CSC 4504 : Langages formels et applications

J Paul Gibson, A207

paul.gibson@telecom-sudparis.eu
http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC4504/

Abstract Data Types

From TRSs to Abstract Data Types (ADTs)

ADTs are a very powerful specification technique which exist in many forms (languages).

These languages are often given operational semantics in a way similar to TRSs (in fact, they are pretty much equivalent)

Most ADTs have the following parts ---

- A type which is made up from sorts
-Sorts which are made up of equivalent sets
-Equivalent sets which are made up of expressions
For example, the integer type could be made up of
-sorts integer and boolean
- 1 equivalence set of the integer sort could be $\{3,1+2,2+1,1+1+1\}$
- 1 equivalence set of the boolean sort could be $\{3=3,1=1$, not(false) $\}$

Problem 4: A simple ADT specification

TYPE integer SORTS integer, boolean
OPNS
0:-> integer
succ: integer -> integer
eq: integer, integer -> boolean

+ : integer, integer -> integer
EQNS forall x, y : integer
0 eq $0=\operatorname{true} ; \operatorname{succ}(x)$ eq $\operatorname{succ}(y)=x$ eq y;
0 eq $\operatorname{succ}(x)=$ false; $\operatorname{succ}(x)$ eq $0=$ false;
$0+\mathrm{x}=\mathrm{x} ; \operatorname{succ}(\mathrm{x})+\mathrm{y}=\mathrm{x}+(\operatorname{succ}(\mathrm{y})) ;$
ENDTYPE

Problem 4: A simple ADT specification

TYPE integer SORTS integer, boolean OPNS

0:-> integer
succ: integer -> integer
eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x, y : integer
0 eq $0=\operatorname{true} ; \operatorname{succ}(x)$ eq $\operatorname{succ}(y)=x$ eq $y ;$
0 eq $\operatorname{succ}(x)=$ false; $\operatorname{succ}(x)$ eq $0=$ false;
$0+\mathrm{x}=\mathrm{x} ; \operatorname{succ}(\mathrm{x})+\mathrm{y}=\mathrm{x}+(\operatorname{succ}(\mathrm{y})) ;$
ENDTYPE

Question: how do we show, for example ---

$$
\begin{aligned}
& \cdot 1+2=3, \\
& \cdot 3+2=4+1, \\
& \cdot 2+2!=3+2
\end{aligned}
$$

Problem 4: A simple ADT specification

TYPE integer SORTS integer, boolean OPNS
$0:->$ integer
succ: integer -> integer
eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x, y : integer
0 eq $0=\operatorname{true} ; \operatorname{succ}(x)$ eq $\operatorname{succ}(y)=x$ eq $y ;$
0 eq $\operatorname{succ}(x)=$ false; $\operatorname{succ}(x)$ eq $0=$ false;
$0+\mathrm{x}=\mathrm{x} ; \operatorname{succ}(\mathrm{x})+\mathrm{y}=\mathrm{x}+(\operatorname{succ}(\mathrm{y})) ;$
ENDTYPE

Note: this model is complete and consistent with respect to the modelling of the addition of integers (like the TRS pq-)

Question: extend this model to include multiplication

Problem 4: An equivalent ADT specification

Consider changing the original specification to make explicit the fact that $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$, for all integer values of \mathbf{x} and y :

TYPE integer SORTS integer, boolean
OPNS
0 :-> integer
succ: integer -> integer
eq: integer, integer -> boolean

+ : integer, integer -> integer

EQNS forall x, y : integer
0 eq $0=\operatorname{true} ; \operatorname{succ}(x)$ eq $\operatorname{succ}(y)=x$ eq $y ;$
0 eq $\operatorname{succ}(x)=$ false; $\operatorname{succ}(x)$ eq $0=$ false;
$0+x=x ; \operatorname{succ}(x)+y=x+(\operatorname{succ}(y)) ;$
$\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x} ;$
ENDTYPE

Note: this does not change the meaning of the specification but it may affect the implementation of the evaluation of expressions

Problem 4: Evaluation termination

If expressions are evaluated as left to right re-writes (as they often are) then evaluation may not terminate:
$3+4=4+3$ may be re-written as
$4+3=3+4$ which may be re-written as

$$
3+4=4+3 \ldots
$$

Consequently, there are 4 important properties of ADT specifications:
-completeness

- consistency
-confluence
\bullet-terminating

With respect to the interpretation
Convergent (for both)

Problem 4: Incompleteness, inconsistency and termination

Not having enough equations can make a specification incomplete. For example, the integer ADT specification would be incomplete without the equation:

$$
0 \text { eq } 0=\text { true }
$$

Having too many equations can make a specification inconsistent. For example, the integer ADT specification is inconsistent if we add the equation:

$$
x+\operatorname{succ}(0)=x
$$

but adding the equation:

$$
x+\operatorname{succ}(0)=\operatorname{succ}(x)
$$

would not introduce inconsistency (just redundancy)
Changing the equations may affect termination:

$$
0+\mathrm{x}=\mathrm{x} \text { to } \mathrm{x}+0=\mathrm{x}
$$

would introduce non-termination to the original ADT specification

Problem 4b --- A Set ADT specification

```
TYPE Set SORTS Int, Bool
OPNS
empty:-> Set
str: Set, int -> Set
add: Set, int -> Set
contains: Set, int -> Bool
EQNS forall s:Set, x, y :int
contains(empty, x) = false;
x eq y }=>\mathrm{ contains( }\operatorname{str}(\textrm{s},\textrm{x}),y)=\mathrm{ true;
not (x eq y) => contains(str(s,x), y)=
                        contains(s,y);
contains(s,x)=> add(s,x)=s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE
```


Notes:

- use of str and add
- preconditions
-completeness?
-consistency?

Question:

add operations for --
-remove
-union
-equality

Set (model) verification

Invariant Property: verify that a set never contains any repeated elements

We would like to verify the following properties:

$$
\begin{aligned}
& \cdot e \notin(S-e)=\text { true } \\
& \cdot e \in S 1 \cup S 2 \Rightarrow e \in S 1 \quad v e \in S 2
\end{aligned}
$$

Question: Can you sketch the proof (for your set specification)?

