
CSC45042017: J Paul Gibson 1

CSC 4504 : Langages formels et applications

J Paul Gibson, A207

paul.gibson@telecom-sudparis.eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC4504/

Abstract Data Types

CSC40022017 2

From TRSs to Abstract Data Types (ADTs)
ADTs are a very powerful specification technique which exist in many forms
(languages).

These languages are often given operational semantics in a way similar to
TRSs (in fact, they are pretty much equivalent)

Most ADTs have the following parts ---

•A type which is made up from sorts

•Sorts which are made up of equivalent sets

•Equivalent sets which are made up of expressions

For example, the integer type could be made up of

•sorts integer and boolean

•1 equivalence set of the integer sort could be {3, 1+2, 2+1, 1+1+1}

•1 equivalence set of the boolean sort could be {3=3, 1=1, not(false)}

CSC40022017 3

Problem 4: A simple ADT specification

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;
0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

CSC40022017 4

Problem 4: A simple ADT specification
TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

Question: how do we show, for example ---

•1+2 = 3,

•3+2 = 4+1,

•2+2 != 3+2

CSC40022017 5

Problem 4: A simple ADT specification
TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

Note: this model is complete and consistent with respect to the
modelling of the addition of integers (like the TRS pq-)

Question: extend this model to include multiplication

CSC40022017 6

Problem 4: An equivalent ADT specification

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

x+y = y+x;
ENDTYPE

Consider changing the original specification to make
explicit the fact that x+y = y +x, for all integer values of x
and y:

Note: this does not change the meaning of the specification but it may
affect the implementation of the evaluation of expressions

CSC40022017 7

Problem 4: Evaluation termination

If expressions are evaluated as left to right re-writes (as they often are)
then evaluation may not terminate:

3 +4 = 4+3 may be re-written as

4+3 = 3+4 which may be re-written as

3+4 = 4+3 …

Consequently, there are 4 important properties of ADT
specifications:

•completeness
•consistency
•confluence
•terminating

With respect to the interpretation

Convergent (for both)

CSC40022017 8

Problem 4: Incompleteness, inconsistency and termination

Not having enough equations can make a specification incomplete. For example,
the integer ADT specification would be incomplete without the equation:

0 eq 0 = true

Having too many equations can make a specification inconsistent. For example,
the integer ADT specification is inconsistent if we add the equation:

x + succ(0) = x

but adding the equation:

x + succ(0) = succ(x)

would not introduce inconsistency (just redundancy)
Changing the equations may affect termination:

0 + x = x to x + 0 = x

would introduce non-termination to the original ADT specification

CSC40022017 9

Problem 4b --- A Set ADT specification

TYPE Set SORTS Int, Bool
OPNS
empty:-> Set
str: Set, int -> Set
add: Set, int -> Set
contains: Set, int -> Bool
EQNS forall s:Set, x, y :int
contains(empty, x) = false;
x eq y => contains(str(s,x), y) = true;
not (x eq y) => contains(str(s,x), y) =
 contains(s,y);
contains(s,x) => add(s,x) = s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE

Notes:
•use of str and add
•preconditions
•completeness?
•consistency?

Question:
add operations for --

•remove
•union
•equality

CSC40022017 10

Set (model) verification

We would like to verify the following properties:

•e ∉ (S-e) = true

•e ∈ S1 ∪ S2 ⇒ e ∈S1 ∨ e ∈ S2

Invariant Property: verify that a set never contains any repeated
elements

Question: Can you sketch the proof (for your set specification)?

