
856 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 1993

Predicate Logic for Software Engineering
David Lorge Parnas, Senior Member, IEEE

Abstract-The interpretations of logical expressions found in
most introductory textbooks are not suitable for use in software
engineering applications because they do not deal with partial
functions. More advanced papers and texts deal with partial
functions in a variety of complex ways. This paper proposes
a very simple change to the classic interpretation of predicate
expressions, one that defines their value for all values of all
variables, yet is almost identical to the standard definitions. It
then illustrates the application of this interpretation in software
documentation.

Index Terms- Formal methods, predicate logic, partial func-
tions, software documentation, tabular expressions.

I. INTRODUCTION

ROFESSIONAL engineers can often be distinguished P from other designers by the engineers’ ability to use
mathematical methods to describe and analyze their products.
Although mathematics is not commonly used by today’s
programmers, many researchers are developing mathematical
methods that are intended for use in software development.
We hope that these methods will do for software engineering
what differential and integral calculus did for other areas
of engineering. The shared basis of all these proposals is
mathematical logic. In the future, a solid understanding of
logic will be essential for anyone who hopes to be recognized
as a software engineer.

In [8], we have shown how the contents of key computer
systems documents can be defined in terms of mathematical
functions and relations. We also reminded our readers that (1)
functions and relations can be viewed as sets of ordered pairs,
(2) sets can be characterized by predicates and described by
logical expressions, (3) predicates can be represented in a more
readable way using multidimensional (tabular) expressions
whose components are logical expressions and terms, and
(4) the meaning of these tables can be defined by rules for
translating those tables into more conventional expressions. A
complete discussion of these tabular expressions can be found
in [6]. The most recent illustration of their use can be found
in [9].

In our approach to software development, it is essential to
have a precise meaning for logical expressions, one that unam-
biguously yields a value of true or false - for every assignment

Manuscript received October 1992; revised June 1993. Recommended by N.
G. Leveson. This work was supported by the Government of Ontario through
TRIO, and by the Government of Canada through NSERC’s Research Grant
program.

The author is with the Telecommunications Research Institute of Ontario
(TRIO), Communications Research Laboratory, Department of Electrical and
Computer Engineering, McMaster University, Hamilton, Ontario, Canada U S
4K1.

IEEE Log Number 921 1725.

of values to the variables that appear in an expression. Our
documents represent predicates on the observable behavior of
programs. If we want to know whether an observed behavior
satisfies a specification, we want a definite “yes” or “no,” not
“maybe.”

Because our goal is to make a change in industrial practice,
we have to pay attention to the size (and perceived complexity)
of the expressions. We have had extensive experience in
the use of mathematical methods working with industrial
practitioners (e.g. [7]). It is clear that practitioners do not want
to use methods that require them to use many symbols to say
simple things. They will not read expressions that are lengthy
or deeply nested. If we tell them that the increased complexity
is necessary, “in order to be formal,” most will reject the
concept of formality. Rather than follow burdensome rules,
they will take short-cuts, inventing ad hoc abbreviations at
will, if a formalism requires that they write down a lot of
conditions, variable definitions, etc. that do not seem to carry
much information. These “on-the-fly’’ inventions are often
ambiguous and cannot be the basis of sophisticated support
tools. A full, formal definition of a logic that permits concise
expressions is a prerequisite for practical use.

The most conventional formal interpretations of logical
expressions (e.g. [5]) assume that all functions are total,
i.e. defined on a domain that includes all possible values
of their arguments. Those interpretations are not intended
to deal with partial functions, functions whose value has
not been defined for certain values of the arguments. Under
conventional interpretations, a logical expression that includes
partial functions will have a defined value only if the values
assigned to the arguments of each function are within that
function’s domain; in other words, the predicate described by
the expression is partial. Such interpretations are of limited
usefulness when describing software because we frequently
use partial functions to describe the behavior of programs.
This paper proposes an interpretation of predicate expressions
that is as close as possible to the standard interpretations but
makes all predicates total.

Fig. 1 contains a simple example that illustrates the problem
that motivates this work. More interesting, software-related
examples will be found later in this paper.

11. THE STRUCTURE OF THIS PAPER

Section 111 discusses the goals of this paper and compares
them with the goals of other papers on the subject. Section
IV reviews the definitions of some basic concepts. Section
V defines the class of expressions that we call predicate
expressions. Section VI then gives precise meaning to these
expressions by associating each with a set of n-tuples. The

0098-5589/93$03.00 0 1993 IEEE

PARNAS: PREDICATE LOGIC FOR SOFTWARE ENGINEERING 857

Assume that .f represents a function that is defined on a domain containing
~ n l y non-negative real numbers. A software designer may write boolean
expressions such as:

((I>o) A (Y = h) v ((XSO) A (Y = A)) (1)

to describe the behaviour of a computer program. The writer’s intent seems to
be to write an expression that is equivalent to:

Y = 457 (2)

The usual rules for evaluating such expressions q u i n evaluation of all of
the functions and relational operators before application of the logical operators
to the truth-values that result For every value of x other than 0. some
component of expression (1) is undefined. With the standard interpretation of
logical operators, which are defined only for two-value logics, the value of (1) is
not defined except when x is assigned the value 0.

Those who think in tenns of programming languages might consider
replacing (1) with:

((X > o) * (Y $)) A ((X i @ -+ v = A)) (3)
because implications look like conditional statements. However, (3) is exactly
cauivalent to (1).

Fig. 1. Motivating Example.

formal definition uses basic set theory and assures that the
logical connectives have the expected behavior. The first
paragraphs of Section VI explain the implications of the formal
definition, and some readers may prefer to skip the formal
definition on first reading. Section VI1 illustrates the way
that we use this logic and explains its advantages in these
applications. In Section VI11 we offer some observations about
reasoning, e.g. formula simplification, formula comparison,
and formal proof, with this interpretation.

111. COMPARISON WITH OTHER WORK

The problem illustrated in Fig. 1 is well known. There
is a huge and complex literature on the subject of logic
with partial functions. A discussion of recent work on this
subject from a computer science point of view is given in
[l]. Another, more philosophical, survey and analysis can be
found in [3].’ In fact, long before computer scientists became
interested in this problem, it was discussed by most of the
great philosophers and mathematicians who wrote about logic.
It is not the purpose of this paper to duplicate the discussions
of alternatives that are found in the literature. Our goals are
more pedestrian. This paper presents a specific proposal and
illustrates its use. The proposal presented is close to Farmer’s
proposal (in [3]) but the presentation can be simpler because of
our intended application and audience. The proposal made in
this paper is one of a class of proposals called “disconcerting,”
and not given serious consideration in [l]. Although the
proposal will be controversial, we have found it to be useful.

This paper’s treatment of the subject can be different from
that in the papers cited because it is intended for a specific
application. By limiting our attention to software engineering,
we are able to limit our domains to finite sets of elements,
n-tuples of elements drawn from a finite and fixed universe.
We are able to evade many of the deeper philosophical issues
that complicate other papers and to provide a formal definition
that is very close to the classical definitions for logics that are
limited to total functions.

I Insight into the complexity and extent of the literature on this subject can
be obtained by comparing the references cited in these two surveys. They
have few authors, and fewer papers, in common.

As our primary focus is on the use of mathematics for
precise documentation of software and not on program ver-
ification, we present a formal semantics but do not present
axioms or rules of inference for the logic. This allows a precise
definition that is accessible to anyone with a knowledge of
“naive” set theory [4].

Because of these simplifications, this paper will not satisfy
everyone’s needs and is not intended to do so. The logic
proposed is not optimal for all applications. For example,
when discussing the evaluation of the Boolean expressions
that appear in programs, one may want to turn to three-valued
logics. Those interested in the more general discussions will
have to turn to the surveys included in the references.

Some proposals extend the conventional propositional and
predicate calculus with new symbols, or change the meaning
of the conventional ones. For example, it is common to define
conditional versions of “A” and “V” (e.g. the well-known
“cand” [2]) to allow the use of such partial functions. These
conditional operators are defined by describing an evaluation
procedure, one that depends on the values of sub-expressions.
Dijkstra’s cand, and similar operators, are asymmetric. The
value of the left operand determines whether or not the right
operand will be evaluated. With such rules, sub-expressions
cannot be properly understood outside of the context in which
they appear. This is unfortunate because it means that lengthy
expressions must be understood as a whole rather than piece
by piece. In other approaches to the problem conventional two-
valued logic is replaced by a three-valued logic in which the
third value is understood as “undefined.” Three-valued logics
were deemed to be unsuitable for our applications, for reasons
discussed earlier.

The interpretation for predicate expressions proposed here
neither specifies the order of evaluation nor introduces new
symbols into the logic. All logical connectives retain their
familiar meanings. Instead of changing the meaning of the
connectives, we restrict the set of primitive predicates. A
side effect of our restriction is that some common relational
operators cannot be primitive in our logic. However, relational
operators with the expected properties can be constructed from
the primitive operators. We return to this issue in Section VIII.

Another approach to the problem of partial functions has
been the introduction, as part of the basic definitions, of
bounded quantification, i.e. quantification on limited domains.
We have experimented with this alternative and concluded
that it complicates the expressions more than the approach
presented in this paper. Bounded quantification can be intro-
duced as an abbreviation in the logic defined in this paper
if desired, but when introduced as an abbreviation, bounded
quantification does not make a substantive change in the
properties of the logic. We discuss this alternative further in
Section VII.

Some researchers assume that what some people call the
“axiom of reflection” (namely, that for all functions f , the
value of (f(x) = f(x)) must always be true) is essential.
This intuitively appealing rule seems fine but leads to further
deliberations about whether f(x) = f (y) should be true
when z and y are distinct but both outside of the domain
of f . In the approach presented in this paper, we have

858 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 1993

consciously abandoned reflection as a universal property. In
this interpretation, for any primitive relation, “=”, f(x) =
f(x) would befulse if z is not in the domain o f f . It is possible
to define a non=itive equivalence relation that satisfies the
stated “axiom,” but we do not believe that doing so is useful.
We return to this issue in Section VIII.

IV. BASIC DEFINITIONS

This section explains some well-known mathematical con-
cepts used in the sequel, namely tuple, simple tuple, relation,
function, predicate, characteristic predicate, domain, argument,
and range.

(A) Tuples

We assume the existence of a finite2 set of values called U .
U must include the truth-values (represented by ‘‘=” and
“jiulse”), a distinguished value (represented by “*”), and all
o G v a l u e s of interest.

A simple tuple is an ordered list of one or more members
of U . A simple n-tuple is an ordered list of n members of
U . We make no distinction between a simple 1-tuple and a
member of U .

A tuple is an ordered list of one or more simple tuples. A n
n-tuple is a tuple containing n elements, each of which is a
simple tuple. A 1-tuple whose element is a simple n-tuple is
the same as that simple n-tuple.

When representing specific tuples, we separate the elements
with commas and enclose tuples in <brackets> to make their
structure clear. For example, “< -,false, @,false >” rep-
resents a simple 4-tuple, and “<< -,false >,=false >”
represents a 3-tuple that is not a s implexuple . T h e x i n g s
“true,” “< true >,” and “<< true >>” all represent the same
simple 1-tuple and member of U .
Sk is the set of all simple k-tuples; S1 is U . S is the union

of SI, S 2 , . . . , S“; U is the length of the longest tuple needed
to apply the semantic model developed be10w.~

T k is the set of all k-tuples. T1 is S. T k includes Sk. T is
the union of T 1 , T 2 , - , T U .

(B) Relations, functions, predicates, and
characteristic predicates

We define a relation to be a set of tuples, a subset of T . If
the set consists entirely of pairs (24uples), we call the relation
a binary relation. The set of values that appears as the first
element of a pair in a binary relation is called the domain
of that relation. The set of values that appears as the second
element of a pair is called the range of that relation.

A function is a binary relation with one additional property:
for any given simple tuple, x, in its domain, there is only one
pair (x, y) in the function. If < a, b > is in the function F, b
is called the value of the function at a; we may write “F(a)”
to represent b. A procedure determining the value of F at a is
called an evaluation of F at a. If there is no pair < a , b > in

2We restrict ourselves to finite sets, not because it is strictly necessary to
be so restrictive, but because they are all that we need for our application.

U will be the size of the set of variables.

F , F (a) is not defined (i.e. F cannot be evaluated) at a. Note
that the domain and range of a function can include simple
tuples, and it may make sense to write “ F (a , b),” “ F (a , b , c),”
and “ F (F (a , b, c)) . ” ~

We refer to functions whose domain is a proper subset of
S as partial functions and functions whose domain includes
all members of S as total functions. All of the functions that
arise in software engineering are partial functions in the sense
of this paper.5

Apredicate is a function whose range contains no members
other than & and false.

For any set of simpEuples, X , the characteristic predicate
of that set is a predicate whose domain is S , and whose value,
for a simple tuple b, is true if and only if b is a member of X .

v. THE SYNTAX OF LOGICAL EXPRESSIONS

This section describes the class of expressions that is the
subject of this paper. Readers will find our syntax very close
to the standard ones. The semantics of these expressions is
described in Section VI.

(A) Primitive functions and predicates

We assume that the strings f i , . . . , f,+ are the names of
functions and that R I , . . . , R, are the names of characteristic
predicates of sets of simple tuples. Viewing the functions as
sets of pairs and the predicates as characterizing sets of simple
tuples, we require that the distinguished member of U, *, not
appear in any of the tuples in those sets.

(B) Terms

Expressions are constructed using a finite indexed set of
mathematical variables, 21, . . . ,xu, and a finite set of con-
stants, C. The constants are strings representing the members
of U but no member of C represents *. For example, “&”
is a constant that represents true; “jiulse” in an expression
represents false. The symbol “V” w i l l u s e d to stand for a
comma separated list of terms (see below). If all the elements
of V are constants, V represents a simple tuple.

Afunction application is a string of the form f j (V) . Nothing
else is a function application. The elements of V are called
the arguments of the function application.

A term is either a member of C, a variable, or a function
application. Nothing else is a term.

(C) Primitive expressions
A primitive expression is a string of the form Rj(V) .

Nothing else is a primitive expression. The elements of V are
called the arguments of the primitive expression.

4We allow functions with varying “arity,” both because it simplifies our
definitions and because programmers often ask for such facilities.

’Because we allow functions of varying arity, our definition of “partial”
must be weaker than the usual definitions. Usually, a function whose domain
was Sk (for fixed I;) would be considered total.

PARNAS: PREDICATE LOGIC FOR SOFTWARE ENGINEERING 859

(0) Predicate expressions n be the length of V ,
V, be the it‘ element of ‘ 7 and

wal(Vn,A) > 7

A U primitive expressions are predicate expressions. If P

(Vxk, P) , (P) , (P) A (Q) , (P) V (Q) , and T (P) are predicate
expressions. There are no other predicate expressions, but ex-
tensions of this work could introduce additional propositional
connectives and quantifiers (see Section VI-F below).

and Q are predicate expressions and x k is a variable, then be the simp1e tup1e < val(V1, A) , ‘ ’ ‘ > “‘(V,, A) , ‘ ’ ‘

and distinguish the following two cases:
1) If V’ is in X j , tval(Rj(V), A) is m.
2) If V’ is not in X j , tval(Rj(V), A) is false. -

VI. THE MEANING OF LOGICAL EXPRESSIONS
This section defines the meaning of the expressions de-

scribed in the przvious section in such a way that if we
evaluate a primitive expression, Rj (V) , and some elements
of V include applications of partial functions, and the values
of the arguments of any function are not in the domain of that
function, the value of the primitive expression will be false.

A full formal definition is important because e x p e r i e n z a s
shown that the simple description in the previous paragraph is
unclear for some. Some specialists have expressed doubt that
a logic with this property can preserve the standard meaning
of the logical connectives. Further, some implications of the
informal description are not immediately obvious. However,
some readers may wish to skip the definitions on first reading.
The examples provided in later sections can be understood
without using the detailed definition.

To define the meaning of these expressions, we will interpret
each predicate expression as denoting a set, which we call its
denotation. These denotations will be subsets of S”, where U

is the number of variables that may appear in the expressions
whose meaning is being defined. Each simple u-tuple will be
called an assignment.

(A) Evaluating terms for a given assignment

We define a mapping val, which associates pairs, compris-
ing a term and an assignment, with members of S by the
following rules. For a term, t , and assignment, A:

1) if t is a constant representing t’ (a member of U) ,

2) if t is a variable, x k , v d (t , A) is the kth element of the

3) if t is a function application, f k (V) , let

val (t ,A) is t’,

assignment A,

a. n be the length of V,
b. V , be the ith element of V , and
c. V’ be the simple tuple <val(Vl, A), . . . , val(V,, A),

. . . ~ a l (V, , A) >,
and distinguish the following two cases:

a. if V’ is in the domain of f k , val (t ,A) isfk(V’),
b. if V’ is not in the domain of f k , val (t ,A) is *.

(B) Evaluating primitive expressions for a given assignment

ing a primitive expression and an assignment, with either
or false by the following rule.

We define a mapping tval, which associates pairs, compris-

F Z primitive expression, Rj (V) , and assignment, A, let
X j be the set of simple tuples characterized by Rj,

(C) The denotation of primitive expressions

of all assignments, A, such that tval(p, A) is &.
For a primitive expression, p , the denotation of p is the set

(0) The denotation of predicate expressions

If A is an assignment, A[lc -+ c] stands for an assignment,
A’, that is identical to A except that the lcth element of A’
is the member of U that is represented by c. If P and Q are
predicate expressions,

1) the denotation of (Vxk, P) is the set of all assignments,
A, such that if c represents any value in U other than *,
A[k -+ c] is in the denotation of P, and

2) the denotation of (P) is the denotation of P, and
3) the denotation of (P) A (Q) is the intersection of the

4) the denotation of (P) V (Q) is the union of the deno-

5) the denotation of 1 (P) is the set of all members of S”

denotations P and Q, and

tations of P and Q, and

that are not in the denotation of P.

(E) Satisfaction of an expression

The denotation of any predicate expression is defined above.
Expressions that denote the empty set are said to be f a l s e ;

those that denote all of S” are said to be t rue . An expression,
e, is said to be sa t i s f zed by an assignment, A, if A is a
member of the denotation of e.

(F) Notational conveniences

Existential quantification (“3”) and implication (‘5’’) can
be introduced as abbreviations. “(3xk, P)” can be written
instead of “l(Vxk, ~ (p)) ” . ‘‘(P=+ Q)” can be written instead
of “(7(P))V(Q)”. It is usual to introduce operator precedence
and eliminate many of the parentheses.

As most expressions include only a few variables, it is useful
to describe sets of assignments by listing of the values of some
variables and not specifying values for the others. For example,
a list such as “x2 : 4 , 5 2 4 : 96” represents all assignments in
which the second element is 4 and the 24‘h element is 96.

It is also convenient to introduce other variables (e.g.:
cat, y), and conventional symbols representing the functions
and relations. None of these conveniences would mean a
substantive change in the interpretation of these expressions.

VII. EXAMPLES OF THE USE OF THIS
LOGIC IN SOFTWARE DOCUMENTATION

This section illustrates the use of our logic by discussing
some simple examples.

860

@ p , (V i, 0 S i < n
(Blp+i] = B[p+n-1-i]))) (B[p+i] =Blp+n-l-i])))

+ZIP, (V i. 0 S i < n

(V i. 0 4 i < n ltM

true fnlse

(B[l’+i] = B[l’+n-l-il))

IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 1993

Hi

A NC(n, B)

I (3 i, B[i] =x) I +i, B[i] = x) I
H l r”i

present’= A NC(x, B)

HZ G

Fig. 2. Relational Description of a program that searches B for the value of x.

Fig. 3 . Is the value of x to be found in B?

For increased readability, we have developed tabular rep-
resentations of functions and use the logic described above
within the tables. The meaning of the tables is the subject of
[6]; here we discuss only the logical expressions that appear in
the tables. These expressions are used to partition the domain
of a relation (each partition corresponding to a column) and
to describe the conditions that values must satisfy.

Both of the examples given below describe programs that
deal with an array, B, with indices 1 . . . N . Like many others,
we treat such arrays as partial functions whose domain consists
of the integers 1 . . . N . The value of the array (partial function)
is not defined for other values.

Fig. 2 documents the behavior of a program that must
search the array B, looking for an element with value of
the program variable x . ~ To describe the behavior of this
program completely, we must distinguish two cases depending
on whether or not there is such an element. The table describes
the required properties of the values of j ’ and present’ in each
case. We further indicate that the variables x and B should
not change (by writing “ N C (X , B)”).

The key predicate expression in Fig. 2 is that in Fig. 3.
A logic not designed for partial functions would leave the

expression in Fig. 3 undefined because there are values of 1:
for which B[i] is not defined. Other logics, e.g. some of those
that introduce a third value, would assign that third value to
this expression whether or not the value of .T could be found in
B. Neither of these interpretations would be consistent with
the intended meaning of this table. We want one, and only
one, of the two expressions in the column headers to evaluate
to m. Other alternatives introduce bounded quantification,
i.e. quantification over an explicitly described set, allowing
expressions like “(3 : 0 < i 5 n,B[i] = x)” and “ (V i : 0 <
i 5 n,B[i] = x).’” The use of bounded quantification as a
primitive concept could solve this problem, but the expressions
would always be longer, more complex than Fig. 3. The
complexity can become especially troublesome if the arrays
in an expression do not have the same index set. Consider the
expression in Fig. 4.

hIn these tables, and false are predicate values, while true and false
represent the values of programvariables. ‘‘1’’ is read “such that” and indicates
that the value of the variable must satisfy a predicate given in the appropriate
column.

’It is important not to define these as abbreviations for (3 i . 0 < i 5
n A B[i] = .r)” and “ (V i . 0 < i 5 n j B[i] = . r) ,” respectively. Bounded
quantification must be primitive.

Fig. 4. Looking for matching elements in two arrays.

I (3 i, (A[i] = B[i]) v (A[i] = C[il)) I
Fig. 5. Looking for common matching in three arrays.

present’=

“2 0

Fig. 6. Relational description of a program checking for palindromes.

Fig. 7. Is there a palindrome of length 71 beginning at l’?

For this example, if we were depending on bounded quan-
tification, the quantification would have to take place over the
intersection of the index sets of B and C. Now, consider Fig.
5; if we were using bounded quantification, and the index sets
of the three arrays A , B , and C were distinct but overlapping,
the expression in Fig. 5 would have to be rewritten as the
disjunction of two separate quantified expressions.

The logic proposed in this paper gives exactly the answers
that would be wanted in such cases. When the value of 1: is
outside the index set of either B or C , the value of C[i] = B[i]
is false.

Theslightly more complex example in Fig. 6 is introduced
to show that we get the desired results when universal quantifi-
cation is used. Fig. 6 would document a program that examines
an array, B, looking for a palindrome of length n.

If there is such a palindrome, its presence and location are
indicated by the values of present’ and 1’. If a palindrome is
present, the value of 1’ must satisfy the expression in Fig. 7.

This expression gives the desired results even though the
implication is evaluated outside the domain (index set) of
B; that domain is characterized by the left-hand side of the
implication. When the expression is evaluated outside of the
index set, the left-hand side of the implication is false and the
implication is &. With universal quantification K i n t e r p r e -
tation requires an explicit statement of the domain of interest,
but we do not need to introduce bounded quantification as a
primitive concept.

VIII. CONCLUDING OBSERVATIONS

The meaning of expressions like the one presented in Fig.
1 can be defined in terms of well-understood set-theoretic
operations. As a result, the logical connectives have properties
analogous to the corresponding set theoretic operators, and the
proposed definition is consistent with the intuitive meaning of
these operators. It is not necessary to introduce either a third

PARNAS: PREDICATE LOGIC FOR SOFTWARE ENGINEERING 861

Fig. 8. Simplified version of (1 j.

Fig. 9. “axiom” of reflection, which does not hold in this interpretation.

value or conditional operators in order to deal with partial
functions.

Some researchers have proposed avoiding the problem of
partial functions by avoiding the concept of function com-
pletely. It is possible to work entirely with relations and not
use the “f(z)” notation. If F is the characteristic predicate
of the function f, one can replace each use of “y = f(z)”
with “F(.r, y)”. However, engineers have found the use of
functional notation to be very valuable, and we are reluctant
to discard it. One nice property of our proposal is that it gives
exactly the same results that one would get if one avoided
functions by using the corresponding relations.

Not only is our introductory example (1) fully defined using
this interpretation, so is the simplified form in Fig. 8.

This form, in which there are no “guarding” expressions, has
exactly the same denotation as (1) and (2). The interpretation
of logical formulae presented here allows us to simplify
many expressions substantially. Obtaining the most compact
readable formulation possible is essential if these notations are
to be used to describe real programs.

Extensive discussions of axioms and rules of inference for
logics similar to the one described here can be found in [l] , [3]
and the papers that they reference. Many of the usual axioms
apply only to functions that are total. For example, we often
assume that the expression in Fig. 9 evaluates to true for any
function, f l . However, (5) is equivalent to true if, and only
if, the domain of fl includes all values in U - {*}8. If .r1

is outside of the domain of fl.fl(~1) = fl(r1) would have
the value false.

Some expressions that are normally assumed to represent
complementary predicates would not do so in our interpre-
tation if the relations are included in the set of primitive
relations. For example, if both “>” and ‘‘I” are primitive,
“& > &” would not denote the complement of the deno-
tation of ‘‘fi 5 a’; both evaluate to false when either
s or y are assigned negative values. W e n define two
nonprimztzwe ordering relations that are complementary by
defining one of them to be true if both of the primitive relations
are false. This would be an arbitrary choice and probably not
useful.

It should be noted that our definitions do not treat equality
different from any of the other relations used in the ex-
pressions. Equality would be included in { R I , . . . , Rm}, and
should be defined to be the smallest symmetric, transitive,
reflexive, binary relation on its domain; the domain should be
c’ - {*}. If this definition is used, the expression “fi = &“
cannot be replaced by “m” if U includes negative values.
If U is the set of real numbers, “6 = &“ can be replaced

*“-” denotes set difference

by “a > 0,” which characterizes the domain of the function
applied in the expression.’ Because this is contrary to our
habitual assumptions and could lead to careless errors, the
properties of the functions that we use must be stated precisely.
Conventional simplification rules, and hence some automatic
simplifiers and verifiers, must be either modified or used with
caution; they are often based on the implicit assumption that
functions are total.

The interpretation proposed here can be simpler than some
proposed elsewhere because some of the complexities of
dealing with partial functions have been kept out of the general
interpretation; the complexity will reappear in the axiomatic
definitions of the functions actually used. Simplification has
also been obtained by insisting that all primitive predicates
evaluate to false whenever one or more of their arguments
is not d e f i n e r w e believe that these are the proper decisions
because (1) keeping the logic simple is essential to practical
application, (2) the assigned meanings are consistent with
intuitive interpretations, and (3) the formulae that result are
relatively simple for cases arising frequently in our use of the
logic.

ACKNOWLEDGMENT

I am grateful to Professors M. Iglewski, J. Madey, A.
Kreczmar, W. Lukaszewicz, J. Zucker, P. Gilmore, M. van
Emden, J. Ludewig, and Dr. J. McLean for helpful comments
on earlier drafts of this paper. Careful reading and provocative
remarks by Ramesh Bharadwaj, Philip Kelly, Yabo Wang, and
Delbert Yeh were also very helpful. Several of the referees
helped me to explain why I chose to add one more paper on

subject to the already immense literature.

REFERENCES

J. H. Cheng and C. B. Jones, “On the usability of logics which handle
partial functions,” in Proc. Third Refinement Workshop, C. Morgan and
J. Woodcock, Eds.
E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs N.J.:
Prentice-Hall, 1976
William F. Farmer, “A partial functions version of Church’s simple
theory of types,” J . Symbolic Logic, pp. 1269-1291, Sept. 1990.
P. R. Halmos, Naive Set Theory. New York: Van Nostrand Rheinhold,
1960.
E. Mendelson, Introduction to Mathematical Logic, Third Ed. Pacific
Grove, CA: Wadsworth and Brooks, 1987.
D. L. Parnas, “Tabular representation of relations,” CRL Report 260,
McMaster University, TRIO (Telecommunications Research Institute of
Ontario), Oct. 1992.
D. L. Parnas, G. J. K. Asmis, and J. Madey, “Assessment of safety-
critical software in nuclear power plants,” Nuclear Safety, vol. 32, no.
2, pp. 189-198, Apr.-June 1991.
D. L. Parnas and J. Madey, “Functional documentation for computer
systems engineering (version 21,’’ CRL Report 237, McMaster Univer-
sity, Hamilton Canada, TRIO (Telecommunications Research Institute
of Ontario), Sept. 1991.
D. L. Parnas, J. Madey, and M. Iglewski, “Formal documentation
of well-structured programs,” CRL Report 259, McMaster University,
TRIO (Telecommunications Research Institute of Ontario), Sept. 1992.

Heidelberg Germany: Springer-Verlag, 1991.

’The primitive predicates can be used to construct other predicates if
desired. For example, it is possible to define E(rr. b j to be ((I = b j V (- . ((U =
b j v ((1 # (1))) .

862 IEEE TRANSACTIONS ON SORWARE ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 1993

David Lorge Parnas (SM’92) was born Febru-
ary 10, 1941. He received the Ph.D. in electrical
engineering from Carnegie-Mellon University, and
an honorary doctorate from the ETH in Zurich,
Switzerland.

He is a Professor in the Department of Electrical
and Computer Engineering at McMaster University
in Hamilton, Ontario, Canada. He is a member of the
Communications Research Laboratory and Principal
Investigator for the Telecommunications Research
Institute of Ontario He has been a Professor at

the University of Victoria, British Columbia, the Technische Hochschule
Darmstadt, and the University of North Carolina at Chapel Hill, North
Carolina. He has also been a member of the faculty at Carnegie-Mellon
University and the University of Maryland, as well as holding nonacademic
positions with Philips Computer, the United States Naval Research Laboratory
in Washington, D.C., and the IBM Federal Systems Division. At NRL he
instigated and led the Software Cost Reduction Project, where he developed
and applied software technology for avionics systems for several years.
He has advised the Atomic Energy Control Board of Canada on the use
of safety-critical real-time software at the Darlington Nuclear Generation
Station. He has authored more than 150 papers and reports, and his fields
of interest include precise abstract specifications, real-time systems, safety-
critical software, program semantics, language design, software structure, and
synchronization. He seeks to find a “middle r o a d between theory and practice,
emphasizing theory that can be applied to improve the quality of products.

Dr Parnas won the ACM “Best Paper” award in 1979 and a “Most
Influential Paper” award from the International Conference on Software
Engineering in 1991. Deeply concerned that computer technology be applied
to the benefit of society, Dr. Parnas was the first winner of the “Norbert
Wiener Award for Professional and Social Responsibility ” He was recently
elected a Fellow of the Royal Society of Canada.

