Abstract Data Types
From TRSs to Abstract Data Types (ADTs)

ADTs are a very powerful specification technique which exist in many forms (languages).

These languages are often given operational semantics in a way similar to TRSs (in fact, they are *pretty much equivalent*)

Most ADTs have the following parts ---

- A type which is made up from sorts
- Sorts which are made up of equivalent sets
- Equivalent sets which are made up of expressions

For example, the integer type could be made up of

- sorts integer and boolean
- 1 equivalence set of the integer sort could be \{3, 1+2, 2+1, 1+1+1\}
- 1 equivalence set of the boolean sort could be \{3=3, 1=1, not(false)\}
Problem 4: A simple ADT specification

TYPE integer SORTS integer, boolean
OPNS
0:-> integer
succ: integer -> integer
eq: integer, integer -> boolean
+: integer, integer -> integer
EQNS forall x,y: integer
0 eq 0 = true; succ(x) eq succ(y) = x eq y;
0 eq succ(x) = false; succ(x) eq 0 = false;
0 + x = x; succ(x) + y = x + (succ(y));
ENDTYPE
Problem 4: A simple ADT specification

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS for all x, y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

Question: how do we show, for example ---

• 1+2 = 3,
• 3+2 = 4+1,
• 2+2 != 3+2
Problem 4: A simple ADT specification

<table>
<thead>
<tr>
<th>TYPE integer SORTS integer, boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPNS</td>
</tr>
<tr>
<td>0:-> integer</td>
</tr>
<tr>
<td>succ: integer -> integer</td>
</tr>
<tr>
<td>eq: integer, integer -> boolean</td>
</tr>
<tr>
<td>+: integer, integer -> integer</td>
</tr>
<tr>
<td>EQNS</td>
</tr>
<tr>
<td>forall x,y: integer</td>
</tr>
<tr>
<td>0 eq 0 = true; succ(x) eq succ(y) = x eq y;</td>
</tr>
<tr>
<td>0 eq succ(x) = false; succ(x) eq 0 = false;</td>
</tr>
<tr>
<td>0 + x = x; succ(x) + y = x + (succ(y));</td>
</tr>
<tr>
<td>ENDTYPE</td>
</tr>
</tbody>
</table>

Note: this model is complete and consistent with respect to the modelling of the addition of integers (like the TRS pq-)

Question: extend this model to include multiplication
Problem 4: An equivalent ADT specification

Consider changing the original specification to make explicit the fact that $x+y = y+x$, for all integer values of x and y:

<table>
<thead>
<tr>
<th>TYPE integer SORTS integer, boolean</th>
<th>EQNS for all x,y: integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPNS</td>
<td>0 eq 0 = true; $\text{succ}(x)$ eq $\text{succ}(y)$ = x eq y;</td>
</tr>
<tr>
<td>0:-> integer</td>
<td>0 eq $\text{succ}(x)$ = false; $\text{succ}(x)$ eq 0 = false;</td>
</tr>
<tr>
<td>succ: integer -> integer</td>
<td>$0 + x = x$; $\text{succ}(x) + y = x + (\text{succ}(y))$;</td>
</tr>
<tr>
<td>eq: integer, integer -> boolean</td>
<td>$x+y = y+x$;</td>
</tr>
<tr>
<td>$+$: integer, integer -> integer</td>
<td>ENDTYPE</td>
</tr>
</tbody>
</table>

Note: this does not change the meaning of the specification but it may affect the implementation of the evaluation of expressions
Problem 4: Evaluation termination

If expressions are evaluated as left to right re-writes (as they often are) then evaluation may not terminate:

\[3 + 4 = 4 + 3\] may be re-written as
\[4 + 3 = 3 + 4\] which may be re-written as
\[3 + 4 = 4 + 3\] …

Consequently, there are 4 important properties of ADT specifications:

- completeness
- consistency
- confluence
- terminating

With respect to the interpretation

Convergent (for both)
Problem 4: Incompleteness, inconsistency and termination

Not having enough equations can make a specification incomplete. For example, the integer ADT specification would be incomplete without the equation:

\[0 \text{ eq } 0 = \text{true} \]

Having too many equations can make a specification inconsistent. For example, the integer ADT specification is inconsistent if we add the equation:

\[x + \text{succ}(0) = x \]

but adding the equation:

\[x + \text{succ}(0) = \text{succ}(x) \]

would not introduce inconsistency (just redundancy)

Changing the equations may affect termination:

\[0 + x = x \text{ to } x + 0 = x \]

would introduce non-termination to the original ADT specification
Problem 4b --- A Set ADT specification

TYPE Set SORTS Int, Bool
OPNS
empty:-> Set
str: Set, int -> Set
add: Set, int -> Set
contains: Set, int -> Bool
EQNS forall s:Set, x, y :int
contains(empty, x) = false;
x eq y => contains(str(s,x), y) = true;
not (x eq y) => contains(str(s,x), y) =
contains(s,y);
contains(s,x) => add(s,x) = s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE

Notes:
• use of str and add
• preconditions
• completeness?
• consistency?

Question:
add operations for --
• remove
• union
• equality
Set (model) verification

Invariant Property: verify that a set never contains any repeated elements

We would like to verify the following properties:
- \(e \notin (S-e) = \text{true} \)
- \(e \in S_1 \cup S_2 \Rightarrow e \in S_1 \lor e \in S_2 \)

Question: Can you sketch the proof (for your set specification)?