
CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 1

CSC4504/Prolog. : Formal Languages & Applications

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC4504/

An Introduction To Prolog
/~gibson/Teaching/CSC4504/Problem8-Prolog.pdf

http://www-public.it-sudparis.eu/~gibson/Teaching/CSC4504/

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 2

How many Prolog
programmers does it
take to change a
lightbulb?

false.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 3

Logic programming with Prolog

We are going to look at logic programming

We choose Prolog as a typical example

•Started around 1970

•Used for many applications :

relational databases, mathematical logic, abstract
problem solving, understanding natural language,
design automation, symbolic equation solving,
biochemical structure analysis, …

•Most recent use is in AI

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 4

Logic programming with Prolog: history

Prolog from research at the University of Aix-Marseille in the late 60's and early
70's.

Alain Colmerauer and Phillipe Roussel (University of Aix-Marseille)
collaborated with Robert Kowalski (University of Edinburgh) to create the design
of Prolog as we know it today.

•Kowalski - the theoretical framework
•Colmerauer's -formalize the Prolog language.

1972 birthdate of Prolog.

The first Prolog compiler - David Warren, an expert on Artificial Intelligence at
the University of Edinburgh – Warren’s Abstract Machine (1983)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 5

Logic programming with Prolog: some reading

Predicate Logic as a programming language, Kowalski, 1974

Prolog - The language and its implementation compared with
LISP, Warren, Pereira and Pereira, 1977

The Early Years Of Logic Programing, Robert Kowalski,
1988

The birth of Prolog, Colmeraurer and Roussel, 1996

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 6

For beginners

Writing a Prolog program is not like specifying an algorithm
in the conventional way.

The programmer asks what formal relationships and objects
occur in the problem.

Program searches for what relationships are ‘true’ in the
desired solution.

Prolog is descriptive (what) rather than prescriptive (how)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 7

Prolog Computation
The way the computer carries out a computation for Prolog is
specified partly by:

•the logical declarative semantics of Prolog

•the new facts Prolog can ‘infer’ from the given facts

•explicit control information given in the program

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 8

Prolog Overview
Prolog is a practical and efficient implementation of many aspects of
‘intelligent’ program execution like:

•non-determinism,

•parallelism,

•pattern-directed procedure call

Prolog provides a uniform data structure called the term, around which
all data and programs are constructed.

A Prolog program consists of a set of clauses, where each clause is
either:

•a fact about the given information ,or

•a rule about how the solution may relate to or be inferred from the
given facts

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 9

Introducing Prolog

To start, we look at essential elements of the language in real programs,
without becoming diverted by details, formal rules, and exceptions.

We aren’t trying to be complete or precise

We hope to be writing programs ASAP

Concentrate on the basics:

•facts,

•questions,

•variables,

•conjunctions,

•rules

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 10

Objects and relationships
Prolog is used when we wish the computer to solve problems that can be
expressed in the form of objects and their relationships.

Example:

Paul owns the car

This declares that a relationship (ownership) exists between one object
(Paul) and another object (the car).

Note:

•the relationship has an order

•the objects are concrete

•we didn’t say ‘Paul owns a car’!!

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 11

Abstraction in relationships
Some relationships don’t always mention all the objects that are
involved.

Example:

Paul is intelligent.

Here, there is a relationship (being intelligent) which involves
Paul. We do not say who finds Paul intelligent (or why)

We abstract away from this information as we choose only to
say what we want to say.

In Prolog, the amount of detail given has influence on the
things you can accomplish

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 12

A bit of philosophy
We are all familiar with rules like:

2 people are sisters if they are both female and have
the same parents

This tells us:

•something about what it means to be sisters

•how to find out if 2 people are sisters

Note:

•these rules are usually oversimplified, but acceptable
as definitions.

•do not expect a definition to tell us everything about
something

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 13

Philosophy continued ...

Most people would agree that there is ‘more to being sisters’
in real life than the rule would suggest.

When solving a problem, we must concentrate only on the
rules which can help us.

We should consider an imaginary and simplified definition
if it is sufficient for our purposes.

Prolog programming consists of:

•declaring facts about objects and relationships

•declaring rules about objects and relationships

•asking questions about objects and relationships

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 14

The philosophy of sisters

Suppose we told Prolog a rule about sisters. We could the ask
whether Paul and Peter were sisters. Prolog would search through
everything it knows (about sisters, paul and peter) and return yes
or no.

Question:

if Prolog does not have enough information to decide if Paul and
Peter are sisters then what should it do?

Answer: this defines part of the boundary between philosophy
and logic … we shall see what Prolog actually does (later on)

Further reading: closed world assumption vs open world assumption

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 15

The syntax of facts

Informally we know that Paul likes Beer.

Formally, in Prolog, we write: likes(paul, beer).

Note:

•names of objects and relationships must begin with a
lower-case

•the relationship is written first

•the objects are separated by commas

•objects are enclosed by round brackets

•the full stop character ‘.’ must come at the end of a fact

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 16

Some example facts

good(beer).

drinks(paul, beer).

buys(paul, beer, peter).

owes(peter, beer, paul).

mix(beer,vodka,drunk).

Beer is good

paul drinks beer

paul buys beer for peter

peter owes paul beer

mixing beer and vodka makes you drunk

Note: when using names we must decide how to interpret
the name. The programmer decides on the interpretation…
so make it consistent and comprehensible.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 17

Some terminology
The names of objects in round brackets are arguments

The name of the relationship before the round brackets is the predicate

The names chosen are arbitrary, but we normally select names to
correspond to their interpretation.

The order of arguments is also arbitrary, but again we should try to
match intuition in a consistent manner.

Relationships can have an arbitrary number of arguments

More complex relationships require many arguments:

cocktail(paul, favourite, beer, gin, wine, whiskey).

A collection of facts is called a database

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 18

Questions in Prolog

Once we have some facts, we can ask questions about them.

In Prolog, a question looks like a fact, except that we put a
special symbol before it … a question mark and hyphen.

?- likes(paul,beer).

When a question is asked, Prolog searches through the
database of facts looking for matches.

Two facts match if their predicates are the same and if their
arguments are the same.

If a matching fact is found then Prolog responds yes

 otherwise Prolog responds no

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 19

Facts and questions
Consider the following database of facts:

likes(paul,beer).

likes(paul,wine).

canmakeyoudrunk(wine).

canmakeyoudrunk(beer).

canmakeyoudrunk(paul).

Now we pose the following questions:

likes(paul,money)

isUniversity(oxford)

In both cases, the answer is
no, even if the intended
meaning is true. In prolog no
is returned when nothing
matches

Installing SWI Prolog http://www.swi-prolog.org/download/stable

PDT Prolog IDE for Eclipse

http://sewiki.iai.uni-bonn.de/research/pdt/docs/start

(For later …)

Using SWI Prolog
Write a program in a text file:

% /Users/jpaulgibson/Documents/MyPrograms/MyProlog/syllogism.pl

/**
 * A simple example of a syllogism in Prolog
 *
 * MAJOR PREMISE - All men are mortal
 * MINOR PREMISE - Socrates is a man
 * CONCLUSION (DEDUCTION) - Socrates is mortal
 *
 **/

is_a(socrates, man).

 is_a(X, mortal) :-
is_a(X, man).

/*
 *is_a(socrates, mortal).
*/

Using SWI Prolog

1 ?- consult(syllogism). 
% syllogism compiled 0.00 sec, 424 bytes Or menu-file-consult

CTRL RETURN ??

1 ?- [user].

|: sibling(X,Y) :- parent(Z,X), parent (Z,Y).
ERROR: user://1:10:39: Syntax error: Operator expected
|: sibling(X,Y) :- parent(Z,X), parent(Z,Y).
|: parent(paul, dad).
|: parent(andrew, dad).
|:
|:
% user://1 compiled 0.02 sec, 4 clauses
true.

2 ?- sibling(paul, andrew).
false.

A first experiment: Paul and Andrew share a
dad so they are siblings???

Interactive programming- input facts and rules

Watch out for spaces

Why is this not true?
Watch out for ordering of parameters

CTRL D - back to goals/queries

RULE

RULE
FACT
FACT

QUERY

A first
experiment
: Paul and
Andrew
share a dad
so they are
siblings???
… let’s get
it right

|: sibling(X,Y) :- parent(Z,X), parent(Z,Y).

|: parent(dad,paul).
|: parent(dad,andrew).
|:
% user://1 compiled 0.01 sec, 4 clauses
true.

2 ?- sibling(paul,andrew).
true.

3 ?- sibling(andrew,paul).
true.

4 ?- sibling(X,Y).
X = Y, Y = paul .

5 ?- sibling(X,Y).
X = Y, Y = paul
X = paul,
Y = andrew
X = andrew,
Y = paul
X = Y, Y = andrew.

RETURN finishes the search

; “semi-colon” keeps searching

Write a Prolog program to capture the following
properties:

paul is the brother of jill
jill is the sister of andrew
Brothers share a common parent
Sisters share a common parent
Siblings share a common parent

Check whether or not (depending on your program)

paul and andrew are siblings

Built-in predicates

?- write(hello).
hello
true.

write ?- write(Hello).
_G2137
true.

?- write(hello world).
ERROR: Syntax error: Operator expected
ERROR: write(hello
ERROR: ** here **
ERROR: world) .

?- write('hello world').
hello world
true.

History Commands:

 !!. Repeat last query
 !nr. Repeat query numbered <nr>
 !str. Repeat last query starting with <str>
 !?str. Repeat last query holding <str>
 ^old^new. Substitute <old> into <new> of last query
 !nr^old^new. Substitute in query numbered <nr>
 !str^old^new. Substitute in query starting with <str>
 !?str^old^new. Substitute in query holding <str>
 h. Show history list
 !h. Show this list

History Commands Examples:

17 ?- h.
 1 [user].
 2 sibling(paul,andrew).
 3 sibling(andrew,paul).
 4 sibling(X,Y).
 5 sibling(X,Y).
 6 sibling(X,Y).
 7 sibling(X,Y).
 8 sibling(X,Y).
 9 write(hello).
 10 write(Hello).
 11 ?- write('hello world').
 12 write('hello world').
 13 write("hello world").
 14 write("hello world").
 15 write('hello world').
 16 sibling(X,Y).

18 ?- !10.
write(Hello).
_G3436
true.

 19 ?- !sibling.
sibling(X,Y).
X = Y, Y = paul .

Terminate the interaction with
halt.

Loading an existing prolog database (prolog-example1.pl)

% /Users/jpaulgibson/Documents/MyPrograms/MyProlog/prolog-example1.pl

/**
 * A simple first example
 *
 **/

likes(paul,beer).
likes(paul,whiskey).
likes(andrew,beer).
likes(andrew,wine).

Listing an existing prolog database

Loading an existing prolog database

1 ?- consult('/Users/jpaulgibson/Documents/MyPrograms/MyProlog/prolog-example1.pl').
% /Users/jpaulgibson/Documents/MyPrograms/MyProlog/prolog-example1.pl compiled 0.00 sec, 5
clauses
true.

2 ?- likes(X,Y).
X = paul,
Y = beer
X = paul,
Y = whiskey
X = andrew,
Y = beer
X = andrew,
Y = wine.

3 ?-

Note: to load a file into the interpreter we can also write:
['/Users/jpaulgibson/Documents/MyPrograms/MyProlog/prolog-example1.pl'].

Press space between pairs

Can type the command consult or use the file menu

Prolog has built-in lists

?- [a,b,c,d] = [H|T].
 H = a, T = [b,c,d]

?- [a,b,c,d] = [H1,H2|T].
 H1 = a, H2 = b, T = [c,d]

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 34

List membership
member (X, [X, Xs]). % member 1

member (X, [Y|Ys]) :- member(X,Ys) % member 2

member1 says that X is in the list if it is the first thing in the list

member2 says that X is in the list if it is in the tail of the list

?- member(1, [1,2,3]).
Yes
?- member(5,[1,2,3]).
No
?- member (X, [1,2,3]).
X = 1?;
X = 2?;
X = 3?;
no

Appending lists
% /Users/jpaulgibson/Documents/MyPrograms/MyProlog/list-append.pl

/**
 * A simple list append example
 *
 **/

append([],List,List).
append([H|Tail],X,[H|NewTail]) :- append(Tail,X,NewTail).

[‘/Users/jpaulgibson/Documents/MyPrograms/MyProlog/list-append.pl'].
% /Users/jpaulgibson/Documents/MyPrograms/MyProlog/list-append.pl compiled 0.00 sec, 3
clauses
true.

?- append([a,b,c],[d,e],X).

X = [a, b, c, d, e].
Question: how does this work?

Prolog has built-in lists

List unification

[X|Y] unifies with [a,b,c] with the unifier {X = a, Y = [b,c]}.

[X|Y] unifies with [a,b,c,d] with the unifier {X = a, Y = [b,c,d]}.

[X|Y] unifies with [a] with the unifier {X = a, Y = []}.

 
[X|Y] does not unify with [].

Prolog has built-in lists

Prolog has built-in lists

List unification - we can see this with the trace functionality

?- trace.
true.

[trace] 8 ?- append([a,b,c],[d,e],X).

 Call: (6) append([a, b, c], [d, e], _G3547) ? creep
 Call: (7) append([b, c], [d, e], _G3629) ? creep
 Call: (8) append([c], [d, e], _G3632) ? creep
 Call: (9) append([], [d, e], _G3635) ? creep
 Exit: (9) append([], [d, e], [d, e]) ? creep
 Exit: (8) append([c], [d, e], [c, d, e]) ? creep
 Exit: (7) append([b, c], [d, e], [b, c, d, e]) ? creep
 Exit: (6) append([a, b, c], [d, e], [a, b, c, d, e]) ? creep
X = [a, b, c, d, e].

?- notrace.

trace on

trace off

Prolog has built-in lists

PROBLEM : write a Prolog program for reversing a list

1 ?- ['/Users/jpaulgibson/Documents/MyPrograms/MyProlog/list-reverse.pl'].
% /Users/jpaulgibson/Documents/MyPrograms/MyProlog/list-reverse.pl compiled 0.00 sec, 3 clauses
true.

2 ?- reverse([1,2,3], X).
X = [3, 2, 1].

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 40

How do queries (with variables) execute?

To begin, all we can get back from our database of facts is the
information that we have put in.

It would be more interesting to ask things like:

what does paul like?

what canmakeyoudrunk?

In Prolog, this is what we use variables for … these are names
(starting with capital letters) which stand for objects to be
determined by Prolog. A variable can be:

•instantiated … when there is an object that it stands for, or

•not instantiated … when what it stands for is not yet known

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 41

Questions with variables
When faced with a question such as:

what does Paul like?

Prolog will search through all its facts to find a match.

?-likes(paul,X).

X = beer.

Prolog will then wait for further instructions.

Question: why beer and not wine?

Question: why not both?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 42

How it searches

•When the question is asked, the variable X is not instantiated

•Prolog searches for a fact where:

•the predicate is likes

•the first argument is paul

•Once a match is found, it instantiates X as the 2nd parameter

•Prolog searches in top-down order in the file (on the page)

•So, likes(paul,beer) is found first and so X is set to beer.

•Note: Prolog now marks the place where this match was
found … this is important later.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 43

What to do once a match is made
There are 2 logical choices as to how to continue:

•If you are satisfied with one answer you type RETURN

•If you want to search for more matches then type ; RETURN

If you continue your search then:
•Prolog forgets that it has instantiated X to beer

•Continues the search at the point at which it previously found a match
(the place marker)

•If it finds a match then you can again choose to continue as before

Finishing the search:
Prolog returns no when no more matches are found after the current place
marker. When this occurs you can try another question or give more facts

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 44

Conjunctions

We may wish to structure our questions:

does paul like beer and wine?

and is the logical conjunction … represented in Prolog by a comma

?- likes(paul,beer), likes(paul,wine).

We can now ask more interesting questions.

Question: how can we find something that paul likes and which can
make you drunk?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 45

Disjunctions (; option)

happy1(X) :- rich(X).
happy1(X) :- famous(X).

happy2(X) :- rich(X) ; famous(X).

happy3(X) :- attractive(X), (rich(X) ; famous(X)).

Combining conjunction and disjunction:

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 46

Paul likes (some)thing(s) that can make him drunk?

If we type in the following question:
?- likes(paul,X) , makesyoudrunk(X).
Prolog will reply

X=beer
How does this work?

Prolog attempts to satisfy the first goal … and marks the place in the database
where it finds the first matching fact. It then attempts to satisfy the second goal
(using the previous instantiation) and marks the first matching place in the
database.

Note: we have not shown that Paul likes all things that can make you drunk… even
though this is true in the database and false in the real world.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 47

Backtracking: an introduction

The previous example illustrated a very simple case where:

the initial values that variables are instantiated to do not
change at later points in the search.

Question: can you think of an example set of facts, and a
question which could not be matched in this way … even
though a match could be found if we could go back and re-
instantiate a variable to a different value?

Note: this technique is known as backtracking and is
fundamental to programming in Prolog.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 48

Backtracking: an example

likes(paul,beer).

hates(patricia, football).

likes(paul,wine).

likes(paul, football).

hates(patricia, motorracing).

?- likes(paul, X), hates(patricia,X).

Prolog execution:
match1 X = beer
marker1 = 1
nomatch2
restart 2
match X = wine
marker1 = 3
nomatch 2
restart 4
match X = football
marker 1 = 4
match2
marker2= 2
X = football

1

2

3

4

5

6

Finding another match ---

Type ;RETURN and Prolog re-starts the
search at the current markers.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 49

Rules: more complex reasoning
We wish to express the following:

Paul likes everything that can make you drunk
Peter likes only those things that can make you drunk

We do this using rules:
makeyoudrunk(X) :- likes(peter,X).
likes(paul,X) :- makeyoudrunk(X)

Terminology:
•likes(peter,X) is called the body of the rule (1)
•likes(paul,X) is called the head of the rule (2)
•h:-b can be interpreted as ‘h if b’

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 50

Some More Terminology

A clause (of a predicate) is any fact or rule (which includes
this predicate).

For example,

likes(paul,beer).

likes(paul,X):- makesyoudrunk(X), cheap(X).

are both clauses of the predicate likes

Note: when trying to answer a question, Prolog may not use,
or need to use, all the clauses.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 51

Some Reasoning

/*1*/ drinker(paul).

/*2*/ likes(patricia, wine).

/*3*/ likes(patricia, chocolate).

/*4*/ likes(paul,X) :- likes(X,wine).

/*5*/ drinks(paul,X) :- likes(paul,X).

Note:

the comments

between the

/* … */

Question (1):

?- drinks(paul,X).

results in what response?

Question (2):

 which clause(es) is/are not
relevant to question (1)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 52

Recursive Rules
Imagine that we wish to examine the ancestry between
certain people.

We have a list of parenthood facts. For example:

parent(tom,paul).

parent(paul, andrew).

parent(bill, tom).

Here, we should be able to see that bill is paul’s
grandparent because bill is tom’s parent and tom is paul’s
parent. We can thus write a grandparent rule:

grandparent(X,Y) :- parent (X,Z), parent(Z,Y).

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 53

Recursive rules continued ...
parent(tom,paul).

parent(paul, andrew).

parent(bill, tom).

grandparent(X,Y) :- parent (X,Z), parent(Z,Y).

We can now deduce:

grandparent(bill, paul).

grandparent(tom,andrew).

But, how do we note that andrew is an ancestor of tom?

Answer: why not just write a greatgrandparent rule?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 54

Great grandparent rule

ggp(X,Y) = grandparent(X,Z), parent(Z,Y).

Now, to define ancestry we just have to say that if A is:

•a parent

•a grandparent, or

•a greatgrandparent, or …

of B then

A is an ancestor of B

Question: this will work to show that bill is an ancestor of
andrew, but why is it not a good approach to ancestry?

Question: can you write
this rule in prolog?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 55

Ancestry by Recursive Rules

Without recursion we have to keep on adding rules for being
an ancestor indefinitely.

A better way is to define ancestor in terms of itself:

A is an ancestor of B if A is B’s parent or if A is an ancestor of
B’s parent.

Question: can you write this in prolog

Hint: it requires 2 rules …

•a non-recursive base case

•a recursive case

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 56

Prolog Ancestry
ancestor(X,Y) :- parent(X,Y).

ancestor (X,Y) :- parent(X,Z), ancestor (Z,Y).

Now, if we query or database:

with ?- ancestor(bill,andrew).

parent(tom,paul).

parent(paul, andrew).

parent(bill, tom).

Prolog will reply

yes. Question: can you follow the prolog
process to see how this answer is achieved?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 57

Recursive Rules and ordering

ancestor(X,Y) :- parent(X,Y).

ancestor (X,Y) :- parent(X,Z), ancestor (Z,Y).

We originally gave the rules in the following order:

In Prolog, the order of the rules is often very important with
regard to the processing of queries.

Question:

In this case, would it matter if we had reversed the ordering?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 58

Anonymous Variables in Rules

Suppose that we are interested in whether paul is a murderer,
but we are not interested in who he has murdered.

We have a database of facts, including:

murdered(john, paul).

murdered(paul, john).

murdered(paul, beer).

We could type the query: ?- murdered(paul,X) to see if paul
is a murderer but it is better to define a new rule with an
anonymous variable:

murderer(X) :- murdered(X,_)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 59

Multiple Anonymous Variables
We can have >1 anonymous variable in a clause. For example:

? - parent(_,_)

This is asking if there are any parent relationships in the database

Note: each of the “_” means a different logical
variable. So, this query is equivalent to parent(X,Y)
and not parent(X,X)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 60

Arithmetic Computation in Prolog

•Prolog: designed for symbolic rather than numeric computation

•Not good for numeric problems

•Imperative languages are good at numeric but terrible at symbolic

•Functional languages are good at both.

•Prolog provides a bare minimum:

• +

• -

• *

• /

•div --- Integer division

•mod --- Integer remainder

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 61

Unexpected Behaviour

Operators do no behave exactly as expected:
?- 3 +4.
no
?-

So far as Prolog is concerned, “3+4” is an expression corresponding to a
structure (see later). A structure cannot be proved from a database and
so the response is ‘no’.
We must tell Prolog to treat the structure as an arithmetic expression and
actually evaluate it. We could try:

?- X = 3+4.
X = 3+4?
yes

The ‘=‘ operator simply means ‘do these 2 terms match’. Prolog says
they match if X is the term “3+4” … (not very useful!)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 62

Comparison and assignment
Do not confuse Prolog’s ‘=‘ with Java’s ‘=‘. They are very different.
Prolog’s is the matching operator (a bit like ‘= =‘ in JAVA … see later)

We must use the ‘assignment’ operator ‘is’:

?- X is 3 +4.

X = 7?

yes

The ‘is’ is only superficially like ‘=‘ in JAVA.
There must be a logical variable on the left hand side and an
arithmetic expression on the right hand side. The ‘is’ tells Prolog to
evaluate the RHS and match the result with the variable on the left.
We can have more complex expressions:

?- X is 1+2*3/4-5
X = -2.5?;
no

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 63

More Complex Expressions

We can have expressions containing other logical variables:

?- X is 3 +4, Y is X+X.

Y = 14

X =7 ?

yes

Note: the order of the sub-goals is important:

?- Y is X+X, X is 3+4.

{INSTANTIATION ERROR: _36 is _34+_34 - arg2}

Here, sub goals are evaluated from left to right and because X has
not yet been instantiated, the query cannot be evaluated

‘_34’ and ‘_36’ are the internal names that Prolog gives to variables
X and Y !!!

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 64

What is is?
For ‘is’ to work, all the logical variables in the expression on the right hand side
must be instantiated.

We can’t use ‘is’ backwards --- ‘is’ is functional not relational

This only works one way: for efficiency purposes.

Conceptually, there is no reason why ‘is’ shouldn’t be able to work backwards:
but it would be very inefficient …

Question: can you see why?

Example (not real Prolog) of what would be nice:

?- 64 is X *Y
Y=64
X=1?;
Y = 32
X = 2?; ...

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 65

Other arithmetic operators

The usual arithmetic comparison operators are also
available:

=:= Equal

=\= Not equal

<, >, >=, =< greater/less…

As with ‘is’, these will not work if there are uninstantiated
logical variables in the expressions being compared

Usually Prolog programmers do not use ‘=:=‘ and ‘=\=‘.
Instead, the general matching and non-matching operators
‘=‘ and ‘\=‘ are used.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 66

Is is not assignment
Despite the superficial similarity, the ‘is’ operator is not an assignment:

?- 64 is 32 * 2. % 1
yes
?- X is 64, X is 32 * 2. %2
X = 64?
yes
?- X is 64, X is 1+2. %3
no

%1 -- 64 matches the result of 32*2

%2 -- The first subgoal succeeds, instantiating X to 64. The expression in the
second subgoal evaluates to 64 and since the values on either side of the ‘is’
can be matched, yes is returned

%3 -- 1st subgoal succeeds, in second subgoal the expressions cannot be
matched and so Prolog returns no.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 67

Is is still not assignment

?- X is X+1. %4

{INSTANTIATION ERRPR: _36 is _33+1 -arg 2}

?- X is 64, X is X +1. %5

no

%4 -- The system cannot evaluate the RHS ‘X+1’ because X has not
been instantiated, and so the query fails

%5 -- The 1st subgoal succeeds and instantiates X to 64. X+1, on the
RHS of the 2nd subgoal is evaluated to 65. 64 and 65 cannot be
matched across the ‘is’ and so the result is no

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 68

is example: the size of a list

size([],0).
size([H|T],N) :- size(T,N1), N is N1+1.
% or size([_|T],N) :- size(T,N1), N is N1+1.

| ?- size([1,2,3,4],N).

N = 4

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 69

Some complex queries and data structures

course(pl2, se109, gibson, paul, ‘pgibson@cs.may.ie’,
salesian, 117, Tuesday, 10, callan, slt).

To find out when I lecture I write the query:

?- course(_,_,gibson,paul,_,_,_,Day,Hour,_,_).
Hour = 11
Day = tuesday

To find out what and where I am lecturing I could use the
following query:

?- course(Name,_,gibson,paul,_ ,_,_,_,_,Building,Room).
Room = slt
Building = callan
Name = pl2

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 70

Without structures
•This is very clumsy

•The course has 12 arguments

•Must remember the order of arguments (no type checking to help)

•Which room is lecturer’s office and which is lecture theatre

•Things would be better if we could group related data. For example:

course(Description, Lecturer, Time, Room).

requires only 4 arguments and can be done using Prolog structures

•For example:

• the data about the course description could be written as
description(pl2, se109).

•the data for a Room as room(callan, slt).

•the data for Time as time(Tuesday 10).

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 71

The new structured data base entry

course(description(pl2,se109),

 lecturer(gibson, paul, ‘pgibson@cs.may.ie’, room(salesian, 117)),

 time(tuesday,10),

 room(callan,slt)).

Note: the use of the same room structure for offices and lecture
theatres

Advantages: program easier to understand, queries easier to write,eg:

?- course(_lecturer(gibson,paul,_,_), Time, _).

Time = time (Tuesday,10)

Disadvantages: it is longer

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 72

Structured Queries
We can now use the course structure to define a new relation. For
example, to test if a room is occupied at a given time:

occupied(Room,Time) :- course(_,_,Time, Room).

Now we can write a query:

?- occupied(room(callan,slt), time(tuesday,10)).

yes

Or another to find out when a room is occupied:

?- occupied(room(callan,slt),Time).

Time = time(tuesday,10)?

Or another to find what room is occupied at a given time:

?- occupied(Room, time(tuesday,10)).

Room = room(callan,slt)?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 73

Structure classes and types

The ‘type’ of a structured object is defined by:

•its functor name

•its arity -- number of components

Thus, f(a,b,c) and f(a,b,c,d) are objects of the same ‘class’ but of
different ‘type’ within the ‘class’.

Now, we can have many different types in the same class:

student(fred,123,taught,pl2,55)

student(paul,research)

Note: the absence of type checking could lead to problems. For
example, having a research student on a taught course:

student(paul,123,research,pl2,65)

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 74

Processing such structures
Assuming that we don’t make typing errors, processing
these ‘variant records’ (the term is common in imperative
languages) is simple:

pass(student(Name,_,_,_,Mark)):- Mark>=60.
Now we can test if paul and fred have passed their exams:

?- pass(student(fed,123,taught,pl2,65)).
yes
?- pass(student(paul,research)).
no

This last query fails because the structure has a different
number of arguments to that to which we are trying to
match.
Note: if we make a mistake the system may not notice:

?- pass(student(drinks,lots,of,beer,80)).
yes

Functional languages
give all the flexibility
of structures plus safe
type checking

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 75

Simple Input/Output

Write predicate

 write() Writes a single term to the terminal.

 write_ln() Writes a term to the terminal followed by a new line.

 tab(X) Writes an X number of spaces to the terminal.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 76

Simple Input/Output

Read predicate

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 77

Assertions

Question: why do you think
we need to use “dynamic”?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 78

Assertions Question: why do you think
we need to use “dynamic”?

http://www.swi-prolog.org/pldoc/man?predicate=dynamic/1

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 79

Retractions

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 80

Cuts

What does the following Program program do:

 max(X,Y,Y):- X =< Y.
 max(X,Y,X):- X>Y.

?- max(2,3,Max).

 Max = 3
 yes

 ?- max(2,1,Max).

 Max = 2
 yes Why is it considered to be inefficient?

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 81

Cuts

What happens if at some stage backtracking is forced?

The program will try to re-satisfy max(3,4,Y) using the
second clause. This is completely pointless: the maximum of
3 and 4 is always 4. There is no second solution to find.

In other words, the two clauses (X=<Y and X>Y) in the
above program are mutually exclusive: if the first succeeds,
the second must fail and vice versa.

So attempting to re-satisfy this clause is a complete waste of
time. We use a cut to stop this from happening

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 82

Cuts - using ,!.

Here is a more efficient version:

 max(X,Y,Y) :- X =< Y,!.
 max(X,Y,X) :- X>Y.

?- max(2,3,Max).

 Max = 3
 yes

 ?- max(2,1,Max).

 Max = 2
 yes

Notice the cut

Note that this cut does not change the
meaning of the program. Our new code
gives exactly the same answers as the old
one, but it’s more efficient. In fact, the
program is exactly the same as the previous
version, except for the cut, and this is a
pretty good sign that the cut is a sensible
one. Cuts like this, which don’t change the
meaning of a program, have a special
name: they’re called green cuts.

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 83

Negation and cuts

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 84

Negation and cuts: difficult for beginners

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 85

Prolog Programming Problem 1 (relatively easy)

Check if there is a path between two nodes in a directed graph

CSC4504 FormalLanguages - Prolog2017: J Paul Gibson 86

Prolog Programming Problem 2 (more difficult)

Arithmetic Expression Search

Given a list of positive integers, and a target

Find an integer expression using operators +,-,*

such that a subset of the numbers can be combined (using each number
at most 1 time) to reach the target

For example, list 1,3,10,40 target 29: (3*10)-1
 target 5: false

