CSC 4504 : Langages formels et applications

J Paul Gibson, A207

paul.gibson@telecom-sudparis.eu
http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC4504/

The pq- TRS

Problem 2 --- The pq- TRS

Alphabet $=\{p, q,-\}$
Axiom: for any such x such that x is a possibly empty sequence of '-'s, $\mathrm{xp}-\mathrm{qx}-$ is an axiom

Generation Rules: for any $\mathrm{x}, \mathrm{y}, \mathrm{z}$ which are possibly empty sequences of '-'s, if xpyqz is a theorem then xpy-qz- is a theorem

A decision procedure for a TRS is a process that will always terminate with the correct answer (of whether a given string is a theorem or not

Question: is there a decision procedure for this formal system?

Problem 2 --- The pq- TRS

Alphabet $=\{p, q,-\}$
Axiom: for any such x such that x is a possibly empty sequence of '-'s, $\mathrm{xp}-\mathrm{qx}$ - is an axiom

Generation Rules: for any $\mathrm{x}, \mathrm{y}, \mathrm{z}$ which are possibly empty sequences of '-'s, if xpyqz is a theorem then xpy-qz- is a theorem

Why is the pq- TRS practical?
Because it provides us with a formal model of a mathematical property: the addition of integers ---

- - $-\mathrm{p}---\mathrm{q}----$ is a theorem and " $2+3=5$ " is true
- $--p-q--$ is a non-theorem and " $2+1=2$ " is false

Problem 2 --- The pq- TRS interpretation

If we interpret
-p as plus

- q as equals
-and a sequence of n '-'s as the integer n
then we have
a means of checking $x+y=z$ for all non-negative integers x, y and z
We say that pq- is consistent (under the given interpretation) because all theorems are true after interpretation

We say that pq- is complete as all true statements (in the domain of interpretation) can be generated as theorems in the system.

We say that the interpretation is isomorphic to the system because it is both complete and consistent

Problem 2 --- The pq- TRS extension

The pq- system is isomorphic to a very limited domain of interpretation (but maybe that is all that is required!)

Normally, to widen a domain we can
add an axiom
add a generating rule
For example, what happens if we add the axiom:
xp-qx.

Using this, we can generate many new theorems!
Question: with this new axiom what about completeness and consistency? Can you find an isomorphic interpretation?

Problem 2 --- The tq- system

Question:

-can you define a TRS for modelling the multiplication of two integers
-can you show that it is complete and consistent
Interpretation:
-t as times

- q as equals
-sequences of '-'s as integers

