
CSC45042017: J Paul Gibson 1

CSC 4504 : Langages formels et applications

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

/~gibson/Teaching/CSC4504/Problem6-CollectiveIntelligence.pdf

Swarm, Collective Intelligence and
CrowdSourcing

Distributed Donors Problem

CSC45042017: J Paul Gibson 2

Collective Intelligence

Pierre Lévy is a French philosopher introduced the
collective intelligence concept in his book
L'intelligence collective: Pour une anthropologie du
cyberspace (1994).

http://gutenberg.net.au/ebooks13/1303731h.html
Wells describes his vision of the world brain: a new, free,
synthetic, authoritative, permanent World Encyclopaedia
that could help world citizens make the best use of universal
information resources and make the best contribution to
world peace. —Wikipedia

But, concept originated (in other forms) much earlier

Aristotle: a feast to which many contribute is
better than a dinner provided out of a single
purse

CSC45042017: J Paul Gibson 3

Collective Intelligence

Collective intelligence is the effect by which the aggregate results
that are obtained by a diverse group of people will tend to be more
accurate than any one person alone.

CSC45042017: J Paul Gibson 4

Collective Intelligence

Collective intelligence as
“groups of individuals acting
collectively in an intelligent
manner,”

Individuals may be software
agents and/or people (and/
or animals?) and the
collective may consist of a
mixture

CSC45042017: J Paul Gibson 5

Crowdsourcing

Howe, Jeff. "The rise
of crowdsourcing."
Wired magazine 14.6
(2006): 1-4.

Brabham, Daren C.
"Crowdsourcing as a
model for problem
solving: An
introduction and
cases." Convergence
14.1 (2008): 75-90.

Crowd sourcing is the process by which
work or knowledge is obtained from the
public at large through a system of
invitations and incentives

CSC45042017: J Paul Gibson 6

Swarm Intelligence - multi Agent Distributed Systems
(inspired by nature)

CSC45042017: J Paul Gibson 7

Swarm Intelligence - multi Agent Distributed Systems
(inspired by nature)

The emergent collective intelligence of groups of simple agents

The key is that complex behaviour (problem solving) arises out
of a composition of simple behaviours.

These simple behaviours are usually homogeneous, but can be
multi-role.

Designing solutions to problems using swarm algorithms is
very challenging.

Question: how simple can the agent behaviour be??

CSC45042017: J Paul Gibson 8

Cellular Automata

1 Any live cell with fewer than two live neighbours dies, as if caused by underpopulation.
2 Any live cell with two or three live neighbours lives on to the next generation.
3 Any live cell with more than three live neighbours dies, as if by overpopulation.
4 Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

John Conway’s Game of Life

Two Dimensions

CSC45042017: J Paul Gibson 9

Cellular Automata

https://youtu.be/My8AsV7bA94

John Conway’s Game of Life - Universal Turing Machine

CSC45042017: J Paul Gibson 10

Universality in elementary cellular automata, Cook, Matthew, 2004

Cellular Automata

Single Dimension

Rule 110

11

A group of donors wish to donate money to a charitable organisation. In
the group there is a single treasurer who is responsible for collecting and
counting all the donations.

The following distributed process is used to collect and count donations -

When a donor meets the treasurer, they give their donation to the
treasurer and the treasurer updates the donation count. If a donor meets
another donor, then the 2 donors combine their donations into a single
donation and 1 of the donors takes responsibility for getting the
combined donation to the treasurer; the other donor has no longer any
role to play in the process. The process is finished when all donors,
except the treasurer, have given their donation to someone else (ie the
treasurer).

We wish to implement a simulation of this process and check that on
completion the treasurer has the sum of all the individual donations

Distributed Donors Problem

We also wish to check the complexity/performance of the distributed algorithm.

12

Distributed Donors Problem

Write a Java Simulation of the DDP

Randomly initialise the room with 100 donors

Randomly appoint a single donor as the treasurer

Each donor object should be a separate thread

Simulate one donor meeting another donor and exchanging their funds

If the average time between meetings is 10 seconds, then how long -on
average - will it take until all the money is with the treasurer

Note: This is not really emergent behaviour, but …

13

Processes and Threads (in Java)

Processes and Threads are the two fundamental units of
execution in a concurrent program.

14

Processes and Threads

•In Java, concurrent programming is mostly thread-based.

•Processing time for each core in a system is shared among processes and threads
through an OS feature called time slicing.

•Concurrency is possible even on simple systems, without multiple processors or
execution cores.

http://www.java-forums.org/blogs/thread/

15

Processes

Self-contained execution environment.

Independent set of basic run-time resources, such as memory space.

A single application may be implemented by a set of cooperating processes.

Most operating systems support Inter Process Communication (IPC) resources.

IPC can also used for communication between processes on different systems.

Most implementations of the JVM run as a single process.

16

Threads

Also known as lightweight processes.

Creating a new thread requires fewer resources than creating a new process.

Threads exist within a process — every process has at least one.

Threads share the process's resources, including memory and open files.

This has advantages and disadvantages … can you think of them?

Multithreaded execution is essential in Java:
• every application has at least one thread
•"system" threads that do memory management, event/signal handling, etc.

In programming, we start with just one thread, called the main thread.

Any thread (including the main thread) can create new threads.

17

Threads in Java: some additional reading

Fixing The Java Memory Model, William Pugh, 1999.

The Problem with Threads, Edward Lee, 2006.

Java Thread Programming, by Paul Hyde ISBN: 0672315858
Sams 1999

Concurrent Programming in Java™: Design, Principles and
Patterns, Second Edition, By Doug Lea, ISBN: 0-201-31009-0
Addison Wesley, 2001

18

Thread Example

Download the code Threads.zip from the web site and import it into
Eclipse

TO DO

19

Thread Example
public class ThreadExample {

 public static void main (String[] args) {

 System.out.println("Starting Thread main");

 new SimpleThread("Add1", '1').start();

 new SimpleThread("Add2", '2').start();

 System.out.println("Finishing Thread main");

 }

}

20TSP: Advanced OO Programming - Threads2016: J Paul Gibson

Thread Example - typical output

Starting Thread main
Finishing Thread main
String Add2 extended to 2
String Add2 extended to 22
String Add2 extended to 222
String Add1 extended to 1
String Add1 extended to 11
String Add2 extended to 2222
String Add2 extended to 22222
No more increments left for threadAdd2
String Add1 extended to 111
String Add1 extended to 1111
String Add1 extended to 11111
No more increments left for threadAdd1

21

Thread Example - SimpleThread Code
/* see -
http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html
*/

class SimpleThread extends Thread {
String stringofchars;
char increment;

 public SimpleThread(String str, char inc) {
 super(str);
 stringofchars = "";
 increment = inc;
 }
 public void run() {
 for (int i = 0; i < 5; i++) {

 try {
 sleep((int)(Math.random() * 3000));
 } catch (InterruptedException e) {}
 stringofchars = stringofchars + increment;
 System.out.println("String " + getName()+
 " extended to "+ stringofchars);
 }
 System.out.println("No more increments left for
 thread" + getName());
 }
}

22

IllegalThreadStateException

The runtime system throws an IllegalThreadStateException
when you call a method on a thread and that thread's state does not allow
for that method call. (See the state machine diagram in later slides)

So, when you call a thread method that can throw an exception, you must
either catch and handle the exception, or specify that the calling method
throws the uncaught exception.

The sleep method can also throw an InterruptedException, and so
we needed a try/catch in the previous code:

try {
 sleep((int)(Math.random() * 3000));
 } catch (InterruptedException e) {}

23

Sharing Thread Problem

The previous example showed how two independent threads
execute concurrently.

Threads can also share data/objects and so their concurrent
behaviours are inter-dependent.

We wish to change the previous code so that the 2 threads update
the same string of characters.

We will do this using a SharedString class

24

Sharing Thread Problem

 class SharedString {

public SharedString(){str ="";}

public String str;

public void add (char c){str = str + c;}

public String toString () {return str;}
}

public class SharingThreadsTest {

 public static void main (String[] args) {

 SharedString soc = new SharedString();
 new SharingThread("SharingAdda", soc, 'a').start();
 new SharingThread("SharingAddb", soc, 'b').start();
 }

}

Threads.zip

X

Your task is to code the class SharingThread

25

Sharing Thread Problem

We want the output from this code to produce, typically:

Shared String extended by SharingAddb to b
Shared String extended by SharingAddb to bb
Shared String extended by SharingAdda to bba
Shared String extended by SharingAddb to bbab
Shared String extended by SharingAddb to bbabb
Shared String extended by SharingAdda to bbabba
Shared String extended by SharingAddb to bbabbab
No more increments left SharingAddb
Shared String extended by SharingAdda to bbabbaba
Shared String extended by SharingAdda to bbabbabaa
Shared String extended by SharingAdda to bbabbabaaa
No more increments left SharingAdda

TO DO: Your task is to code the class SharingThread extends Thread {}
to provide this behaviour

26

Thread State Machine: an abstraction of the complete
diagram

The start() method creates the system resources necessary to run the
thread, schedules the thread to run, and calls the thread's run() method.

The next state state is "Runnable" rather than "Running" because the
thread might not actually be running when it is in this state.

27

Thread State Machine: an abstraction of the complete
diagram

A thread enters the "Not Runnable" state when:

•sleep() is called.

•suspend() is called.

•The thread uses its wait() method to wait
on a condition variable.

•The thread is blocking on I/O.

A thread leaves the "Not Runnable"
state when a matching condition is met:

•sleep() is completed.

•resume() is called

•object owning the variable calls
notify() or notifyAll()

•I/O completes

28

Thread State Machine: an abstraction of the complete
diagram

A thread dies naturally when its run() method exits normally

You can also kill a thread at any time by calling its stop() method
QUESTION: What should happen if an exception occurs inside a thread?

29

Threads and Synchronization Issues

Threads can share state (objects)

This is very powerful, and makes for very efficient inter-thread
communication

However, it makes two kinds of errors possible:
•thread interference, and
•memory inconsistency.

Java provides a synchronization “tool” in order to avoid these
types of errors.

30

Thread Interference

Interference happens when two operations, running in different threads, but acting
on the same data, interleave. This means that the two operations consist of
multiple steps, and the sequences of steps overlap. Because they are
unpredictable, thread interference bugs can be difficult to detect and fix.

Consider a simple class called Counter

 class Counter {
 private int c = 0;
 public void increment() {c++;}

 /* Multiple steps of c++
1. Retrieve the current value of c.
2. Increment the retrieved value by 1.
3. Store the incremented value back in c.
 */

 public void decrement() {c--;}
 public int value() {return c;}
 }

If a Counter object is referenced from multiple threads, interference between threads
may give rise to unexpected behaviour.

31

Memory inconsistency
Consider the following example.

int counter = 0;

The counter field is shared between two threads, A and B.

Suppose thread A increments counter:

 counter++;

Then, shortly afterwards, thread B prints out counter:

 System.out.println(counter);

If the two statements had been executed in the same thread, it would be safe to assume that the
value printed out would be "1".

But, in this example, the value printed out might well be "0", because there's no guarantee that
thread A's change to counter will be visible to thread B — unless the programmer has
established a happens-before relationship between these two statements.

There are several actions that create happens-before relationships.

The simplest technique/tool is to use synchronization

32

Synchronized methods, example:

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() {c++;}
 public synchronized void decrement() {c--;}
 public synchronized int value() {return c;}
}

Two invocations of synchronized methods on the same object cannot interleave.
When one thread is executing a synchronized method for an object, all other
threads that invoke synchronized methods for the same object block (suspend
execution) until the first thread is done with the object.

When a synchronized method exits, it automatically establishes a happens-before
relationship with any subsequent invocation of a synchronized method for the
same object. This guarantees that changes to the state of the object are visible to
all threads.

Synchronization is effective for keeping systems safe, but can present problems
with liveness

33

Java Constructors cannot be synchronized

http://docs.oracle.com/javase/tutorial/essential/concurrency/
syncmeth.html

