CSC 4504 : Langages formels et applications

## (Event-B and Rodin)

## J Paul Gibson, D311

paul.gibson@it-sudparis.eu
http://www-public.it-sudparis.eu/~gibson/Teaching/CSC4504/

## Introduction to automated proof Odd and Even Properties

# RODIN 

Information Society
Technologies

## Rigorous Open Development Environment for Complex Systems

## HOME

WORKPACKAGES
PARTICIPANTS
INTERESTGROU
ASSOCIATE MEMBERS
EXPECTED RESULTS PUBLICATIONS BACKGROUND
DELIVERABLES
EVENTS

## Credits

Project Member Space

Project summary
Our overall objective is the creation of a methodology and supporting open tool platform for the cost effective rigorous development of dependable complex software systems and services.

We focus on tackling complexity

- caused by the environment in which the software is to operate
- which comes from poorly conceived architectural structure.

Mastering complexity requires design techniques that support clear thinking and rigorous validation and verification. Formal design methods (FM) do so. Coping with complexity also requires architectures that are tolerant of faults and unpredictable changes in environment. This is addressed by fault tolerance (FT) design techniques.

We will develop a unified methodology combining FM with FT design principles by using a systems of systems approach, where both software and environment are modelled together.

We will tackle complex architectures: our systems approach will support the construction of appropriate abstractions and provide techniques for their structured refinement and decomposition.

We will ensure cost effectiveness, the methods and platform will support reuse of existing software. We will thus extend existing FM with generic mechanisms to support component reuse and composition.

Tool support for construction, manipulation and analysis of models is crucial and we will concentrate on a comprehensive tool platform which is openly available and openly extendable and has the potential to set a European standard for industrial FM tools.

The methods and platform will be validated and assessed through industrial case studies.

## Event-B.org

Home of Svents. and the Rodin Platatom

Event-B Hom Install Rodin Documentation Wiki DEPLOY Repository Event-B Book Community

ACKNOWLEDGEMENTS


SOURCEFORGE.NET ${ }^{*}$

Southampton School of Electranks
and Coenpater Soime YourKit

## Event-B and the Rodin Platform

## Welcome to the Event-B.org Website

Event- $B$ is a formal method for system-level modelling and analysis. Key features of Event- $B$ are the use of set theory as a modelling notation, the use of refinement to represent systems at different abstraction levels and the use of mathematical proof to verify consistency between refinement levels.

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective support for refinement and mathematical proof. The platform is open source, contributes to the Eclipse framework and is further extendable with plugins.

Development of Rodin is currently supported by the European Union ICT Project ADVANCE (2011 to 2014). Originally Rodin development was funded by the European Union Projects DEPLOY (2008 to 2012). and RODIN (2004 to 2007).

Use the menu on the left to install the Rodin platform and plug-ins. The documentation wiki contains support for tool users and developers. The DEPLOY Repository contains resources including papers, Event-B examples and training material.

Event-B is an evolution of B-Method developed by Jean-Raymond Abrial. Wikipedia contains useful information and links on the B-Method.

```
| Rodin User and Developer Workshop 2016
23-24 May, 2016, Linz, Austria
More information....
```


## Install the Event-B RODIN tool

| CSC4504 | Formal Languages | $2017 \quad$ J Paul Gibson |
| :--- | :--- | :--- | :--- |

## Download the core

## Rodin Platform/and Plug-in Installation

| Name | Installation |
| :--- | :--- | :--- |
| Rodin platform | - Requires Java 1.6 <br> - Downlad the Core: Rodin Platform file for your platform. To install, just unpack the archive anywhere on your <br> hard-disk and launch the "rodin" executable in it. <br> - Start Rodin <br> - Information on the latest release. |
| Plug-ins | - Plug-ins are installed from within Rodin by selecting Help/Install New Software. Then select the appropriate <br> - update site from the list of download sites. <br> - Install the plug-ins. <br> - Inpabilities |
| - Install the ProB plugin from the ProB Update site for powerful model checking and animation from the Atelier B Provers Update site to take full advantage of Rodin proof |  |

## Install the Event-B RODIN tool

https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/

solution centers Resources Newsletters Cloud Storage Providers Business VolP Providers Internet

Home / Browse / Development / Integrated Development Environments (IDE) / RODIN / Files


## RODIN

Brought to you by: cfsnook, dissemination, halstefa, Ivoisin, and 2 others

| Summary | Files | Reviews | Support | Wiki | Mailing Lists | Tickets * | News | Svn | Git |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Looking for the latest version? Download Rodin 3.3 for Mac OS X (64-bit) (85.9 MB) 4

| Home / Core_Rodin_Platform |  |  |  | ถ |
| :---: | :---: | :---: | :---: | :---: |
| Name * | Modified $\uparrow$ | Size * | Downloads / Week ${ }^{\text {* }}$ |  |
| ¢ Parent folder |  |  |  |  |
| - 3.3-patches | 2017-11-13 |  | 19 - |  |
| - 3.3 | 2017-04-05 |  | 131 |  |
| - 3.3.RC2 | 2017-02-21 |  | 1 |  |
| - 3.3RC1 | 2016-07-01 |  | 0 |  |
| - 3.2 | 2015-09-22 |  | 9 - |  |
| - 3.1 | 2014-12-17 |  | 1 - |  |

## Install the Event-B RODIN tool

## https://sourceforge.net/projects/rodin-b-sharp/

## Home / Browse / Development / Integrated Development Environments (IDE) / RODIN



Brought to you by: aedmunds, cfsnook, dissemination, halstefa, and 2 others

| Summary | Files | Reviews | Support | Wiki | Mailing Lists | Tickets | News |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## http://wiki.event-b.org/index.php/Rodin_Platform_3.3_Release_Notes

## Rodin Platform 3.3 Release Notes

## What's New in Rodin 3.3?

Rodin 3.3 is mainly a corrective version of the Rodin platform which solves stability and usability issues, especially concerning the Theory plug-in.
Here is a short overview of the newly implemented or fixed features.

## Better support for the Theory plug-in

We have vastly improved the support for the Theory plug-in, which will allow to finally have a workable Theory plug-in compatible with Rodin 3.x.

## Improved interactive proving

The Generalized Modus Ponens reasoner no longer considers hidden hypotheses. This avoids leading the proof to a dead-end.
The interface to external provers has been improved. Now, most mathomatical extensions are translated to the external prover (e.g. as an uninterpreted function). This improves the rate of automated proofs when using theories.

## Better proof reuse

When a proof has become uncertain (colored in purple), the Rodin plattorm tries harder to salvage it by rebuilding a similar sound proot. This is particularily useful when restoring projects proved with an old version of Rodin (typically $2 . x$ ).

## Partial and total surjection shortcuts

Now, one can use the following shortcuts to enter the symbols for surjections:

- partial surjection: +>> and +->>
- total surjection: ->> and -->>


## Rule Details view gets refreshed

In some circumstances, the Rule Details view would not refresh in a timely fashion. One had to select another proof tree node, and then again the first node to trigger a reiresh. Now, the view gets refreshed consistently as scon as the proof rule on the selected node changes.
Changes for plug-in developers

## Contents [idel

What's New in Rodin 3.3?
1.1 Better support for the Theory pug-in
1.2 Improved interactive proving
1.3 Better proof reuse
1.4 Partial and total suriection shortuuts
1.5 Rule Details view gets refreshed
1.6 Changes for plug-in developers
1.6.1 AST plug-in
1.6.2 Even:-B UI
1.6.3 Rodin Edilior

2 Installing
2.1 Downioading
2.1 Upgrading from a previous version of Rodin 3.x
2.2 Upgrading from a previo
Requirements - Compatibity

3 Requirements-C
4.1 Rodin Updato Sito
4.1 Aocin Updato Site
4.2 B Method Update Site
4.2 B Method Update Site
4.3 Other Update Sites
4.3 Other Update Sites
4.4 Known plug-in incompatbitites

5 Fixed Bugs and Implemented Features
6 Known Issues
Disciaimer
8 About

Rodin 3.3 is built on top of Eclipse 4.6 .2 (Neon), which requires Java 8 . This shall not be an issue normally (Java is upward compatible), but can cause some glitch in places where code depends on the order of elements in a HashMap traversal, since the hashing algorithm is different.

## AST plug-in

The AST parser now supports infix binary relational predicates specified by the Theory plug-in. This allows to define new predicates looking like a = b.
The ISpecialization class of the Event-B AST has been strengthened to detoct more orror casos (cases where the speciaization would produce ill-typed formulas). It is thus not $100 \%$ compatible with Rodin 3.2 . But this should not be an issue in general.

## The archive file

| rodin-3.2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Name | $\wedge$ | Date Modified | Size | Kind |
| ( artifacts.xml |  | 27 Sep 2016, 11:20 | 100 KB | XML Docume |
| - $\square$ configuration |  | 22 Mar 2017, 13:09 | -- | Folder |
| - epl-v10.html |  | 28 Jan 2015, 10:08 | 13 KB | HTML |
| - $\square$ features |  | 27 Sep 2016, 11:20 | -- | Folder |
| - notice.html |  | 28 Jan 2015, 10:08 | 9 KB | HTML |
| - $\square \mathrm{p} 2$ |  | 28 Mar 2016, 16:48 | -- | Folder |
| - plugins |  | 27 Sep 2016, 11:20 | -- | Folder |
| - $\square$ readme |  | 22 Jun 2015, 11:12 | -- | Folder |
| ( $R$ rodin |  | 22 Jun 2015, 11:12 | 30 bytes | Alias |
| $\mathcal{R}$ rodin.app |  | 22 Jun 2015, 11:12 | 218 KB | Application |

## Execute the application

## Overview

Rodin is an open tool platform for the cost effective rigorous development of dependable complex software systems and services. This platform is dedicated to the Event-B formal method and provides natural support for refinement and mathematical proof.

This platform contributes to the Eclipse framework and is extensible using the Eclipse plug-in mechanism.
Rodin development has been partly funded by the European Commission through three RTD projects:

- project RODIN (FP6 IST project 511599), from September 2004 to October 2007,
- project DEPLOY (FP7 IST project 214158), from February 2008 to April 2012,
- project ADVANCE (FP7 IST project 287563), from October 2011 to November 2014,
and by the French National Research Agency through the project IMPEX (ANR-13-INSE-0001), since December 2013.


## Learn more about Event-B and Rodin

More information about this platform can be found on the Event-B.org web site.
A user and developer wiki is also available.
Embedded documentation is also provided online at http://handbook.event-b.org.
The development of this platform, including feature and bug tracking, is hosted by SourceForge.

## Stay in touch

An active community supports the usage of Event-B and the Rodin platform.
Get feeback on user experience, advice from experts and useful information, by subscribing now to:

- the Rodin User mailing list
- the Rodin Announce mailing list

Other mailing lists about the development of the Rodin platform are available.
Selp
Welcome
(3) Help Contents
Search
Denamic Help
Key Assist...
Tips and Tricks...
Cheat Sheets...
Check for Updates
Install New Software...
Installation Details

## Help us to improve the tool

Help the Rodin development team:

- Report bugs
- Or let us know about your needs:
- Request support
- Ask for new features


## Important Installation notes

To improve your proof experience, please install the third-party provers from Atelier B. This is only a few mouse-clicks away. Please proceed as follow:

- From the main menu bar, select Help > Install New Software.... The Install wizard opens.
- Uncheck the Contact all update sites during install to find required software check box.
- Click on the Work with dropdown list and select the Atelier B provers update site.
- Select Atelier B provers in the list (tick the left check boxes) and click Next
- After some time, the Install window opens. Just click Next, and accept the terms in the license agreement.
- Click Finish. The update manager downloads the Atelier B Provers feature.
- Finally, in the next window, click Yes to restart the platform.


## Check for updates ... then install the provers

## You will need to restart the RODIN platform

## http://www.atelierb.eu

## $\uparrow$ in $\otimes$


$\bullet$

## ATELIER B

| ATELIER DE GÉNIE LOGICIEL <br> PERMETTANT DE DEEVELOPPER DES LOGICIELS PROUVÉS SANS DEFAUT <br> EN SAVOIR + | EVENTS <br> poll $=$ <br> SELECT $\mathrm{m} 0=0$ <br> THEN <br> AD_LOGIC :: ADs <br> \|| RESET :: BOOL <br> \|| PHII :: BOOL <br> END <br> Reset $=$ <br> SELECT RESET = TRUE <br> THEN <br> $\mathrm{m} 0:=0$ <br> \\|a0 :: ADs <br> \|| s 0 :: ADs <br> $\\| \mathrm{v} 0:=$ FALSE |
| :---: | :---: |
| ATELIER B 4, POURQUOI L'UTILISER? |  |

The provers come from here (do you recognise it?)

| Installed Software | Installation History | Features | Plug-ins | Configuration |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| type filter text |  |  |  |  |  |
| Name | Version | Id |  |  | Provider |
| - (2) Atelier B provers | 2.1.0.r16188 | com.clearsy.atelierb.provers.feature.group com.clearsy.b2rodin.feature.feature.group |  |  | ClearSy |
| (4) com.clearsy.b2rodin.feature | 1.0.8 |  |  |  | ClearSy |
| (2) Event B to LaTeX exporter | 0.7.0.201607081834 | ac.soton.eventb.latex.feature.feature.group |  |  | University of Southampton |
| (2) Event-B Theory Feature | 3.0.0 | org.eventb.theory.feature.feature.group |  |  | University of Southampton |
| (4) Event-B Utilities | 0.2.3.201512161944 | ch.ethz.eventb.utils_feature.feature.group |  |  | ETH Zurich |
| (2). Feature Composition Tool | 1.0.0 | ac.soton.featurecomposition_feature.featur... |  |  | University of Southampton |
| - (2)iUML-B Class Diagrams (for Rodin 3.x.x) | 1.2.0 | ac.soton.eventb.classdiagrams.feature.feat... |  |  | University of Southampton |
| - (2) iUMLB State-Machines (for Rodin 3.x.x) | 3.4 .1 | ac.soton.eventb.statemachines.feature.feat... Uni |  |  | University of Southampton |
| - (2)iUMLB State-Machines (for Rodin 3.x.x) SDK | 3.4 .1 | ac.soton.eventb.statemachines.sdk.feature.... Uni |  |  | University of Southampton |
| - (2) iUMLB State-Machines Animation (for Rodin 3.x + ProB1 3.x) | 2.3 .0 | ac.soton.eventb.statemachines.animation.f... |  |  | University of Southampton |
| (2) Pattern | 0.9.0.201503122359 | ch.ethz.eventb.pattern_feature.feature.group |  |  | ETH Zurich |
| (4) Rodin Handbook v.2.5 | 2.5.0.201606291411 | org.rodinp.handbook.feature.feature.group |  |  | Formal Mind GmbH |
| - (2) Rodin Platform | 3.2.0.2015062209... | org.rodinp.platform.product |  |  |  |
| (2) Rose Event-B Editor | 1.6.1 | ac.soton.eventb.roseEditor.feature.feature.... |  |  | University of Southampton |
| (2) Shared Event Composition | 1.7.0.v20141125 | ac.soton.composition_feature.feature.group |  |  | University of Southampton |
| - SMT Solvers | 1.3.0.6a8c26d | org.eventb.smt.feature.group |  |  | Systerel |
| (2) UML-B Modelling Environment (for Rodin 3.x.x) | 2.3 .0 | ac.soton.umlb.feature.feature.group |  |  | University of Southampton |
| - (2) UML-B Statemachine Animation (for Rodin 3.x.x) | 1.3 .0 | ac.soton.umlb.stateDiagramAnimation.feat... |  |  | University of Southampton |

## (The SMT solvers make the automated proof system more powerful)



# To install SMT solvers add the site http://rodin-b-sharp.sourceforge.net/updates to the site updates list 

## The SMT solvers make the automated proof system more powerful

An SMT instance is a generalisation of a Boolean SAT instance in which various sets of variables are replaced by predicates from a variety of underlying theories

$$
\operatorname{sorted}(t, i, j)=
$$

Example : prove list is sorted
$\forall k_{1}, k_{2}$ : int
$\Downarrow$


Instantiation
Logic reasoning
Theory reasoning (here: Arithmetic)

## Odd Even Problem Preparation

1. Make a new Event-B project
2. Make a new Event-B component (context) called OddEven
3. This is for the problem you are going to try to solve


## Odd Even Problem Preparation

## Editing a context



## Simple proofs on properties of odd and even numbers

Express as theorems and use RODIN to prove:
thm1. The addition of two even numbers is even
thm2. The difference between two odd numbers is even
thm 3. The multiplication of an even number with an odd number is eve
thm4. The multiplication of two odd numbers is odd
TODO: Complete the proofs by hand before trying to prove them with the tool.

# Question: how many different ways can you express/specify these properties / theorems 

## Which specifications make the proof easier?

1. The addition of two even numbers is even


## TODO - edit the context specification

Question: what do you think of the editor/interface/usability?

## 1. The addition of two even numbers is even

(C) evens_ctx $\lesssim$

## CONTEXT

evens_ctx CONSTANTS

Evens
AXIOMS

```
axm1 : Evens \(\subseteq \mathbb{N}\)
            \(\forall x \cdot x \in\) Evens \(\Leftrightarrow\) ( \(\exists y \cdot y \in \mathbb{N}\)
    axm2 : \(\wedge\)
        \(x=y+y)\)
    axm3 : \(\forall \mathrm{a}, \mathrm{b} \cdot((\mathrm{a} \in\) Evens \(\wedge \mathrm{b} \in\) Evens \() \Rightarrow\)
                                (a+b) \(\in\) Evens )
```

END

The pretty print view

Pretty Print Edit Synthesis Dependencies

1. The addition of two even numbers is even

## Window - perspective - open perspective proving (and open proof tree view)



Question: can you prove the theorem?

## 1. The addition of two even numbers is even



## My proof - can you do better?

## 1. The addition of two even numbers is even

```
\square(V) }\forall\mathrm{ goal (frees a,b) : *a,b b aEEVEN^b=EVEN }=>a+b=EVE
    -(`) => goal : a\inEVEN^b\inEVEN }=>a+b\inEVE
    -(V) \forall hyp (inst a) : a+b\inEVEN
        O T goal : T
        G (V) rewrites equivalence in hyp (aEEVEN\Leftrightarrow(\existsy\cdoty\inN^a=y+y)) : a+b=EVEN
        G-(V) sl/ds : a+b=EVEN
                G(V)}\forall\mathrm{ hyp (inst b) : a+b=EVEN
                T goal : T
                    G (V) rewrites equivalence in hyp (b\inEVEN\Leftrightarrow(\existsy\cdoty\inN^b=y+y)) : a+b=EVEN
                -(V) sl/ds : a+beEVEN
                    -(V) ah (\existsy\cdoty\inN^a=y+y) : a+b\inEVEN
                    @ T goal : T
                    -(V) auto ImpE : \existsy\cdoty\inN^a=y+y
                    () hyp : \existsy\cdoty\inN^a=y+y
                    -(V) ah (\existsy\cdoty\inN^b=y+y) : a+beEVEN
                    ` T goal : T
                    -(V) auto ImpE : \existsy\cdoty\inN^b=y+y
                    () hyp : Jy\cdoty\inN^b=y+y
                            G(V) \exists hyp (\existsy\cdoty\inN^a=y+y) : a+b\inEVEN
                    -(V) \exists hyp (\existsy\cdoty\inN^b=y+y) : a+b\inEVEN
                    -(V) sl/ds : a+b\inEVEN
                    -(V) eh (a=y+y) : a+b=EVEN
                    G(V) eh (b=y0+y0) : y+y+b=EVEN
                    -(V) }\forall\mathrm{ hyp (inst y+y+y0+y0): y+y+y0+y0eEVEN
                                    Save and explore proof tree
                            * t goal : T
                            G(`) rewrites equivalence in hyp (y+y+y0+y0eEVEN\Leftrightarrow(\existsyl\cdotyl\inN^y+y+y0+y0=yl+yl)):y+
                        G-(V) sl/ds : y+y+y0+y0eEVEN
                                    \square(v) ah ( }\forally,y0\cdoty\inN^y0\inN=y+y+y0+y0=(y+y0)+(y+y0)): y+y+y0+y0\inEVE
                                    T goal : T
                                    ML : \forally,y0\cdoty\inN|^y0eNV=>y+y+y0+y0=(y+y0)+(y+y0)
                            -(V) ae (y+y0) : y+y+y0+y0eEVEN
                                () T goal : T
                            -(v) he (ae=v+v0) : v+v+v0+v0eEVEN

This one looks a bit more complicated?
1. The addition of two even numbers is even


The theorem has been marked as proved

\section*{1. The addition of two even numbers is even}

What if we change specification of EVEN?
```

CONTEXT
0ddEven_ctx1
CONSTANTS
double
even

```
```

AXIOMS

```
AXIOMS
    axml : double \inN }->\textrm{N
    axml : double \inN }->\textrm{N
    axm2 : \forallx x 
    axm2 : \forallx x 
    axm3 : even = ran (double)
    axm3 : even = ran (double)
THEOREMS
    thml : \foralla,b
END
```

```
CONTEXT
    0ddEven_ctx2
CONSTANTS
    Even
    Odd
AXIOMS
    axm1 : Even \subseteqN
    axm2 : Odd = N \ Even
    axm3 : 0\in Even
    axm4 : }\forallx\cdotx\inEven => x+1 \in Odd
    axm5 : }\forallx\cdotx\in0dd =>x+1 \in Eve
THEOREMS
    thml : \foralla,b
END
```

What if we change the theorem to prove?

Express as theorems and use RODIN to prove:
thm1. The addition of two even numbers is even
thm2. The difference between two odd numbers is even
thm3. The multiplication of an even number with an odd number is even
thm4. The multiplication of two odd numbers is odd

TODO : try these in RODIN
PROBLEM: write a short report on how you did it (or not)

