation forms in each of the remaining equation type translations.

- **2) Literal Equations**

The translation of a parameterised dual equation, \texttt{dl}, defined on a literal, \texttt{lit}, in a class, C with **result type** D is defined below:

\texttt{lit.dl(p1,\ldots,pn) = s1e1 AND s1e2} \rightarrow
\texttt{tr(lit,p1,\ldots,pn) = dualCD(s1e1, s1e2)};

The other forms are similarly defined.
• 3) Unpreconditioned Structure Equations
The translation of an unpreconditioned unparameterised accessor equation acc defined on \(\text{str}(p_1, \ldots, p_n) \) a structure of class \(C \) is as follows:
\[
\text{str}(p_1, \ldots, p_n) \cdot \text{acc} = \text{sle} \rightarrow \text{acc}(\text{str}(p_1, \ldots, p_n)) = \text{sle};
\]
The other forms are similarly defined in an appropriate manner.

• 4) Preconditioned Structure Equations
Consider the generic representation of a preconditioned structure equation:
\[
\begin{align*}
\text{pre}_1 & \Rightarrow \text{sc}(P_1, \ldots, P_{j-1}), \text{dl}(P_j, \ldots, P_n) = \text{newstate}_1 \text{ AND result}_1 \\
\text{OTHERWISE} & \ldots \text{OTHERWISE} \\
\text{pre}_{m-1} & \Rightarrow \text{newstate}_{m-1} \text{ AND result}_{m-1} \text{ OTHERWISE} \\
\text{newstate}_m & \text{ AND result}_m, \text{ for some } m, n, j \in \{1, 2, \ldots\}, m \geq 2
\end{align*}
\]
This translates into the following set of ACT ONE preconditioned equations:
\[
\begin{align*}
\{ \text{MAP}(\text{pre}_1) \Rightarrow \text{dl}(\text{sc}(P_1, \ldots, P_{j-1}), P_j, \ldots, P_n) = \text{dualCD}(\text{newstate}_1, \text{result}_1) \} \cup \\
\{ \text{MAP}(\text{not}(\text{pre}_1) \text{ and } \ldots \text{and not}(\text{pre}_{k-1}) \text{ and } (\text{pre}_k)) \Rightarrow \\
\text{dl}(\text{sc}(P_1, \ldots, P_{j-1}), P_j, \ldots, P_n) = \text{dualCD}(\text{newstate}_k, \text{result}_k) \mid k \in \{2, \ldots, m-2\} \} \cup \\
\{ \text{MAP}(\text{not}(\text{pre}_1) \text{ and } \ldots \text{and not}(\text{pre}_{m-1}) \Rightarrow \\
\text{dl}(\text{sc}(P_1, \ldots, P_{j-1}), P_j, \ldots, P_n) = \text{dualCD}(\text{newstate}_m, \text{result}_m) \}
\end{align*}
\]
The meta-operation \text{MAP} defined on the boolean preconditions represents the mapping of the OO ACT ONE \text{state label expressions} of type Booll to ACT ONE expressions of sort Booll.

• 5) Preconditioned Class Equations
Consider the following unparameterised transformer equation defined in class \(C \) (expressed in generic form):
\[
\begin{align*}
\text{pre}_1 & \Rightarrow \text{C1.tr} = \text{newstate}_1 \text{ AND result}_1 \text{ OTHERWISE} \ldots \text{OTHERWISE} \\
\text{pre}_{m-1} & \Rightarrow \text{newstate}_{m-1} \text{ AND result}_{m-1} \text{ OTHERWISE newstate}_m \text{ AND result}_m, \text{ for some } m \in \{2, \ldots\}
\end{align*}
\]
This translates into the following set of ACT ONE preconditioned equations:
\[
\begin{align*}
\{ \text{MAP}(\text{pre}_1) \Rightarrow \text{tr}(\text{C1}) = \text{newstate}_1 \} \cup \\
\{ \text{MAP}(\text{not}(\text{pre}_1) \text{ and } \ldots \text{and not}(\text{pre}_{k-1}) \text{ and } (\text{pre}_k)) \Rightarrow \text{tr}(\text{C1}) = \text{newstate}_k \mid k \in \{2, \ldots, m-2\} \} \cup \\
\{ \text{MAP}(\text{not}(\text{pre}_1) \text{ and } \ldots \text{and not}(\text{pre}_{m-1}) \Rightarrow \text{tr}(\text{C1}) = \text{newstate}_m \}
\end{align*}
\]

V: Structure Invariants
Structure invariants generate ACT ONE preconditions which precede every equation defining the behaviour corresponding to the appropriate structure. Consequently, operations on structured objects are defined only when the components of the objects fulfil the precondition property specified by the invariant which generated it.

Additional work is required to map invariant properties in combination with preconditioned equation definitions. Structured preconditions from OO ACT ONE must be coded in ACT ONE as the
boolean conjunction of the corresponding ACT ONE preconditions and the preconditions generated by any invariant properties. Class preconditions pose an even bigger problem than structured preconditions. Static analysis of the ACT ONE code flags every case in which these two mechanisms 'overlap'. The generation of ACT ONE must then include an internal operation which tests an object to see if it is represented as a particular structure expression. All class preconditions are then separated into sets of precondition equations (one for each structure invariant, and one for the remaining objects). Appendix C2, following, illustrates the mapping of preconditions in the Queue class.
C.2 Example Queue Behaviour

TYPE Queue IS Nat, Boolean
SORTS Queue OPNS
empty: -> Queue (* Literal *)
Q: Queue, Nat -> Queue (* Structure *)
add: Queue, Nat -> Queue (* Transformer *)
is-empty: Queue -> Queue (* Dual accessor Bool HIDDEN *)
rem: Queue -> Queue (* Dual Nat *)
unspecQueue: -> Queue
 :: Queue -> Queue
NatResult: Queue -> Nat
BoolResult: Queue -> Bool
dualQueueNat: Queue, Nat -> Queue
dualQueueBool: Queue, Bool -> Queue
QueueRep: Queue -> Bool

EQNS FORALL Queue1: Queue, Nat1, Nat2: Nat, Bool1: Bool
OFSORT Queue
add(Queue1, Nat1) = Q(Queue1, Nat1);
add(unspecQueue, Nat1) = unspecQueue;
add(dualQueueNat(Queue1,Nat1), Nat2) = add(Queue1, Nat2);
add(dualQueueBool(Queue1,Nat1), Bool1) = add(Queue1, Nat2);
is-empty(empty) = dualQueueBool(empty, true);
is-empty(Q(Queue1, Nat1)) = dualQueueBool(Q(Queue1, Nat1), false);
rem(empty)= dualQueueNat(empty, unspecNat);
BoolResult(is-empty(Queue1)) =>
rem(Q(Queue1,Nat1))= dualQueueNat(rem(Queue1), Nat1);
not(BoolResult(is-empty(Queue1))) =>
rem(Q(Queue1,Nat1))= dualQueueNat(Q(.(rem(Queue1)),Nat1),BoolResult(rem(Queue1)));
QueueRep(Queue1) => .(Queue1) = Queue1;
 .(dualQueueNat(Queue1, Nat1)) = Queue1;

OFSORT Bool
QueueRep(empty) = true; QueueRep(Q(Queue1, Nat1)) = true;
QueueRep(unspecQueue) = true; QueueRep(dualQueueNat(Queue1,Nat1)) = false
BoolResult(dualQueueBool(Queue1, Bool1)) = Bool1;

OFSORT Nat
NatResult(dualQueueNat(Queue1, Nat1)) = Nat1;

ENDTYPE (* Queue *)
C.3 Translating Object Oriented Requirements: An Example

The mapping of object oriented properties to ACT ONE is best illustrated by the following example. The diagram in figure C.1 shows the hierarchy of behaviour which we wish to model in ACT ONE.

This class hierarchy illustrates two interesting features of object oriented specifications:

- **M125s** has got two direct superclasses (parents). It inherits the *flip* behaviour from **M12ext**, the *curr* behaviour from **Move15s** and the *eq* behaviour partly from **Move12s** (through either of its two parents).

- **M125s** illustrates the rules of contravariance and covariance between subclasses and superclasses. It is defined to return an **M125s** result in response to a *curr* request whilst its superclass **Move15s** is defined to return a superclass of that result class, namely **Move15s**. Furthermore, **M125s** can accept parameter values which are superclasses of the parameter values its superclasses can accept. For example, **M125s** can respond to the request *eq(stay)* but this service is not offered by **Move15s**.
APPENDIX C. MAPPING OO ACT ONE TO ACT ONE

ACT ONE Requirements Model of Class Move12sRoot

SPECIFICATION Move12sRoot: noexit
LIBRARY
 Boolean
ENDLIB

TYPE Move12sRoot is Boolean

SORTS Move12s (* using Bool *), Move15s (* superclass Move12s*),
 M12ext (* superclass Move12s *),
 M125s (* superclass M12ext, Move15s *)

OPNS
 (* M125s -- *)
 up, down: -> M125s
 flip: M125s -> M125s
 eq: M125s, Move12s -> M125s
 eq: M125s, Move15s -> M125s
 eq: M125s, M12ext -> M125s
 eq: M125s, M125s -> M125s
 M125seq: M125s, Move12s -> M125s
 curr: M125s -> M125s
 unspecM125s: -> M125s
 (* Dual Machinery *)
 .: M125s -> M125s
 M125sResult: M125s -> M125s
 BoolResult: M125s -> Bool
 dualM125sM125s: M125s, M125s -> M125s
 dualM125sBool: M125s, Bool -> M125s
 (* Subclass machinery *)
 M125stoM12ext: M125s -> M12ext
 M12exttoM125s: M12ext -> M125s
 M125stoMove15s: M125s -> Move15s
 Move15stoM125s: Move15s -> M125s
 M125stoMove12s: M125s -> Move12s
 Move12stoM125s: Move12s -> M125s
 (* Internal Test *)
 M125sRep: M125s -> Bool
 (* Move15s -- *)
 up, down: -> Move15s
 eq: Move15s, Move15s -> Move15s

(* Move15s -- *)
eq: Move15s, M125s -> Move15s
 (* parameter subclass *)
curr: Move15s -> Move15s
 (* dual Move15s *)
 Move15scurr: Move15s -> Move15s
 (* curr root definition *)
unspecMove15s: -> Move15s
 (* Unspecified Machinery *)

(* Dual Machinery *)
 :: Move15s -> Move15s
BoolResult: Move15s -> Bool
Move15sResult: Move15s -> Move15s
dualMove15sBool: Move15s, Bool -> Move15s
dualMove15sMove15s: Move15s, Move15s -> Move15s

(* Subclass Machinery *)
 Move15stoMove12s: Move15s -> Move12s
Move12stoMove15s: Move12s -> Move15s

(* Internal Test *)
 Move15sRep: Move15s -> Bool

(* Move12s *)
 up, down, stay: -> M12ext
 (* literals *)
flip: M12ext -> M12ext
 (* transformer *)
eq: M12ext, Move15s -> M12ext
 (* dual accessor Bool from Move12s *)
 eq: M12ext, M125s -> M12ext
 (* parameter subclass *)
unspecM12ext: -> M12ext
 (* Unspecified Machinery *)

(* Dual Machinery *)
 :: M12ext -> M12ext
BoolResult: M12ext -> Bool
dualM12extBool: M12ext, Bool -> M12ext

(* Subclass Machinery *)
 M12exttoMove12s: M12ext -> Move12s
Move12stoM12ext: Move12s -> M12ext

(* Internal Test *)
 M12extRep: M12ext -> Bool

(* Move12s *)
 up, down, stay: -> Move12s
 (* literals *)
eq: Move12s, Move15s -> Move12s
 (* dual accessor Bool *)
eq: Move12s, M125s -> Move12s
 (* parameter subclass *)
 Move12seq: Move12s, Move15s -> Move12s
 (* eq definition root *)
unspecMove12s: -> Move12s
 (* Unspecified Machinery *)

(* Dual Machinery *)
 :: Move12s -> Move12s
BoolResult: Move12s -> Bool
dualMove12sBool: Move12s, Bool -> Move12s
APPENDIX C. MAPPING OO ACT ONE TO ACT ONE

(*) Internal Test *)
Move12sRep: Move12s -> Bool

(*) Additional O-LSTS Machinery for Booleans *)
unspecBool: -> Bool

EQNS FORALL Move15s1, Move15s2: Move15s, Move12s1: Move12s,
M12ext1: M12ext, M125s1, M125s2, M125s3: M125s, Bool1: Bool

(*) M125s -- *

(* Inherited from M12ext *)
OFSORT M125s
M125sRep(M125s1) =>
 flip(M125s1) = M12exttoM125s(flip(M125stoM12ext(M125s1)));
 flip(dualM125sBool(M125s1, Bool1)) = flip(M125s1);
 flip(dualM125sM125s(M125s1, M125s2)) = flip(M125s1);

(* Part inherited from M12ext --- contravariance on parameter 1 *)
M125sRep(M125s1) =>
 eq(M125s1, Move12s1) = M125seq(M125s1, Move12s1);
 M125seq(dualM125sM125s(M125s1,M125s2), Move12s1)= M125seq(M125s1, Move12s1);
 M125seq(dualM125sBool(M125s1,Bool1), Move12s1)= M125seq(M125s1, Move12s1);
 M125seq(up, stay) = dualM125sBool(up,false);
 M125seq(down, stay) = dualM125sBool(down,false);
 M125seq(unspecM125s, stay) = unspecM125s;
Move15sRep(Move12stoMove15s(Move12s1)) =>
 M125seq(M125s1, Move12s1) =
 eq(M125s1, Move12stoMove15s(Move12s1));
M125sRep(M125s1) =>
 eq(M125s1, Move15s1) =
 dualM125sBool(
 M12exttoM125s(.(eq(M125stoM12ext(M125s1), Move15s1)))),
 BoolResult(eq(M125stoM12ext(M125s1), Move15s1)));
 eq(M125s1, Move15s1) = eq(M125s1, Move15stoMove12s(Move15s1));
 eq(M125s1, M12ext1) = eq(M125s1, M12exttoMove12s(M12ext1));
 eq(M125s1, M125s2) = eq(M125s1, M125stoMove12s(M125s2));

(* Inherited from Move15s *)
OFSORT M125s
M125sRep(M125s1) =>
curr(M125s1) =
 dualM125sM125s(Move15stoM125s(.(curr(M125stoMove15s(M125s1))))),
Move15stoM125s(Move15sResult(curr(M125stoMove15s(M125s1))));
curr(dualM125sBool(M125s1, Bool1)) = curr(M125s1);
curr(dualM125sM125s(M125s1, M125s2)) = curr(M125s1);

(* Dual machinery *)
OFSORT M125s
M125sRep(M125s1) =>
 (M125s1) = M125s1;
 (dualM125sBool(M125s1, Bool1)) = M125s1;
 (dualM125sM125s(M125s1, M125s2)) = M125s1;
M125sResult(M125s1) = unspecM125s;
M125sResult(dualM125sBool(M125s1, Bool1)) = unspecM125s;
M125sResult(dualM125sM125s(M125s1, M125s2)) = M125s2;
OFSORT Bool
M125sRep(M125s1) =>
 BoolResult(M125s1) = unspecBool;
BoolResult(dualM125sBool(M125s1, Bool1)) = Bool1;
BoolResult(dualM125sM125s(M125s1, M125s2)) = unspecBool;

(* Subclass machinery *)
OFSORT M125s
Move12stoM125s(up) = up; Move12stoM125s(down) = down;
Move12stoM125s(unspecMove12s) = unspecM125s;
M12exttoM125s(up) = up; M12exttoM125s(down) = down;
M12exttoM125s(unspecM12ext) = unspecM125s;
Move15stoM125s(up) = up; Move15stoM125s(down) = down;
Move15stoM125s(unspecMove15s) = unspecM125s;
OFSORT Move15s
M125stoMove15s(up) = up; M125stoMove15s(down) = down;
M125stoMove15s(unspecM125s) = unspecMove15s;
OFSORT M12ext
M125stoM12ext(up) = up; M125stoM12ext(down) = down;
M125stoM12ext(unspecM125s) = unspecM12ext;
OFSORT Move12s
M125stoMove12s(up) = up; M125stoMove12s(down) = down;
M125stoMove12s(unspecM125s) = unspecMove12s;

(* Internal Test *)
OFSORT Bool
M125sRep(up) = true; M125sRep(down) = true;
M125sRep(unspecM125s) = true;
M125sRep(dualM125sBool(M125s1, Bool1)) = false;
M125sRep(dualM125sM125s(M125s1, M125s2)) = false;

(* Move 15s --- *)

(* Root definitions *)
OFSORT Move15s
 curr(Move15s1) = Move15sCurr(Move15s1);
 Move15sCurr(up) = dualMove15sMove15s(up,up);
 Move15sCurr(down) = dualMove15sMove15s(down,down);
 Move15sCurr(unspecMove15s) = unspecMove15s;
 Move15sCurr(dualMove15sBool(Move15s1,Bool1)) = Move15sCurr(Move15s1);
 Move15sCurr(dualMove15sMove15s(Move15s1,Move15s2)) =
 Move15sCurr(Move15s1);

(* Inherited from Move12s *)
OFSORT Move15s
 Move15sRep(Move15s1) =>
 eq(Move15s1, Move15s2) =
 dualMove15sBool(
 Move12stoMove15s(.(eq(Move15stoMove12s(Move15s1), Move15s2))),
 BoolResult(eq(Move15stoMove12s(Move15s1), Move15s2)));
 eq(dualMove15sBool(Move15s1, Bool1), Move15s2) =
 eq(Move15s1, Move15s2);
 eq(dualMove15sMove15s(Move15s1, Move15s2), Move15s2) =
 eq(Move15s1, Move15s2);
 eq(Move15s1, M125s1) = eq(Move15s1, M125stoMove15s(M125s1));

(* Dual machinery *)
OFSORT Move15s
 Move15sRep(Move15s1) =>
 (Move15s1) = Move15s1;
 (dualMove15sBool(Move15s1, Bool1)) = Move15s1;
 (dualMove15sMove15s(Move15s1, Move15s2)) = Move15s1;
 Move15sRep(Move15s1) =>
 Move15sResult(Move15s1) = unspecMove15s;
 Move15sResult(dualMove15sMove15s(Move15s1, Move15s2)) = Move15s2;
 Move15sResult(dualMove15sBool(Move15s1, Bool1)) = unspecMove15s;

OFSORT Bool
 Move15sRep(Move15s1) =>
 BoolResult(Move15s1) = unspecBool;
 BoolResult(dualMove15sMove15s(Move15s1, Move15s2)) = unspecBool;
 BoolResult(dualMove15sBool(Move15s1, Bool1)) = Bool1;

(* Subclass machinery *)
OFSORT Move15s
Move12stoMove15s(up) = up; Move12stoMove15s(down) = down;
Move12stoMove15s(unspecMove12s) = unspecMove15s;
OFSORT Move12s
Move15stoMove12s(up) = up; Move15stoMove12s(down) = down;
Move15stoMove12s(unspecMove15s) = unspecMove12s;

(* Internal Test *)
OFSORT Bool
Move15sRep(up) = true; Move15sRep(down) = true;
Move15sRep(unspecMove15s) = true;
Move15sRep(dualMove15sBool(Move15s1, Bool1)) = false;

(* M12ext -------------------------------- *)
(* Root definition *)
OFSORT M12ext
flip(unspecM12ext) = unspecM12ext;
flip(dualM12extBool(M12ext1, Bool1)) = flip(M12ext1);
flip(up) = down; flip(down) = up; flip(stay) = stay;
(* Inherited from Move12s *)
OFSORT M12ext
M12extRep(M12ext1) =>
 eq(M12ext1, Move15s1) =
 dualM12extBool(
 Move12stoM12ext(.(eq(M12exttoMove12s(M12ext1), Move15s1))),
 BoolResult(eq(M12exttoMove12s(M12ext1), Move15s1)));
 eq(dualM12extBool(M12ext1, Bool1), Move15s1) =
 eq(M12ext1, Move15s1);
 eq(M12ext1, M125s1) = eq(M12ext1, M125stoMove15s(M125s1));
(* Dual machinery *)
OFSORT M12ext
M12extRep(M12ext1) =>
 (M12ext1) = M12ext1;
 (dualM12extBool(M12ext1, Bool1)) = M12ext1;
OFSORT Bool
M12extRep(M12ext1) =>
 BoolResult(M12ext1) = unspecBool;
 BoolResult(dualM12extBool(M12ext1, Bool1)) = Bool1;
(* Subclass machinery *)
OFSORT M12ext
Move12stoM12ext(up) = up; Move12stoM12ext(down) = down;
Move12stoM12ext(stay) = stay;
Move12stoM12ext(unspecMove12s) = unspecM12ext;
OFSORT Move12s

\[M_{\text{exttoMove12s}}(\text{up}) = \text{up}; \ M_{\text{exttoMove12s}}(\text{down}) = \text{down}; \]
\[M_{\text{exttoMove12s}}(\text{stay}) = \text{stay}; \]
\[M_{\text{exttoMove12s}}(\text{unspecMext}) = \text{unspecMove12s}; \]

(* Internal Test *)

OFSORT Bool

\[M_{\text{extRep}}(\text{up}) = \text{true}; \ M_{\text{extRep}}(\text{down}) = \text{true}; \ M_{\text{extRep}}(\text{stay}) = \text{true}; \]
\[M_{\text{extRep}}(\text{unspecMext}) = \text{true}; \]
\[M_{\text{extRep}}(\text{dualM12extBool}(M_{\text{ext1}}, \text{Bool1})) = \text{false}; \]

(* Move12s ------------------------------------- *)

(* Root definitions *)

OFSORT Move12s

\[\text{eq}(\text{Move12s}_1, \text{Move15s}_1) = \text{Move12seq}(\text{Move12s}_1, \text{Move15s}_1); \]
\[\text{eq}(\text{Move12s}_1, \text{M125s}) = \text{eq}(\text{Move12s}_1, \text{M125stoMove15s}(M_{125s})); \]
\[\text{Move12seq}(\text{up}, \text{up}) = \text{dualMove12sBool}(\text{up}, \text{true}); \]
\[\text{Move12seq}(\text{up}, \text{down}) = \text{dualMove12sBool}(\text{up}, \text{false}); \]
\[\text{Move12seq}(\text{down}, \text{up}) = \text{dualMove12sBool}(\text{down}, \text{false}); \]
\[\text{Move12seq}(\text{down}, \text{down}) = \text{dualMove12sBool}(\text{down}, \text{true}); \]
\[\text{Move12seq}(\text{stay}, \text{up}) = \text{dualMove12sBool}(\text{stay}, \text{false}); \]
\[\text{Move12seq}(\text{stay}, \text{down}) = \text{dualMove12sBool}(\text{stay}, \text{false}); \]
\[\text{Move12seq}(\text{unspecMove12s}, \text{Move15s}) = \text{unspecMove12s}; \]
\[\text{Move12seq}(\text{Move12s}_1, \text{unspecMove15s}) = \text{unspecMove12s}; \]
\[\text{Move12seq}(\text{dualMove12sBool}(\text{Move12s}_1, \text{Bool1}), \text{Move15s}) = \]
\[\text{Move12seq}(\text{Move12s}_1, \text{Move15s}); \]

(* Dual machinery *)

OFSORT Move12s

\[\text{Move12sRep}(\text{Move12s}_1) \Rightarrow \]
\[.(\text{Move12s}_1) = \text{Move12s}_1; \]
\[.(\text{dualMove12sBool}(\text{Move12s}_1, \text{Bool1})) = \text{Move12s}_1; \]

OFSORT Bool

\[\text{BoolResult}(\text{Move12s}_1) = \text{unspecBool}; \]
\[\text{BoolResult}(\text{dualMove12sBool}(\text{Move12s}_1, \text{Bool1})) = \text{Bool1}; \]

(* Internal Test *)

OFSORT Bool

\[\text{Move12sRep}(\text{up}) = \text{true}; \ M_{\text{extRep}}(\text{down}) = \text{true}; \ M_{\text{extRep}}(\text{stay}) = \text{true}; \]
\[M_{\text{extRep}}(\text{unspecMove12s}) = \text{true}; \]
\[M_{\text{extRep}}(\text{dualMove12sBool}(\text{Move12s}_1, \text{Bool1})) = \text{false}; \]

ENDTYPE (* MovesRoot *)

(* EXAMPLE State-label expression evaluations*)
APPENDIX C. MAPPING ACT ONE TO ACT ONE

(*
 a = eq(up of Move12s, up of Move15s);
 b = eq(a, down of Move15s);
 c = eq(down of Move12s, down of M125s);
 d = eq(c, up of M125s);
 e = flip(stay);
 f = eq(e, down of Move15s);
 g = eq(up of M12ext, up of M125s);
 h = flip(g);
 i = eq(up of Move15s, up of Move15s);
 j = eq(i, (i));
 k = curr(j);
 l = eq(j, up of M125s);
 m = flip(up of M125s);
 n = eq(m, (m));
 o = eq(flip(m), (m));
 p = curr(n);
 p = curr(n);
 q= curr(o);

 a = dualMove12sBool(up, true);
 c = dualMove12sBool(down, true);
 e = stay;
 g = dualM12extBool(up, true);
 i = dualMove15sBool(up, true);
 m = down;
 b = dualMove12sBool(up, false);
 d = dualMove12sBool(down, false);
 f = dualM12extBool(stay, false);
 h = down;
 j = dualMove15sBool(up, true);
 n = dualM125sBool(down, true);
 o = dualM125sBool(up, false);
 k = dualMove15sMove15s(up, up);
 l = dualMove15sBool(up, true);
 p = dualM125sM125s(down, down);
 q = dualM125sM125s(up, up)
*)
Appendix D

An OO ACT ONE Interpretation of Interaction

D.1 Interaction

Objects which are configured are able to interact (in some as yet unspecified way) for their separate behaviours to be combined in the fulfilment of a service request in their containing object. There are two different types of interaction:

- **Master-Slave Relationships.**
 These are modelled, in OO ACT ONE, when a containing object requests its component objects to fulfil services. It is this interaction which is given a formal definition in the O-LSTS semantics in terms of state label expression evaluations.

- **Peer-Peer Relationships.**
 When two components of the same containing object interact such that each can request services of the other they are called peer objects. An OO ACT ONE specification can be implemented to exhibit this type of relationship at the code level, but this is not specified in the requirements model.

A master-slave relationship implies a control flow from master to slave in all interactions. Peer-to-peer interactions imply that control flow can occur in either direction. Control flow is a dynamic property of an object oriented system which is an important aspect of design and implementation but does not have a fundamental role in analysis. The same can be said of data flow. Both these terms are widespread in structured methods but are not central to object oriented analysis.
D.2 Data and Control Flow

Data and control flow, which on the surface seem quite different, are very difficult to distinguish without a formal semantics. One of the main difficulties in applying structured analysis techniques is in distinguishing the two concepts, even though they are modelled in different ways. Data flow diagrams and control flow models are prolific in structured analysis methods but are not explicit in our object oriented model. To understand the reason for this it is necessary to consider some examples.

Data and Control Flow Example: A Two Stack System

Consider the OO ACT ONE System specification given below.

```plaintext
CLASS System USING Stack, Nat OPNS
  STRUCTURES: Sys<Stack, Stack>
  DUALS: pop -> Nat
  TRANSFORMERS: push<Nat>, move
ENDCLASS (* System *)
```

Specifications with static structure (like System) are amenable to three structural interpretations:

- 1) Configuration
 This specification can be interpreted as saying that the two Stack components are configured by the move attribute. Chapter 4, section 3, formally defines configuration in terms of dependency and so it is not necessary to consider it in any more detail as part of this example.

- 2) Data Flow
 An accessor operation on a component object, comp say, written comp..acc ..., on the right hand side of an equation definition can be interpreted as modelling data flow from comp to the containing object. In other words, the ACCESSOR (or DUAL) service requests model data flow from client to server (in the form of the result returned by the service). A parameterised attribute on a component object comp can be interpreted as modelling data flow into comp, i.e. an input parameter. Now, if the data flow into one component matches the data flow out of another this can be interpreted as saying that data flows between the two peer components. More formally, a state label expression of the form

 \[\text{obj1.att1(..., obj2.att2(...), ...)} \text{or obj1..att1(..., obj2.att2(...), ...)} \]

 can be interpreted as data flowing internally from obj2 to obj1.

In the System specification a high level interpretation can lead to the statement that that data flows from Stack1 to Stack2 in response to a move request. Note that we do not say how the information is transferred.
3) Control Flow

The simplest interpretation of control flow is from client to server (and back again) when the
client requests some service from the server. In the O-LSTS model we do not formulate an
interpretation of control flow between peer components. In a System class we may implement
the first Stack to be subordinate to the second Stack: ‘the move request is passed on to the
second component which requests a pop from the first Stack’. Contrastingly, the first Stack
can be implemented to request a push operation of the second component. A third option is to
have some additional controlling process (object) which mediates between the two Stacks. Such
decisions are not the realm of analysis and as such OO ACT ONE does not provide an explicit
mechanism for defining such properties. Designers and implementers are free to choose which
‘less-abstract’ interpretation of control flow they take from an OO ACT ONE specification.
Appendix E

Design Issues

E.1 The ParXStack Process Definition

The Par Specification of the extended Stack behaviour (XStack) is defined as follows.

\[\text{process ParXStack[push, pop, size](SStack: Stack): noexit :=}
\]

hide request, response in

\[\text{StackIn[push, pop, size, request]} (0) \mid \text{[request]} |\]

\[\text{StackBody [request, response](SStack) | [response]} |\]

\[\text{StackOut [pop, size, response]} (0)\]

where

\[\text{process StackIn[push, pop, size, request]} (ID: Nat): \text{noexit :=}
\]

\[\text{Reqs[push, pop, size, request]} (ID) \mid \text{[request]} | \text{ReqController[request]} (ID) \text{ where}\]

\[\text{process Reqs[push, pop, size, request]} (IDSStackIn: Nat): \text{noexit :=}
\]

\(\text{if push? Nat1: Nat; (Reqs[push, pop, size, request]} (. (inc(IDsStackIn)))\)

\(|\text{request!push!Nat1!IDSStackIn}; \text{exit})))\]

\(|\text{pop; (Reqs[push, pop, size, request]} (. (inc(IDsStackIn)))\)

\(|\text{request!pop!IDSStackIn}; \text{exit})))\)

\((\text{size; (Reqs[push, pop, size, request]} (. (inc(IDsStackIn)))\)

\(|\text{request!size!IDSStackIn}; \text{exit})))\)

endproc (*Reqs*)

\[\text{process ReqController[request]} (ServeID: Nat): \text{noexit :=}
\]

\(\text{if request!push?Nat1: Nat!ServeID; ReqController[request]} (. (inc(ServeID)))\)

287
APPENDIX E. DESIGN ISSUES

[][request!pop!ServeID; ReqController[request]((inc(ServeID)))
][](request!size!ServeID; ReqController[request]((inc(ServeID)))
endproc (* ReqController *)
edproc (*StackIn*)
process StackBody[request, response](SStack: Stack): noexit:=
 (request!push? Nat1: Nat?ID:Nat;
 (StackBody[request, response]((push(SStack, Nat1)))
 ||
 (response!push!ID; exit))
][
 (request!pop?ID:Nat;
 (StackBody[request, response]((pop(SStack)))
 ||
 (response!pop!NatResult(pop(SStack))!ID; exit))
 (request!size?ID:Nat;
 (StackBody[request, response]((pop(SStack)))
 ||
 (response!size!NatResult(size(SStack))!ID; exit))
endproc (*StackBody*)
process StackOut[pop, size, response](CountStackOut: Nat): noexit:=
 (response!pop?NatStackOut: Nat!CountStackOut;
 pop!NatStackOut; StackOut[pop, response]((inc(CountStackOut))))
][
 (response!size?NatStackOut:Nat!CountStackOut;
 size!NatStackOut; StackOut[pop, response]((inc(CountStackOut))))
][
 (response!push!CountStackOut;
 StackOut[pop, response]((inc(CountStackOut))))
endproc (* StackOut *)
edproc (* ParStack *)
edproc
E.2 Two Mappings from OO ACT ONE to an Initial Full LOTOS Design

Given an OO ACT ONE class, CName say, with operation definitions:

LITERALS: lit_1, ..., lit_i

Unhidden external Transformers:

tr_1 < ... >, ..., tr_n < Ptr_n_1, ..., Ptr_n_m >

Unhidden internal Transformers:

itr_1 < ... >, ..., itr_o < Pit_o_1, ..., Pit_o_p >

Unhidden Accessors:

acc_1 < ... > → AResult_1, ..., acc_p < Pac_p_1, ..., Pac_p_q > → AResult_p

Unhidden Duals:

dl_1 < ... > → DResult_1, ..., dl_r < Pdl_r_1, ..., Pdl_r_s > → DResult_r

we can define the result of applying MakeRPC and MakePar to CName (in E.2.1 and E.2.2, below).

First, some notation is useful:

- Req_CName?p_1 : P_1?...?p_n : P_n represents a parameterised event, where Req is an unhidden attribute of the class CName, and P_1, ..., P_n are the input parameter types of Req.
- Req_CName!p_1!...!p_n represents an event, where Req is an unhidden attribute of the class CName and (p_1, ..., p_n) are values of the appropriate sorts.
- []Req_CName represents a parameterised choice of behaviours over the Req attributes of CName.
- []AD_CName represents a parameterised choice over the accessor and dual AD attributes of CName.
- []Tr_CName represents a parameterised choice over the transformer Tr attributes of CName.
- Result_AD_CName is the ACT ONE sort corresponding to the result class of the AD accessor or dual attribute of CName.

E.2.1 The MakePar Mapping

MakePar(CName) =

process ParCName[tr_1, ..., tr_n, acc_1, ..., acc_p, dl_1, ..., dl_r](SCName): noexit =
hide request, response, itr_1, ..., itr_o in
CNameIn[tr_1, ..., tr_n, acc_1, ..., acc_p, dl_1, ..., dl_r, request, itr_1, ..., itr_o](0) | [request] |
CNameBody[request, response] (SCName) | [response] |
CNameOut[acc_1, ..., acc_p, dl_1, ..., dl_r, response](0)
where ...

Process CNameIn is defined as follows:
process CNameIN[tr1, . . . , trn, acc1, . . . , accp, dl1, . . . , dlr, itr1, . . . , itrn, request](ID: Nat): noexit :=
Reqs[tr1, . . . , trn, acc1, . . . , accp, dl1, . . . , dlr, itr1, . . . , itrn, request](ID)
| [request] |
ReqControl[request](ID)

where
process Req{...}(ID): noexit :=
| [ReqCName] |
(Req?p1 : P1, . . . , pn : Pn; (Reqs[...](inc(ID))) || request!Req?p1! . . . !pn!ID)
endproc (* Req *)

process ReqControl[request](ID): noexit :=
| [ReqCName] |
(request!Req?p1 : P1, . . . , pn : Pn !ID; ReqControl[...](inc(ID)))
endproc (* ReqControl *)

Process CNameOut is defined as follows:
process CNameOut[acc1, . . . , accp, dl1, . . . , dlr, response](SCName : CName): noexit :=
| [TrCName] |
(response!TrCName!ID; CNameOut[...](inc(ID)))
| [ADCName] |
(response!ADCName ?Result : Result; ADName!Result; CNameOut[...](inc(ID)))
endproc (* CNameOut *)

Process CNameBody is defined as follows:
process CNameBody[request, response](SCName : CName): noexit :=
| [TrCName] |
(request!TrCName?p1 : P1, . . . , pn : Pn !ID : Nat;
(CNameBody[...](TrCName(SCName, p1, . . . , pn)))
|| (response!TrCName!ID; exit))
| [ADCName] |
(request!ADCName ?p1 : P1, . . . , pn : Pn !ID : Nat;
(CNameBody[...](ADCName(SCName, p1, . . . , pn)))
|| (response!ADCName!Result; ADName!Result(ADCName(SCName, p1, . . . , pn)!ID; exit))
endproc (* CNameBody *)

E.2.2 The MakeRPC Mapping

MakeRPC(CName) =

process RPCCName[tr1, . . . , trn, acc1, . . . , accp, dl1, . . . , dlr](SCName): noexit :=
| [TrCName] |
\begin{verbatim}
(T_tr_CN_ame_p1 : P1, \ldots, p_n : P_n ? ID : Nat;
(RPCC_Name\[]{\ldots\}(T_tr_CN_ame_SC_Name_p1, \ldots, p_n)))
)

[]_AD_CN_ame
(AD_CN_ame_p1 : P1, \ldots, p_n : P_n ? ID : Nat;
(RPCC_Name_Body\[]{\ldots\}(AD_CN_ame_SC_Name_p1, \ldots, p_n)));
AD_CN_ame_Result_AD_CN_ame_Result_AD_CN_ame_SC_Name_p1, \ldots, p_n ? ID);
(RPCC_Name\[]{\ldots\}(T_tr_CN_ame_SC_Name_p1, \ldots, p_n)))
endproc (* RPCC_Name *)
\end{verbatim}