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Predicate Logic for Software Engineering 
David Lorge Parnas, Senior Member, IEEE 

Abstract-The interpretations of logical expressions found in 
most introductory textbooks are not suitable for use in software 
engineering applications because they do not deal with partial 
functions. More advanced papers and texts deal with partial 
functions in a variety of complex ways. This paper proposes 
a very simple change to the classic interpretation of predicate 
expressions, one that defines their value for all values of all 
variables, yet is almost identical to the standard definitions. It 
then illustrates the application of this interpretation in software 
documentation. 

Index Terms- Formal methods, predicate logic, partial func- 
tions, software documentation, tabular expressions. 

I. INTRODUCTION 

ROFESSIONAL engineers can often be distinguished P from other designers by the engineers’ ability to use 
mathematical methods to describe and analyze their products. 
Although mathematics is not commonly used by today’s 
programmers, many researchers are developing mathematical 
methods that are intended for use in software development. 
We hope that these methods will do for software engineering 
what differential and integral calculus did for other areas 
of engineering. The shared basis of all these proposals is 
mathematical logic. In the future, a solid understanding of 
logic will be essential for anyone who hopes to be recognized 
as a software engineer. 

In [8], we have shown how the contents of key computer 
systems documents can be defined in terms of mathematical 
functions and relations. We also reminded our readers that (1) 
functions and relations can be viewed as sets of ordered pairs, 
(2)  sets can be characterized by predicates and described by 
logical expressions, (3) predicates can be represented in a more 
readable way using multidimensional (tabular) expressions 
whose components are logical expressions and terms, and 
(4) the meaning of these tables can be defined by rules for 
translating those tables into more conventional expressions. A 
complete discussion of these tabular expressions can be found 
in [6]. The most recent illustration of their use can be found 
in [9]. 

In our approach to software development, it is essential to 
have a precise meaning for logical expressions, one that unam- 
biguously yields a value of true or false - for every assignment 
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of values to the variables that appear in an expression. Our 
documents represent predicates on the observable behavior of 
programs. If we want to know whether an observed behavior 
satisfies a specification, we want a definite “yes” or “no,” not 
“maybe.” 

Because our goal is to make a change in industrial practice, 
we have to pay attention to the size (and perceived complexity) 
of the expressions. We have had extensive experience in 
the use of mathematical methods working with industrial 
practitioners (e.g. [7]). It is clear that practitioners do not want 
to use methods that require them to use many symbols to say 
simple things. They will not read expressions that are lengthy 
or deeply nested. If we tell them that the increased complexity 
is necessary, “in order to be formal,” most will reject the 
concept of formality. Rather than follow burdensome rules, 
they will take short-cuts, inventing ad hoc abbreviations at 
will, if a formalism requires that they write down a lot of 
conditions, variable definitions, etc. that do not seem to carry 
much information. These “on-the-fly’’ inventions are often 
ambiguous and cannot be the basis of sophisticated support 
tools. A full, formal definition of a logic that permits concise 
expressions is a prerequisite for practical use. 

The most conventional formal interpretations of logical 
expressions (e.g. [5]) assume that all functions are total, 
i.e. defined on a domain that includes all possible values 
of their arguments. Those interpretations are not intended 
to deal with partial functions, functions whose value has 
not been defined for certain values of the arguments. Under 
conventional interpretations, a logical expression that includes 
partial functions will have a defined value only if the values 
assigned to the arguments of each function are within that 
function’s domain; in other words, the predicate described by 
the expression is partial. Such interpretations are of limited 
usefulness when describing software because we frequently 
use partial functions to describe the behavior of programs. 
This paper proposes an interpretation of predicate expressions 
that is as close as possible to the standard interpretations but 
makes all predicates total. 

Fig. 1 contains a simple example that illustrates the problem 
that motivates this work. More interesting, software-related 
examples will be found later in this paper. 

11. THE STRUCTURE OF THIS PAPER 

Section 111 discusses the goals of this paper and compares 
them with the goals of other papers on the subject. Section 
IV reviews the definitions of some basic concepts. Section 
V defines the class of expressions that we call predicate 
expressions. Section VI then gives precise meaning to these 
expressions by associating each with a set of n-tuples. The 
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Assume that .f represents a function that is defined on a domain containing 
~ n l y  non-negative real numbers. A software designer may write boolean 
expressions such as: 

( (I>o) A (Y = h) v ( (XSO) A (Y = A)) (1) 

to describe the behaviour of a computer program. The writer’s intent seems to 
be to write an expression that is equivalent to: 

Y = 457 (2) 

The usual rules for evaluating such expressions q u i n  evaluation of all of 
the functions and relational operators before application of the logical operators 
to the truth-values that result For every value of x other than 0. some 
component of expression (1) is undefined. With the standard interpretation of 
logical operators, which are defined only for two-value logics, the value of (1) is 
not defined except when x is assigned the value 0. 

Those who think in tenns of programming languages might consider 
replacing (1) with: 

( ( X > o )  * (Y $)) A ( ( X i @  -+ v =  A)) (3) 
because implications look like conditional statements. However, (3) is exactly 
cauivalent to (1). 

Fig. 1. Motivating Example. 

formal definition uses basic set theory and assures that the 
logical connectives have the expected behavior. The first 
paragraphs of Section VI explain the implications of the formal 
definition, and some readers may prefer to skip the formal 
definition on first reading. Section VI1 illustrates the way 
that we use this logic and explains its advantages in these 
applications. In Section VI11 we offer some observations about 
reasoning, e.g. formula simplification, formula comparison, 
and formal proof, with this interpretation. 

111. COMPARISON WITH OTHER WORK 

The problem illustrated in Fig. 1 is well known. There 
is a huge and complex literature on the subject of logic 
with partial functions. A discussion of recent work on this 
subject from a computer science point of view is given in 
[l]. Another, more philosophical, survey and analysis can be 
found in [3].’ In fact, long before computer scientists became 
interested in this problem, it was discussed by most of the 
great philosophers and mathematicians who wrote about logic. 
It is not the purpose of this paper to duplicate the discussions 
of alternatives that are found in the literature. Our goals are 
more pedestrian. This paper presents a specific proposal and 
illustrates its use. The proposal presented is close to Farmer’s 
proposal (in [3]) but the presentation can be simpler because of 
our intended application and audience. The proposal made in 
this paper is one of a class of proposals called “disconcerting,” 
and not given serious consideration in [l]. Although the 
proposal will be controversial, we have found it to be useful. 

This paper’s treatment of the subject can be different from 
that in the papers cited because it is intended for a specific 
application. By limiting our attention to software engineering, 
we are able to limit our domains to finite sets of elements, 
n-tuples of elements drawn from a finite and fixed universe. 
We are able to evade many of the deeper philosophical issues 
that complicate other papers and to provide a formal definition 
that is very close to the classical definitions for logics that are 
limited to total functions. 

I Insight into the complexity and extent of the literature on this subject can 
be obtained by comparing the references cited in these two surveys. They 
have few authors, and fewer papers, in common. 

As our primary focus is on the use of mathematics for 
precise documentation of software and not on program ver- 
ification, we present a formal semantics but do not present 
axioms or rules of inference for the logic. This allows a precise 
definition that is accessible to anyone with a knowledge of 
“naive” set theory [4]. 

Because of these simplifications, this paper will not satisfy 
everyone’s needs and is not intended to do so. The logic 
proposed is not optimal for all applications. For example, 
when discussing the evaluation of the Boolean expressions 
that appear in programs, one may want to turn to three-valued 
logics. Those interested in the more general discussions will 
have to turn to the surveys included in the references. 

Some proposals extend the conventional propositional and 
predicate calculus with new symbols, or change the meaning 
of the conventional ones. For example, it is common to define 
conditional versions of “A” and “V” (e.g. the well-known 
“cand” [ 2 ] )  to allow the use of such partial functions. These 
conditional operators are defined by describing an evaluation 
procedure, one that depends on the values of sub-expressions. 
Dijkstra’s cand, and similar operators, are asymmetric. The 
value of the left operand determines whether or not the right 
operand will be evaluated. With such rules, sub-expressions 
cannot be properly understood outside of the context in which 
they appear. This is unfortunate because it means that lengthy 
expressions must be understood as a whole rather than piece 
by piece. In other approaches to the problem conventional two- 
valued logic is replaced by a three-valued logic in which the 
third value is understood as “undefined.” Three-valued logics 
were deemed to be unsuitable for our applications, for reasons 
discussed earlier. 

The interpretation for predicate expressions proposed here 
neither specifies the order of evaluation nor introduces new 
symbols into the logic. All logical connectives retain their 
familiar meanings. Instead of changing the meaning of the 
connectives, we restrict the set of primitive predicates. A 
side effect of our restriction is that some common relational 
operators cannot be primitive in our logic. However, relational 
operators with the expected properties can be constructed from 
the primitive operators. We return to this issue in Section VIII. 

Another approach to the problem of partial functions has 
been the introduction, as part of the basic definitions, of 
bounded quantification, i.e. quantification on limited domains. 
We have experimented with this alternative and concluded 
that it complicates the expressions more than the approach 
presented in this paper. Bounded quantification can be intro- 
duced as an abbreviation in the logic defined in this paper 
if desired, but when introduced as an abbreviation, bounded 
quantification does not make a substantive change in the 
properties of the logic. We discuss this alternative further in 
Section VII. 

Some researchers assume that what some people call the 
“axiom of reflection” (namely, that for all functions f ,  the 
value of (f(x) = f(x)) must always be true) is essential. 
This intuitively appealing rule seems fine but leads to further 
deliberations about whether f(x) = f ( y )  should be true 
when z and y are distinct but both outside of the domain 
of f .  In the approach presented in this paper, we have 
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consciously abandoned reflection as a universal property. In 
this interpretation, for any primitive relation, “=”, f(x) = 
f(x) would befulse if z is not in the domain o f f .  It is possible 
to define a non=itive equivalence relation that satisfies the 
stated “axiom,” but we do not believe that doing so is useful. 
We return to this issue in Section VIII. 

IV. BASIC DEFINITIONS 

This section explains some well-known mathematical con- 
cepts used in the sequel, namely tuple, simple tuple, relation, 
function, predicate, characteristic predicate, domain, argument, 
and range. 

(A) Tuples 

We assume the existence of a finite2 set of values called U .  
U must include the truth-values (represented by ‘‘=” and 
“jiulse”), a distinguished value (represented by “*”), and all 
o G v a l u e s  of interest. 

A simple tuple is an ordered list of one or more members 
of U .  A simple n-tuple is an ordered list of n members of 
U .  We make no distinction between a simple 1-tuple and a 
member of U .  

A tuple is an ordered list of one or more simple tuples. A n  
n-tuple is a tuple containing n elements, each of which is a 
simple tuple. A 1-tuple whose element is a simple n-tuple is 
the same as that simple n-tuple. 

When representing specific tuples, we separate the elements 
with commas and enclose tuples in <brackets> to make their 
structure clear. For example, “< -,false, @,false >” rep- 
resents a simple 4-tuple, and “<< -,false >,=false >” 
represents a 3-tuple that is not a s implexuple .  T h e x i n g s  
“true,” “< true >,” and “<< true >>” all represent the same 
simple 1-tuple and member of U .  
Sk is the set of all simple k-tuples; S1 is U .  S is the union 

of SI, S 2 ,  . . . , S“; U is the length of the longest tuple needed 
to apply the semantic model developed be10w.~ 

T k  is the set of all k-tuples. T1 is S. T k  includes Sk. T is 
the union of T 1 , T 2 , - , T U .  

(B) Relations, functions, predicates, and 
characteristic predicates 

We define a relation to be a set of tuples, a subset of T .  If 
the set consists entirely of pairs (24uples), we call the relation 
a binary relation. The set of values that appears as the first 
element of a pair in a binary relation is called the domain 
of that relation. The set of values that appears as the second 
element of a pair is called the range of that relation. 

A function is a binary relation with one additional property: 
for any given simple tuple, x, in its domain, there is only one 
pair (x, y)  in the function. If < a, b > is in the function F,  b 
is called the value of the function at a; we may write “F(a)” 
to represent b. A procedure determining the value of F at a is 
called an evaluation of F at a. If there is no pair < a ,  b > in 

2We restrict ourselves to finite sets, not because it is strictly necessary to 
be so restrictive, but because they are all that we need for our application. 

U will be the size of the set of variables. 

F ,  F ( a )  is not defined (i.e. F cannot be evaluated) at a. Note 
that the domain and range of a function can include simple 
tuples, and it may make sense to write “ F ( a ,  b),” “ F ( a ,  b ,  c),” 
and “ F ( F ( a ,  b,  c ) ) . ” ~  

We refer to functions whose domain is a proper subset of 
S as partial functions and functions whose domain includes 
all members of S as total functions. All of the functions that 
arise in software engineering are partial functions in the sense 
of this paper.5 

Apredicate is a function whose range contains no members 
other than & and false. 

For any set of simpEuples, X ,  the characteristic predicate 
of that set is a predicate whose domain is S ,  and whose value, 
for a simple tuple b, is true if and only if b is a member of X .  

v. THE SYNTAX OF LOGICAL EXPRESSIONS 

This section describes the class of expressions that is the 
subject of this paper. Readers will find our syntax very close 
to the standard ones. The semantics of these expressions is 
described in Section VI. 

(A) Primitive functions and predicates 

We assume that the strings f i ,  . . . , f,+ are the names of 
functions and that R I ,  . . . , R, are the names of characteristic 
predicates of sets of simple tuples. Viewing the functions as 
sets of pairs and the predicates as characterizing sets of simple 
tuples, we require that the distinguished member of U, *, not 
appear in any of the tuples in those sets. 

(B) Terms 

Expressions are constructed using a finite indexed set of 
mathematical variables, 21, . . . ,xu, and a finite set of con- 
stants, C. The constants are strings representing the members 
of U but no member of C represents *. For example, “&” 
is a constant that represents true; “jiulse” in an expression 
represents false. The symbol “V” w i l l u s e d  to stand for a 
comma separated list of terms (see below). If all the elements 
of V are constants, V represents a simple tuple. 

Afunction application is a string of the form f j ( V ) .  Nothing 
else is a function application. The elements of V are called 
the arguments of the function application. 

A term is either a member of C, a variable, or a function 
application. Nothing else is a term. 

(C) Primitive expressions 
A primitive expression is a string of the form Rj(V) .  

Nothing else is a primitive expression. The elements of V are 
called the arguments of the primitive expression. 

4We allow functions with varying “arity,” both because it simplifies our 
definitions and because programmers often ask for such facilities. 

’Because we allow functions of varying arity, our definition of “partial” 
must be weaker than the usual definitions. Usually, a function whose domain 
was Sk (for fixed I;) would be considered total. 
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(0) Predicate expressions n be the length of V ,  
V,  be the it‘ element of ‘ 7  and 

wal(Vn,A) > 7  

A U  primitive expressions are predicate expressions. If P 

(Vxk, P ) ,  ( P ) ,  ( P )  A ( Q ) ,  ( P )  V ( Q ) ,  and T ( P )  are predicate 
expressions. There are no other predicate expressions, but ex- 
tensions of this work could introduce additional propositional 
connectives and quantifiers (see Section VI-F below). 

and Q are predicate expressions and x k  is a variable, then be the simp1e tup1e < val(V1, A ) ,  ‘ ’ ‘ > “‘(V,, A ) ,  ‘ ’ ‘ 

and distinguish the following two cases: 
1) If V’ is in X j ,  tval(Rj(V),  A )  is m. 
2) If V’ is not in X j ,  tval(Rj(V),  A )  is false. - 

VI. THE MEANING OF LOGICAL EXPRESSIONS 
This section defines the meaning of the expressions de- 

scribed in the przvious section in such a way that if we 
evaluate a primitive expression, Rj ( V ) ,  and some elements 
of V include applications of partial functions, and the values 
of the arguments of any function are not in the domain of that 
function, the value of the primitive expression will be false. 

A full formal definition is important because e x p e r i e n z a s  
shown that the simple description in the previous paragraph is 
unclear for some. Some specialists have expressed doubt that 
a logic with this property can preserve the standard meaning 
of the logical connectives. Further, some implications of the 
informal description are not immediately obvious. However, 
some readers may wish to skip the definitions on first reading. 
The examples provided in later sections can be understood 
without using the detailed definition. 

To define the meaning of these expressions, we will interpret 
each predicate expression as denoting a set, which we call its 
denotation. These denotations will be subsets of S”, where U 

is the number of variables that may appear in the expressions 
whose meaning is being defined. Each simple u-tuple will be 
called an assignment. 

(A) Evaluating terms for a given assignment 

We define a mapping val, which associates pairs, compris- 
ing a term and an assignment, with members of S by the 
following rules. For a term, t ,  and assignment, A: 

1) if t is a constant representing t’ (a member of U ) ,  

2) if t is a variable, x k ,  v d ( t ,  A) is the kth element of the 

3) if t is a function application, f k (V) ,  let 

val ( t ,A)  is t’, 

assignment A, 

a. n be the length of V, 
b. V ,  be the ith element of V ,  and 
c. V’ be the simple tuple <val(Vl, A), . . . , val(V,,  A), 

. . . ~ a l (  V, , A) >, 
and distinguish the following two cases: 

a. if V’ is in the domain of f k ,  val ( t ,A)  isfk(V’), 
b. if V’ is not in the domain of f k ,  val ( t ,A)  is *. 

(B) Evaluating primitive expressions for a given assignment 

ing a primitive expression and an assignment, with either 
or false by the following rule. 

We define a mapping tval, which associates pairs, compris- 

F Z  primitive expression, Rj (V) ,  and assignment, A, let 
X j  be the set of simple tuples characterized by Rj, 

(C) The denotation of primitive expressions 

of all assignments, A, such that tval(p,  A) is &. 
For a primitive expression, p ,  the denotation of p is the set 

(0) The denotation of predicate expressions 

If A is an assignment, A[lc -+ c] stands for an assignment, 
A’, that is identical to A except that the lcth element of A’ 
is the member of U that is represented by c. If P and Q are 
predicate expressions, 

1) the denotation of (Vxk, P )  is the set of all assignments, 
A, such that if c represents any value in U other than *, 
A[k -+ c] is in the denotation of P, and 

2) the denotation of ( P )  is the denotation of P,  and 
3) the denotation of ( P )  A (Q) is the intersection of the 

4) the denotation of ( P )  V (Q) is the union of the deno- 

5 )  the denotation of 1 ( P )  is the set of all members of S” 

denotations P and Q, and 

tations of P and Q, and 

that are not in the denotation of P. 

(E) Satisfaction of an expression 

The denotation of any predicate expression is defined above. 
Expressions that denote the empty set are said to be f a l s e ;  

those that denote all of S” are said to be t rue .  An expression, 
e,  is said to be sa t i s  f zed by an assignment, A, if A is a 
member of the denotation of e.  

(F) Notational conveniences 

Existential quantification (“3”) and implication (‘5’’) can 
be introduced as abbreviations. “(3xk, P)” can be written 
instead of “l(Vxk, ~ ( p ) ) ” .  ‘‘(P=+ Q)” can be written instead 
of “(7(P))V(Q)”.  It is usual to introduce operator precedence 
and eliminate many of the parentheses. 

As most expressions include only a few variables, it is useful 
to describe sets of assignments by listing of the values of some 
variables and not specifying values for the others. For example, 
a list such as “x2 : 4 , 5 2 4  : 96” represents all assignments in 
which the second element is 4 and the 24‘h element is 96. 

It is also convenient to introduce other variables (e.g.: 
cat, y), and conventional symbols representing the functions 
and relations. None of these conveniences would mean a 
substantive change in the interpretation of these expressions. 

VII. EXAMPLES OF THE USE OF THIS 
LOGIC IN SOFTWARE DOCUMENTATION 

This section illustrates the use of our logic by discussing 
some simple examples. 



860 

@ p ,  (V i, 0 S i <  n 
(Blp+i] = B[p+n-1-i]))) (B[p+i] =Blp+n-l-i]))) 

+ZIP, (V i. 0 S i  < n 

(V i. 0 4 i < n ltM 

true fnlse 

(B[l’+i] = B[l’+n-l-il)) 
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Hi 

A NC(n, B) 

I (3 i, B[i] =x) I +i, B[i] = x) I 
H l  r”i 

present’= A NC(x, B) 

HZ G 

Fig. 2. Relational Description of a program that searches B for the value of x. 

Fig. 3 .  Is the value of x to be found in B? 

For increased readability, we have developed tabular rep- 
resentations of functions and use the logic described above 
within the tables. The meaning of the tables is the subject of 
[6]; here we discuss only the logical expressions that appear in 
the tables. These expressions are used to partition the domain 
of a relation (each partition corresponding to a column) and 
to describe the conditions that values must satisfy. 

Both of the examples given below describe programs that 
deal with an array, B, with indices 1 . . . N .  Like many others, 
we treat such arrays as partial functions whose domain consists 
of the integers 1 . . . N .  The value of the array (partial function) 
is not defined for other values. 

Fig. 2 documents the behavior of a program that must 
search the array B, looking for an element with value of 
the program variable x . ~  To describe the behavior of this 
program completely, we must distinguish two cases depending 
on whether or not there is such an element. The table describes 
the required properties of the values of j ’  and present’ in each 
case. We further indicate that the variables x and B should 
not change (by writing “ N C ( X ,  B)”). 

The key predicate expression in Fig. 2 is that in Fig. 3. 
A logic not designed for partial functions would leave the 

expression in Fig. 3 undefined because there are values of 1: 
for which B[i] is not defined. Other logics, e.g. some of those 
that introduce a third value, would assign that third value to 
this expression whether or not the value of .T could be found in 
B. Neither of these interpretations would be consistent with 
the intended meaning of this table. We want one, and only 
one, of the two expressions in the column headers to evaluate 
to m. Other alternatives introduce bounded quantification, 
i.e. quantification over an explicitly described set, allowing 
expressions like “(3 : 0 < i 5 n,B[i]  = x)” and “ (V i  : 0 < 
i 5 n,B[i] = x).’” The use of bounded quantification as a 
primitive concept could solve this problem, but the expressions 
would always be longer, more complex than Fig. 3. The 
complexity can become especially troublesome if the arrays 
in an expression do not have the same index set. Consider the 
expression in Fig. 4. 

hIn these tables, and false are predicate values, while true and false 
represent the values of programvariables. ‘‘1’’ is read “such that” and indicates 
that the value of the variable must satisfy a predicate given in the appropriate 
column. 

’It is important not to define these as abbreviations for ( 3 i . 0  < i 5 
n A B[i] = .r)” and “ ( V i .  0 < i 5 n j B[i] = . r ) ,”  respectively. Bounded 
quantification must be primitive. 

Fig. 4. Looking for matching elements in two arrays. 

I (3 i, (A[i] = B[i]) v (A[i] = C[il)) I 
Fig. 5.  Looking for common matching in three arrays. 

present’= 

“2 0 

Fig. 6. Relational description of a program checking for palindromes. 

Fig. 7. Is there a palindrome of length 71 beginning at l’? 

For this example, if we were depending on bounded quan- 
tification, the quantification would have to take place over the 
intersection of the index sets of B and C. Now, consider Fig. 
5; if we were using bounded quantification, and the index sets 
of the three arrays A ,  B ,  and C were distinct but overlapping, 
the expression in Fig. 5 would have to be rewritten as the 
disjunction of two separate quantified expressions. 

The logic proposed in this paper gives exactly the answers 
that would be wanted in such cases. When the value of 1: is 
outside the index set of either B or C ,  the value of C[i ]  = B[i] 
is false. 

Theslightly more complex example in Fig. 6 is introduced 
to show that we get the desired results when universal quantifi- 
cation is used. Fig. 6 would document a program that examines 
an array, B, looking for a palindrome of length n. 

If there is such a palindrome, its presence and location are 
indicated by the values of present’ and 1’. If a palindrome is 
present, the value of 1’ must satisfy the expression in Fig. 7. 

This expression gives the desired results even though the 
implication is evaluated outside the domain (index set) of 
B; that domain is characterized by the left-hand side of the 
implication. When the expression is evaluated outside of the 
index set, the left-hand side of the implication is false and the 
implication is &. With universal quantification K i n t e r p r e -  
tation requires an explicit statement of the domain of interest, 
but we do not need to introduce bounded quantification as a 
primitive concept. 

VIII. CONCLUDING OBSERVATIONS 

The meaning of expressions like the one presented in Fig. 
1 can be defined in terms of well-understood set-theoretic 
operations. As a result, the logical connectives have properties 
analogous to the corresponding set theoretic operators, and the 
proposed definition is consistent with the intuitive meaning of 
these operators. It is not necessary to introduce either a third 
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Fig. 8. Simplified version of (1 j. 

Fig. 9. “axiom” of reflection, which does not hold in this interpretation. 

value or conditional operators in order to deal with partial 
functions. 

Some researchers have proposed avoiding the problem of 
partial functions by avoiding the concept of function com- 
pletely. It is possible to work entirely with relations and not 
use the “f(z)” notation. If F is the characteristic predicate 
of the function f, one can replace each use of “y = f(z)” 
with “F(.r,  y)”. However, engineers have found the use of 
functional notation to be very valuable, and we are reluctant 
to discard it. One nice property of our proposal is that it gives 
exactly the same results that one would get if one avoided 
functions by using the corresponding relations. 

Not only is our introductory example (1) fully defined using 
this interpretation, so is the simplified form in Fig. 8. 

This form, in which there are no “guarding” expressions, has 
exactly the same denotation as (1) and (2). The interpretation 
of logical formulae presented here allows us to simplify 
many expressions substantially. Obtaining the most compact 
readable formulation possible is essential if these notations are 
to be used to describe real programs. 

Extensive discussions of axioms and rules of inference for 
logics similar to the one described here can be found in [ l ] ,  [3] 
and the papers that they reference. Many of the usual axioms 
apply only to functions that are total. For example, we often 
assume that the expression in Fig. 9 evaluates to true for any 
function, f l .  However, (5 )  is equivalent to true if, and only 
if, the domain of fl includes all values in U - {*}8. If .r1 

is outside of the domain of fl.fl(~1) = fl(r1) would have 
the value false. 

Some expressions that are normally assumed to represent 
complementary predicates would not do so in our interpre- 
tation if the relations are included in the set of primitive 
relations. For example, if both “>” and ‘‘I” are primitive, 
“& > &” would not denote the complement of the deno- 
tation of ‘‘fi 5 a’; both evaluate to false when either 
s or y are assigned negative values. W e n  define two 
nonprimztzwe ordering relations that are complementary by 
defining one of them to be true if both of the primitive relations 
are false. This would be an arbitrary choice and probably not 
useful. 

It should be noted that our definitions do not treat equality 
different from any of the other relations used in the ex- 
pressions. Equality would be included in { R I ,  . . . , Rm},  and 
should be defined to be the smallest symmetric, transitive, 
reflexive, binary relation on its domain; the domain should be 
c’ - {*}. If this definition is used, the expression “fi = &“ 
cannot be replaced by “m” if U includes negative values. 
If U is the set of real numbers, “6 = &“ can be replaced 

*“-” denotes set difference 

by “a > 0,” which characterizes the domain of the function 
applied in the expression.’ Because this is contrary to our 
habitual assumptions and could lead to careless errors, the 
properties of the functions that we use must be stated precisely. 
Conventional simplification rules, and hence some automatic 
simplifiers and verifiers, must be either modified or used with 
caution; they are often based on the implicit assumption that 
functions are total. 

The interpretation proposed here can be simpler than some 
proposed elsewhere because some of the complexities of 
dealing with partial functions have been kept out of the general 
interpretation; the complexity will reappear in the axiomatic 
definitions of the functions actually used. Simplification has 
also been obtained by insisting that all primitive predicates 
evaluate to false whenever one or more of their arguments 
is not d e f i n e r w e  believe that these are the proper decisions 
because (1) keeping the logic simple is essential to practical 
application, (2) the assigned meanings are consistent with 
intuitive interpretations, and (3) the formulae that result are 
relatively simple for cases arising frequently in our use of the 
logic. 
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