
Parallel and Concurrent Programming

Motivation (General):

•Multicore Architectures

•Systems  that require High Performance Computing (HPC) services

•Systems that provide HPC services

•Science and Engineering moving towards simulation (requiring HPC)
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•Science and Engineering moving towards simulation (requiring HPC)

Motivation (Software Engineering):

•Understanding the interaction between hardware and software is key to making 

architectural tradeoffs during design (for HPC)

•It is also important to understand the need to balance potential gains in 

performance versus additional programming effort involved.
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Multi-Core
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Multi-Core

Multi-core processors 

are MIMD:

Different cores execute 

different threads

(Multiple Instructions), 

operating on different
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operating on different

parts of memory 

(Multiple Data).

Multi-core is a shared 

memory multiprocessor:

All cores share the same 

memory



Multi-Core

Interaction with the Operating System:

• OS perceives each core as a separate processor

• OS scheduler maps threads/processes to different cores

• Most major OS support multi-core today: Windows, Linux, Mac OS X, …

Why multi-core ?

• Difficult to make single-core clock frequencies even higher

• Deeply pipelined circuits:
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• Deeply pipelined circuits:

– heat problems

– speed of light problems

– difficult design and verification

– large design teams necessary

– server farms need expensive air-conditioning

• Many new applications are multithreaded

• General trend in computer architecture (shift towards more parallelism)



Multi-Core

Instruction-level parallelism:

• Parallelism at the machine-instruction level

• The processor can re-order, pipeline instructions, split them into

microinstructions, do aggressive branch prediction, etc.

• Instruction-level parallelism enabled rapid increases in processor speeds over the 

last 15 years

Thread-level parallelism (TLP):
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• This is parallelism on a more coarser scale

• Server can serve each client in a separate thread (Web server, database server)

• A computer game can do AI, graphics, and physics in three separate threads

• Single-core superscalar processors cannot fully exploit TLP

• Multi-core architectures are the next step in processor evolution: explicitly 

exploiting TLP



Multi-Core

Simultaneous multithreading (SMT):

• Permits multiple independent threads to execute SIMULTANEOUSLY on the SAME core

• Weaving together multiple “threads” on the same core
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Multi-Core

Combining Multi-core and SMT

• Cores can be SMT-enabled (or not)

• The different combinations:

– Single-core, non-SMT: standard uniprocessor

– Single-core, with SMT

– Multi-core, non-SMT

– Multi-core, with SMT:
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– Multi-core, with SMT:

• The number of SMT threads:

2, 4, or sometimes 8 simultaneous threads

• Intel calls them “hyper-threads”



Parallel and Concurrent Programming

There is a confusing use of terminology:

•Parallel – "The simultaneous use of more than one computer to solve a problem“

•Concurrent – "Concurrent computing is a form of computing in which programs are designed as collections of 

interacting computational processes that may be executed in parallel "

•Distributed – "A collection of (probably heterogeneous) automata whose distribution is transparent to the user 

so that the system appears as one local machine."

•Cluster – "Multiple servers providing the same service"
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•Cluster – "Multiple servers providing the same service"

•Grid – “ A form of distributed computing whereby a “super virtual computer” is composed of many networked 

loosely coupled computers acting together to perform very large tasks. "

•Cloud – "System providing access via the Internet to processing power, storage, software or other computing 

services."

•Multitasking – "sharing a single processor between several independent jobs"

•Multithreading - "a kind of multitasking with low overheads and no protection of tasks from each other, all 

threads share the same memory." 
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Parallel and Concurrent Programming

Some Quick Revision Topics

•Dynamic Load Balancing

•Combinational Circuits

•Interconnection Networks

•Shared Memory

•Message Passing

•Classification of Parallel Architectures
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•Classification of Parallel Architectures

•Introducing MPI

•Sequential to Parallel

•Mathematical Analysis - Amdahl’s Law

•Compiler Techniques

•Development Tools/Environments/Systems
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Dynamic Load Balancing

The primary sources of inefficiency in parallel code:

•Poor single processor performance

Typically in the memory system

•Too much parallelism overhead

Thread creation, synchronization, communication

•Load imbalance

Different amounts of work across processors

Computation and communication
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Computation and communication

Different speeds (or available resources) for the processors

Possibly due to load on the machine

•How to recognizing load imbalance

Time spent at synchronization is high and is uneven across

processors, but not always so simple …
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Dynamic Load Balancing

Static load balancing --- when the amount of work allocated to each processor
is calculated in advance.

Dynamic load balancing --- when the loads are re-distributed at run-time.

The static method is simpler to implement and is suitable when the underlying
processor architecture is static. The dynamic method is more difficult to
implement but is necessary when the architecture can change during run-time.
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implement but is necessary when the architecture can change during run-time.

When it is difficult to analyse the processing requirements of an algorithm in
advance then the static method becomes less feasible.

When processor speeds (allocated to the algorithm) can vary dynamically then
the static approach may be very inefficient … depending on variation types.

13



Dynamic Load Balancing

Load balancing differs with properties of the tasks:

• Tasks costs

• Do all tasks have equal costs?

• If not, when are the costs known?

Before starting, when task created, or only when task ends

• Task dependencies

• Can all tasks be run in any order (including parallel)?

• If not, when are the dependencies known?
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• If not, when are the dependencies known?
Before starting, when task created, or only when task ends

• Locality

• Is it important for some tasks to be scheduled on the same

processor (or nearby) to reduce communication cost?

• When is the information about communication known?

14



Dynamic Load Balancing

Task Cost Assumptions
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Dynamic Load Balancing

Task Dependencies
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Dynamic Load Balancing

Task Locality and Communication
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Dynamic Load Balancing

Load balancing is well understood for parallel systems (message passing and
shared memory) and there exists a wide range of solutions (both specific and
generic).

You should know (at the minimum) about the simplest solutions One of the
most common applications of load balancing is to provide a single Internet
service from multiple servers, sometimes known as a server farm.

Commonly, load-balanced systems include popular web sites, large Internet
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Commonly, load-balanced systems include popular web sites, large Internet
Relay Chat networks, high-bandwidth File Transfer Protocol sites, Network
News Transfer Protocol (NNTP) servers and Domain Name System (DNS)
servers.

There are many open questions concerning load balancing for the cloud and
for grids.
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Static Load Balancing Problems --- Example 1

There is a 4 processor system where you have no prior knowledge of processor speeds.

You have a problem which is divided into 160 equivalent tasks.

Initial load balancing: distribute tasks evenly among processors.

After 10 seconds:

•Processor 1 (P1) has finished

•Processor P2 has 20 tasks completed
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•Processor P2 has 20 tasks completed

•Processor P3 has 10 tasks completed

•Processor P4 has 5 tasks complete

Question: what should we do?
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Example 1 continued ...

We can do nothing ---

•Advantage: the simplest approach, just wait until all tasks are complete

•Disadvantage: P1 will remain idle until all other tasks are complete (and 

other processes may become idle)

Rebalance by giving some of the remaining tasks to P1 ---
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Rebalance by giving some of the remaining tasks to P1 ---

•Advantage: P1 will no longer be idle

•Disadvantage: How do we rebalance in the best way?

Note: this question is not as simple as it first seems
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Example 1 continued … some analysis

If we do not rebalance then we can predict execution time (time to complete all 

tasks) using the information we have gained through analysis of the execution times 

of our processors ---

P4 appears to be the slowest processor and data suggests that it 

completes 1 task every 2 seconds
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Without re-balancing, we have to wait until the slowest processor (P4) has 

finished … 80 seconds in total.

Question: what fraction of total execution time is idle time?

Note: Without re-balancing we have too much idle time and have not reached 

optimum speed-up

21



Example 1 continued … some more analysis

The simplest re-balance:

when 1 processor has become idle then evenly distribute all tasks amongst all 

processors

So, in our example, after 10 seconds there are 85 tasks left to be completed (P2 has 

20, P3 has 30, P4 has 35).

We divide evenly (or as evenly as possible) --- 85 = 4*21 +1
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Thus, 3 processes take 21 tasks and 1 process takes 22 tasks.

Question: if we re-balance this time (but no other time) then what is the total 

execution time?
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Example 1 continued … some more analysis

The simplest re-balance is therefore an improvement. However, we should be able to 
do better:

•Why redistribute evenly?

•The processor speeds may vary greatly over time

•The calculation is simple and no resources needed to store 
processor history

•Why not rebalance more than once?
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•Why not rebalance more than once?

•Re-balancing usually costs something

•When only a few tasks are left its not worth the effort

Question: in the example, assuming the processors continue at the same speed, 

what is total execution time if we keep on re-balancing evenly when P1 

becomes idle?
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Re-balance Costs … example 1 revisited.

Question: If re-balancing costs:

•a) 50 seconds

Re-balancing is an intuitive concept: if it is cheap do it, if it is expensive then don’t 

bother.

It is open to rigorous mathematical analysis: formalising the notion of cheap and 

expensive!
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•a) 50 seconds

•b) 20 seconds

•c) 5 seconds

then how many re-balancing operations should be performed in order to 

maximise the speed-up?
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General re-balancing decision procedure

Based on a re-balancing graph, it is simple to automate the decision making process:

Tasks 

remaining

p1,p2,p3

Here, p1 is the fastest 

processor and we perform 

3 re-balances, which are 

very cheap!
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time

p1,p2,p3

p1,p2,p3

balance balance balance balance

p1
p1 p1

very cheap!

We stop when re-balancing 

costs more than the time 

we gain!
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The simplest analysis for a re-balance decision
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n

c

e

TimeR X Y

Y = time if re-balancing not carried out =  T1/slowest rate

X = time if re-balancing carried out once = ???

Rebalance if X <Y … if TimeR < ???

s
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The complete analysis for a re-balance decision
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n

c

e

TimeR Y

Y = time if re-balancing not carried out =  T1/slowest rate

X = time if re-balancing carried out until (number of tasks < 
number of processes) = ???

Rebalance if X <Y … if TimeR < ???

s n

c

e

n

c

e

X
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Dynamic Load Balancing: Some further reading

M. H. Willebeek-LeMair and A. P. Reeves. 1993. Strategies for 

Dynamic Load Balancing on Highly Parallel Computers. IEEE Trans. 

Parallel Distrib. Syst. 4, 9 (September 1993)

G. Cybenko. 1989. Dynamic load balancing for distributed memory 

multiprocessors. J. Parallel Distrib. Comput. 7, 2 (October 1989)
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Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vempaty. 1994. 

Scalable load balancing techniques for parallel computers. J. Parallel

Distrib. Comput. 22, 1 (July 1994)

Valeria Cardellini, Michele Colajanni, and Philip S. Yu. 1999. Dynamic Load

Balancing on Web-Server Systems. IEEE Internet Computing 3, 3 (May 1999)
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Parallelism Using Combinational Circuits

A combinational circuit is a family of models of computation –

•Number of inputs at one end

•Number of outputs at the other end

•Internally – a number of interconnected components arranged in columns 

called stages

•Each component can be viewed as a single processor with constant fan-in and 

constant fan-out.

•Components synchronise their computations (input to output) in a constant 
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•Components synchronise their computations (input to output) in a constant 

time unit (independent of the input values)

•Computations are usually simple logical operations (directly implementable in 

hardware for speed!)

•There must be no feedback
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Combinational Circuits For List Processing

The best known examples of CCs are those for direct hardware implementation of 

list processing functions.

Fundamental operations of these hardware computers correspond to fundamental

components.

Processing tasks which are non-fundamental on a standard single processor 

Parallelism Using Combinational Circuits
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Processing tasks which are non-fundamental on a standard single processor 

architecture can be parallelised (to reduce their complexity) by implementing them 

on a different parallel machine using a number of components set up in a 

combinational circuit.

Classic processing examples – searching, sorting, permuting, ….

But what are the useful components for implementation in a CC?
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Parallel Design  --- list operations

Compositional Analysis --- use the analysis of each component to construct 
analysis – of speedup and efficiency - of the design.  

Advantage --- re-use of already done analysis

Requires --- complexity analysis for each component.

For example, consider the following fundamental(?) operations:

•(BI)PARTITION(list1) ---- constant time (no need to parallelise)

Parallelism Using Combinational Circuits
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•APPEND(list1,list2) ---- constant time (no need to parallelise)

and the following non-fundamental non-optimal (?) operations:

•SPLIT(list1,property) ---- O(size(list1))

•SEARCH(key,directory) ---- O(size(directory))

•MERGE(list1,list2) ---- O (max(size(list1),size(list2)))

•SORT (list1) ---- O(size(list1)^2)

What can we

do here

to attack

the complexity?
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Parallel Design ---the split operation

Question: how to parallelise the split operation?

Answer: depends if the property is structured!

Consider:

Where: split partitions L into M and N -

•Forall Mx,  Property(Mx)

L1

.

M1

.

.

Parallelism Using Combinational Circuits
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SPLIT(property)

•Forall Mx,  Property(Mx)

•Forall Ny, Not(Property(Ny))

•Append(M,N) is a permutation of L

Question: Can we use the structure in the Property to help parallelise the 

design? EXAMPLE: A ^ B,  A v B, ‘any boolean expression’

.

.

.

Ln

.

Mp

N1

.

.

Nq
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Example: Splitting on property A ^ B

SPLIT(B)SPLIT(A) app

Question: what do/could we gain?

bipartition
append

Parallelism Using Combinational Circuits
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appBIP

SPLIT(B)

app

app

SPLIT(A)

Question: what about splitting on property AVB?
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Example: Splitting on property A ^ B

SPLIT(B)SPLIT(A) app

NEED TO DO PROBABILISTIC ANALYSIS:

Typical gain when P(A) = 0.5 and P(B) = 0.5

n/2

n/4

Parallelism Using Combinational Circuits
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appBIP

SPLIT(B)

app

app

SPLIT(A)

n

n/2

n/4
n/

4

n/4

Depth of circuit is 1+ (n/2) + (n/4) +1+1 = 3 + (3n/4)

QUESTION: is this better than before?
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Split example on non-structured property

EXAMPLE: Split an input integer list into evens and odds

Question: what is average speedup for the following design?

Parallelism Using Combinational Circuits
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BIP

SPLIT

SPLIT

app

app
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Split example on non-structured property

Question: what is average speedup for the following design?

ANSWER: do Probabilistic Analysis as before … Depth = 2+ n/2

SPLIT
n/2

n/4

n/2

Parallelism Using Combinational Circuits
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BIP

SPLIT

(even/odd)

SPLIT

(even/odd)

app

appn

n/2

n/4

n/4

n/4

n/2
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Parallel Design --- the search operation

Question: why is searching fundamentally different from the other components?

Answer: the structure to be used for parallelisation is found in the component 

(directory)  and not in the input data. Thus, we need to be able to cut up state and 

not just communication channels. Also, we need some sort of synchronisation

mechanism.

Parallelism Using Combinational Circuits
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SEARCH

(directory)

SEARCH

(?)

??

SEARCH

(?)key data

key

data
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Sorting by Merging 

•A good example of recursively constructing combinational circuits(CC)

•The same technique can be applied to all CC’s synthesis and analysis

•Requires understanding of a standard non-parallel (sequential) algorithm

Parallelism Using Combinational Circuits
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•Shows that some sequential algorithms are better suited to parallel 

implementation than others

•Best suited to formal reasoning  (preconditions, invariants, induction …)
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Merging --- the base case

Merge 2 sorted sequences of equal length m = 2^n.

Base case, n=0  => m = 1.

Precondition is met since a list with only 1 element is already sorted!

The component required is actually a comparison operator

Merge(1) = Compare

Parallelism Using Combinational Circuits
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C (or CAE)

X= [x1]

Y = [y1]

[min (x1,y1)]

[max (x1,y1)]

M1

Uesful Measures:  Width = 1   Depth = 1  Size = 1
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Merge --- the first recursive composition

QUESTION:

Using only component M1 (the comparison C), how can we construct a circuit 

for merging lists of length 2 (M2)?

ANALYSIS:

Parallelism Using Combinational Circuits

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson)

•How many M1s … the size … are needed in total? 

•What is the complexity … based on the depth?

•During execution what is our most efficient use of parallel resources … based 

on width?
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Merge --- the first recursive composition – building M2 from a 

number of M1s

C

C

X = [x1,x2]

x1

x2
z1

z2

M2

M1

M1

Parallelism Using Combinational Circuits

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson)

C

C

y1

y2

Y = [y1,y2] z3

z4

Useful Measures: Width = 2  Depth = 2  Size = 3

M1
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Proving M2 to be correct

Validation ---We can test the circuit with different input values for X and Y

But, this does not prove that the circuit is correct for all possible cases

Clearly, there are equivalence classes of tests

We want to identify all such classes and prove correctness for the classes.

As the number of classes are finite, we can use an automated prover to do this

Complete proof of all equivalence classes => system is verified.

Parallelism Using Combinational Circuits
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Complete proof of all equivalence classes => system is verified.

Here we have 6 equivalence classes (or 3,if we note the symmetry in swapping X 
and Y)

DISJOINT OVERLAP CONTAINMENT

x1 x2 y1 y2

x1

y1

x2

y2

x1

y1 y2

x2

42



The next recursive step --- M4

The circuit for M2 is very easy to understand. It uses two M1s to initially 

merge the odd and even elements of the inputs, respectively. Then, it uses a 

another M1 to compare the middle values. This 2 layer architecture can be 

used for constructing M4: from a number of M2s and M1s… and 

consequently we can say M4 is constructed just from M1s!!!

M4

Parallelism Using Combinational Circuits

M2

M2

C

C

C

X

Y

QUESTION: what are size, width and depth??
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M2

The next recursive step --- M4

M2

C

C

C

X

Y

M4
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Depth = 3  Width = 4 Size = 9

Depth (M4) = Depth (M2) +1

Width (M4) = Max (2*Width(M2), 3)

Size (M4) = 2*Size(M2) + 3
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The general recursive construction

We have seen how to construct M4 and M2 from M1’s, and prove the 

construction correct. Now we consider the general case:

Given any number of Mms how do we construct an M2m?

M2m

C

x1

Parallelism Using Combinational Circuits
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Mm

Mm

C

C

C

2m-1 C’s

x2m

y1

y2m
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Merge --- general analysis

We can now perform a recursive analysis on the general merge circuit Mm:

Width --- Width (Mm) = 2 * width (Mm/2) =  …  = M

Depth  --- Let d(2m) = depth of M2m, 

now d(2m) = 1 + d(m), for m>1 and d(1) = 1 

Parallelism Using Combinational Circuits
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now d(2m) = 1 + d(m), for m>1 and d(1) = 1 

=> … =>  d(2m) = 1 + log(m)

Size ---Let s(2m) = size of M2m, 

now s(2m) = 2s(m) = (m-1), for m>1 and s(1) = 1

=> … => s(2m) = 1 + mlog(m)
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Sorting by Merging

We can use the merge circuits to sort arrays ---

For example, sorting an array of 8 numbers:

M1

S8

Parallelism Using Combinational Circuits
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M1

M1

M1

M2

M2

M4

Proof of correctness --- try to sketch the proof in your own time
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Sorting by Merging – the analysis

•Analyse the base case for sorting a 2 integer list (S2).

•Synthesise and analyse S4

•What are the width, depth and size of Sn?

•What about cases when n is not a power of 2?

Parallelism Using Combinational Circuits
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Question: is there a more efficient means of sorting using the merge 

components? If so, why?

To DO: Look for information on parallel sorting on the web
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Permutation Circuits

An important function in computer science is to apply an arbitrary permutation 

to an array. 

We consider arrays of length m (m = 2^n) and perform a recursive composition.

First, an example:

Permute  x1,x2,x3,x4,x5,x6,x7,x8 to

x5,x4,x3,x1,x8,x7,x6,x2

The circuit can be shown as the following box:
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The circuit can be shown as the following box:
x1

x8

Question:

what goes inside?

x5

x4

x3

x1

x8

x7

x6

x2
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The simplest permutation --- a switch

The base case is to permute an input array of 2 elements 

(a wire suffices for 1 element!)

SWITCH

A switch has two possible states --- off or                         on.

Parallelism Using Combinational Circuits
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A switch is therefore a programmable permutation circuit for input arrays 

of length 2.

We use the notation P2 to denote a switch.

Question: how can we re-use the switch to produce a a P4?

Question: how can we re-use a Pn to produce a P2n?
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Constructing P4 from P2s

The following circuit implements a P4 ---

P2

P2

Question:

can you verify that 

this is correct?

Parallelism Using Combinational Circuits
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P2

P2
P2

Input Centre Output
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Programming the P4

•To program P4 we just start at the required ouputs and hardwire the 

switches to give correct paths.

•Note, programming is not  unique for all permutations.

•N=4 => number of permutations = 4! = 24

•Number of switches = 5 =>2 ^5 (=32) different programs.
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•Number of switches = 5 =>2 ^5 (=32) different programs.

•Thus , the number of programs is more than the number of permutations.

•Can we prove that the P4 is complete --- all permutations are 

programmable

•Since the number (in P4)  is finite, we can prove it exhaustively with a tool.

•We can use induction to prove it in the general case.
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Programming P4  to give permutation 2,1,4,3

The following program (see right)  implements a P4 (2,1,4,3) ---

S1

S3

1

2

3

2

1

4

3

S1 = on

S2 = on

S3 = off

S4 = off

Parallelism Using Combinational Circuits
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S2

S4
S5

Input Centre Output

3

4

3 S5 = off

Question: is this a unique 

program? If not, find a 

permutation which is.
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General Completeness Analysis

If the input array has n elements then n! is the number of permutations

If we have S switches then 2^S is the number of configurations

We can calculate a minimum number of switches required for completeness.

We require:
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2^S >= n! 

=>

S>=  n logn

Question: what are depth, size  and width (in the general case)?
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Constructing a P8 using 2 P4s and some switches (P2s)
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Input Centre Output
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Question: Program the permutation 5,6,2,1,8,7,3,4

off

off on

on

off off on

off

1

2

3

4

5

6

5

6

2

1

8

7
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off

off

off

on

on

off off on

on

Input Centre Output

6

7

8

3

4
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Prefix Sums

The general problem can be specified by the following input-output 

diagram:

X0

X1

S0

S1
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X1

X2

Xn

S1

S2

Sn

Combinational circuit

Where, Sm = the sum of input elements X0 up to Xm, forall 0<=m <= n
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Prefix Sums

X0

X1

X2

Xn

S0

S1

S2

Sn

Combinational circuit

Parallelism Using Combinational Circuits

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson)

Question: what is the fundamental building block?

FOR YOU TO TRY – Design a recursive combinational circuit and 

analyse complexity issues.

Question: is your design optimal?
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Parallelism Using Combinational Circuits: Further Reading

Richard E. Ladner and Michael J. Fischer. 1980. 

Parallel Prefix Computation. J. ACM 27, 4 

(October 1980)

R. P. Brent and H. T. Kung. 1982. A Regular 
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C. D. Thompson. 1983. The VLSI Complexity of 

Sorting. IEEE Trans. Comput. 32, 12 (December 

1983)

R. P. Brent and H. T. Kung. 1982. A Regular 

Layout for Parallel Adders. IEEE Trans. 

Comput. 31, 3 (March 1982)
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Interconnection Networks

Analysis of  interconnection networks plays a central role in determining the 

overall performance of a large class of parallel systems. We would like to be 

able to achieve a certain performance without having to pay too much 

(resource-wise)

Important networks, some of which we are going to examine (see any 

standard parallel processing text book for details):

•Fully connected (all-to-one)

•Mesh We need metrics for 

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson)

•Mesh

•Torus

•Rings

•Hypercube

•Trees (and variations)

•Pyramid

•Shuffle Exchange

•Butterfly

•Star

We need metrics for 

capturing the most 

important aspects of a 

network topology 

(with respect to 

parallel processing)
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Metrics for Interconnection Networks

•Degree: The degree of a processor is the number of its (direct) neighbours in the 

network. The degree of a network is the maximum of all processor degrees in the 

network. A high degree has high theoretical power but a low degree is more practical.

•Connectivity: Network nodes and links sometimes fail and must be removed from 

service for repair. When components fail the network should continue to function with 

Interconnection Networks
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service for repair. When components fail the network should continue to function with 

reduced capacity. The node connectivity is the minimum number of nodes that must 

be removed in order to partition (divide) the network. The link connectivity is the 

minimum number of links that must be removed in order to partition the network

•Diameter: The diameter of a network is the maximum inter-node distance -- the 

maximum number of nodes that must be traversed to send a message to any node 

along a shortest path. Lower diameter implies shorter time to send messages across 

network.
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Metrics for Interconnection Networks (continued)

•Narrowness: This is a measure of (potential) congestion.

Partition the network into 2 groups of processors (A and B, say). In each 

group the number of processors is noted as Na and Nb (Nb<=Na). Count 

the number of interconnections between A and B (call this I). The 

maximum value of Nb/I for all possible partitions is the narrowness.
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maximum value of Nb/I for all possible partitions is the narrowness.

•Expansion increments: This is a measure of (potential) expansion

A network should be expandable --- it should be possible to create larger 

systems  (of the same topology) by simply adding new nodes. It is better 

(why?) to have the option of small increments. 
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Fully Connected Networks

This is the most common (theoretical) topology: each node is connected 

(directly) to all other nodes (by 2-way links)

1

25

Example: with 5 

nodes we have 10 

connections

Question: with n nodes how 

many connections do we have??

Interconnection Networks
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34

What are the metrics for the network above (n = 5)?

Degree, Connectivity, Diameter, Narrowness and Expansion Increment
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Fully Connected Networks

1

2

34

5

Example: with 5 

nodes we have 10 

connections

Question: with n nodes how 

many connections do we have??

1

2
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What are the metrics for the network above (n = 5)?

Degree = 4 

Node Connectivity = 4, Link connectivity = 4

Diameter = 1

Narrowness(1) =  2/6 = 1/3, Narrowness(2) = 1/4, Narrowness = 1/3

Expansion Increment = 1
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Fully Connected Networks (continued)

41 52 3 n

Interconnection Networks
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What are the metrics for the general fully connected  network?
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Fully Connected Networks (continued)

41 52 3 n

Interconnection Networks
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If n is even:

•Degree = n-1

•Connectivity = n-1

•Diameter = 1

•Narrowness = 2/n

•Expansion Increment = 1

If n is odd … ?
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A Mesh Network

One of the most common topologies

In a mesh, the nodes are arranged in a k-dimensional lattice of width w, 

giving a total of w^k nodes.

Usually,

• k =1 …giving a linear array, or

Interconnection Networks
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• k =2 …. Giving a 2-dimensional matrix

Communication is allowed only between neighbours (no ‘diagonal 

connections’)

A mesh with wraparound is called a torus
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A linear array 

Example: a 1-D mesh of width 4  with no wraparound on ends

Interconnection Networks
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Question: what are degrees of centre and end nodes?

Question: what are the metrics for the linear array, above?

Question: what are the metrics in the general case?
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A Ring: a linear array with wraparound

A simple ring is just a linear array with the end nodes linked

Interconnection Networks
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Question: what are the metrics

•for n = 5

•in the general case?
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A Chordal Ring

A chordal  ring is a ring with links between opposite nodes

Interconnection Networks
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Question: what are the metrics

•for n = 6

•in the general case?
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A 2-dimensional mesh 

Example: a 2D mesh of width 4  with no wraparound on edge or corners

Question: what are degrees of centre, 

corner and edge nodes?
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Question: what are the metrics of a 2-dimensional array:

•for width =4

•in the general case, width = w
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A 2-dimensional torus  (mesh with wraparound)

Example: a 2D mesh of width 4  with  wraparound on  opposite corners
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Question: what are the metrics of such an 2-dimensional torus:

•for width =4

•in the general case, width = w
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A 3-dimensional torus (width =3)

Example:

Interconnection Networks
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Question: what are the metrics of such an 3-dimensional torus:
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Hypercube Connection (Binary n-Cube)

The networks consist of N=2^k nodes arranged in a k-dimensional hypercube. 

The nodes are numbered 0,1,…,2^k-1 and two nodes are connected if their 

binary labels differ by exactly 1 bit

0 1

1-D hypercube (2 nodes)

3-D hypercube (8nodes)
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2-D hypercube (4nodes)

0

0

1

32

1

2 3

6

4 5

7

00

0

010

011

11

1

101
100

001

110

3-D hypercube (8nodes)
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4-D HyperCube (binary 4 cube)

A K-dimensional hypercube is 

formed by combining two K-1 

dimensional hypercubes and 

connecting corresponding 

nodes (recursively). 
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Question: what are the metrics of an n-dimensional hypercube?
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Hypercube Prefix Sums

In a system of n parallel processors, P0 to Pn-1 say,

given a number xi in each processor Pi we wish to 

make a global state change:

Set xi = x0+…+xi, forall i in 0..n-1

Interconnection Networks
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QUESTION: if this state update is a frequently occurring 

operation then how could we parallelise it in order to 

speed-up the execution; and what would be a good IN 

architecture to support the parallelisation?



Recursive Doubling Technique

Each hypercube processor Pi has 2 registers Ai and Bi.

Let I and I(j) be 2 integers of log n bits each that differ in the jth bit

Initialise, Ai=Bi=xi

Apply the prefix sums algorithm (consisting of log n iterations):

for j = o to (log n) – 1 do
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for j = o to (log n) – 1 do

for all I<I(j) do in parallel

AI(j) = AI(j) + BI

BI(j) = BI(j) + BI

BI = BI(j)

endfor

endfor

On termination, 

Ai contains 

xo+..+xi



Hypercube prefix sums algorithm

A= x6

B = x6

A= x7

B = x7

A = x2

B = x2

A= x3

B = x3

A= x6

B = X67

A= X67

B = X67

A = x2

B = X23

A= X23

B = X23

STEP 1

J  = 0
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A = x4

B = x4

A= x5

B = x5

A= x0

B = x0

A = x1

B= x1

A = x4

B = X45

A= X45

B = X45

A= x0

B = X01

A = X01

B= X01



A= X46

B = X47

A= X47

B = X47

A = X02

B = X03

A= X03

B = X03

STEP 2

A= x6

B = X67

A= X67

B = X67

A = x2

B = X23

A= X23

B = X23

J  = 0 J  = 1
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A = x4

B = X47

A= X45

B = X47

A= x0

B = X03

A = X01

B= X03

A = x4

B = X45

A= X45

B = X45

A= x0

B = X01

A = X01

B= X01



A= X06

B = X07

A= X07

B = X07

A = X02

B = X07

A= X03

B = X07

J  = 1 J  = 2

A= X46

B = X47

A= X47

B = X47

A = X02

B = X03

A= X03

B = X03

STEP 3
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A = X04

B = X07

A= X05

B = X07

A= X00

B = X07

A = X01

B= X07

A = x4

B = X47

A= X45

B = X47

A= x0

B = X03

A = X01

B= X03



Cost Analysis of Hypercube Prefix Sums

T(n) = O (log n) 

P(n) = n

C(n) = O (nlogn)

Time

Number of processors

Cost

Interconnection Networks
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NOTE: the cost is not optimal (if we allow any type of parallel 

machine architecture) – we can calculate prefix sums on a 

RAM in O(n) time!



Processor Tree

The standard model is for the processors to form a 

complete binary tree:

•has d levels (0 .. d-1)

•Number of nodes = 2^d -1

•metrics  = ...?
Levelroot

Interconnection Networks
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•metrics  = ...?

2

1

0

root

leaves



Tree variations

There are many variations on the tree topology:

•mesh of trees

•tree of meshes

•tree of rings

•ring of trees

Interconnection Networks
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•ring of trees

•etc ...

Note: you will be expected to be able to formulate the 

metrics for these types of synthesised topologies



Pyramid Construction

A 1-dimensional  pyramid parallel computer is obtained by adding 2-way links connecting 

processors at the same level in a binary tree, thus forming a linear array at each level.

Question: what are metrics of such a pyramid of dimension = 1?

A 2-dimensional pyramid consists of (4^(d+1)-1)/ 3 processors distributed among d+1 

levels. All processors at the same level are connected together to form a mesh. At level 

d, there is 1 processor -- the apex. In general, a processor at level I, in addition to being 

connected to its four neighbours at the same level, has connections to four children at 
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connected to its four neighbours at the same level, has connections to four children at 

level I-1 (provided I>=1) and to one parent at level I+1 (provided I<=d-1).

Question: what are metrics for a pyramid (d=2)? …

what does it look like???



Shuffle Exchange

p0 p2 p5p1 p3 p4 p6 p7
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Question: can you reverse engineer the definition of a 

perfect shuffle exchange from looking at the one above??

This is a perfect 8-processor shuffle exchange



Shuffle Exchange

p0 p2 p5p1 p3 p4 p6 p7
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A 1-way communication line links PI to PJ, where:

•J= 2I for 0<=I<=4-1,

•J = 2I+1-8 for 4<=I<=N-1

2-way links are added to every even numbered processor and its successor



Shuffle Exchange

p0 p2 p5p1 p3 p4 p6 p7
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This corresponds to a perfect shuffle (like a deck of cards)

Reversing the direction of the links gives a perfect-unshuffle

Question: what are metrics for

•case n=8 and general case for any n which is a power of 2?



Shuffle Exchange - another way of looking at it

p0 p2 p5p1 p3 p4 p6 p7

Interconnection Networks
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p0 p2 p5p1 p3 p4 p6 p7



Cube-connected cycles

Begin with a q-dim hypercube and replace each of its 2^q 

corners with a ring of q processors.

Each processor in a ring is connected to a processor in a 

neighbouring ring in the same dimension

Number of processors is N = 2^q * q.
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Number of processors is N = 2^q * q.

QUESTION: can you draw this for q = 3 ???

QUESTION: can you calculate the network metrics??
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3-dim cube connected cycle



Star

Size property:

for any given integer m, each processor corresponds to a distinct 

permutation of m symbols.

Thus, the network connects N=m! processors.

Connection property:

Pv is connected to Pu iff the index u can be obtained from v by exchanging 

the first symbol with the ith symbol, where 2 <=i<=m
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the first symbol with the ith symbol, where 2 <=i<=m

Example:

m=4, if v = 2134 and u = 3124 then Pu and Pv are connected by a 2-way link 

since 3124 and 2134 can be obtained from one another by exchanging the 

1st and 3rd symbols

QUESTION: can you draw this for m = 4 ??



Star:  m = 4

1234

2314 3124

21343214

1324

4231

2341 3421

24313241

4321

Question:

•diameter

•connectivity

•narrowness

Interconnection Networks
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2413

1243 4123

14234213

2143

3412

1342 4132

14324312

3142

•narrowness

•expansion 

increment??



Designing an Interconnection  Network

Typically, requirements will be specified as bounds on a 

subset of metrics, eg:

•minn < number nodes < maxn

•minl < number links < maxl

•connectivity > cmin

•diameter < dmax
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•diameter < dmax

•narrowness < nmax

Normally, your experience will tell you if a classic IN fits the 

bill. Otherwise you will refine an IN which is close to 

meeting the requirements; or combine 2 (or more) in a 

complementary fashion… This is not always easy/possible!



Algorithms and Interconnection Networks

The applications to which a parallel computer is destined –

as well as the metrics – also play an important role in its 

selection:

•Meshes for matrices

Interconnection Networks
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•Meshes for matrices

•Trees for data search

•Hypercube for flexibility 

To understand the engineering choices and compromises 

we really need to look at other examples. 



Some Further Reading
Interconnection Networks

Tse-yun Feng. 1981. A Survey of Interconnection Networks. 

Computer 14, 12 (December 1981), 12-27.

William J. Dally and Brian Towles. 2001. Route packets, not 

wires: on-chip inteconnection networks. In Proceedings of the 

38th annual Design Automation Conference (DAC '01). ACM, 

New York, NY, USA, 684-689.
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New York, NY, USA, 684-689.

D. P. Agrawal. 1983. Graph Theoretical Analysis and Design of 

Multistage Interconnection Networks. IEEE Trans. Comput. 32, 

7 (July 1983), 637-648. 



Some More Fundamentals

With N processors, each with its own data stream it is

usually necessary to communicate results between processors.

Two standard methods ---

Shared memory ---->  communication by  shared variables

Interconnection Network ---> communication  by message passing

Hybrid Designs --- combine the 2 standard methods

Shared Memory
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Hybrid Designs --- combine the 2 standard methods

Question: why do we say usually ??

Question: is there any theoretic difference between the 2 methods ---

can we implement each method using the other? What about complexity rather 

than computability?



Shared Memory

Pn

P1

P2P3

P4
Memory

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 97

P3

Global address space is accessible by all processors

Communication Pi ---> Pj ???

Pi writes to address(x) and Pj reads from address(x)

Advantages --- communication is simple

Disadvantages --- introduces non-determinism from race conditions



Shared Memory: More General Model

Pm

There is a structure to sharing, enforcing scope like in programming languages

Pm

Pm+1Pm+4

Memory
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P1

P2P3

P4
Memory

Pm+2Pm+3

Memory

Memory



Non-determinism Example ---

Shared memory x=0

P1: x:=x+1 P2: x:= x+2

Process Q = P1¦¦¦ P3 ---

P1 and P2 running in parallel with no synchronisation 

Shared Memory
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P1 and P2 running in parallel with no synchronisation 

Question: x = ??? when Q has finished execution

Answer: x can be 1,2 or 3 depending on interleaving of read/write events during 

assignment to variable x.

Problem occurs because, in general, assignment is not an atomic event



Non-determinism Example continued ---

Shared memory x=0

P1: x:= x +1 ---

read x

increment x by 1

P2: x:= x+2 ---

read x

increment x by 2

Shared Memory
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write x write x

Question: taking any arbitrary interleaving of the actions in P1 and P2,

find executions where the final result of x will be --- 1,2 and 3.

In a multi-user real-time environment, the speeds of P1 and P2 may vary from 

run to run, so the final result is nondeterministic. We say that there is a race 

condition between P1 and P2.



Solving the problem of non-determinism ---

The only way to solve this problem is to synchronise 

the use of shared data.

In this case we have to make the 2 assignment 

statements mutually exclusive --- 1 cannot start until 

Shared Memory
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statements mutually exclusive --- 1 cannot start until 

the other has finished.

You have (?) already seen this in the operating systems 

world --- c.f.  Semaphores, monitors etc ….



How to implement a shared memory computer?

Use a fast bus …

Shared Memory
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P1 P2 Pn

•Advantages --- easy to understand and control mutual exclusion

•Disadvantages --- finite bandwidth => as n increases then there is bus contention

Conclusion --- not as generally applicable as distributed memory with 

message passing



Comparison Table --- distributed vs shared

Distributed Shared

Large number of processors Modest number of processors

High theoretical power Modest theoretical power

Unlimited potential Limited potential

Shared Memory
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Unlimited potential Limited potential

Revolutionary programming Evolutionary programming

In a distributed memory system, each processor has a local memory and a

means (an interconnection network) for sending messages to some, or all, of

the other processors in the system. There is no shared memory. 

All synchronisation is done through message passing.



Message passing

•With message passing, sometimes a lot of data needs to be sent from 

process to process. This may cause a lot of communication overhead and cost 

a lot of time.

•With message passing, sometimes messages have to go through 

intermediate nodes.

•With message passing we have to worry about synchronising transmission.

•Sometimes, with message passing, processes have to wait for information 

from other processes before they can continue.
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from other processes before they can continue.

•What happens if we have circular waits between processes --- deadlock … 

nothing can happen

But,

it is a much more flexible and powerful means of utilising parallel 

processes…. Although, is it parallel processing?



Hybrid Architectures ---

mixing shared and distributed

A good example, often found in the real world, are clusters of processors, where a high 

speed bus serves for intra cluster communication, and an interconnection network is 

used for inter cluster communication.
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•Shared memory ---???--- use mutual exclusion mechanism

•Distributed memory ---???--- use synchronisation mechanism

•Sequentially 

sum := A[0]

For I := 1 to m-1 

Example --- summing m numbers

Shared Memory vs Message Passing vs Hybrid 
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sum := sum+A[I]

To parallelise: if we have n processors then we can calculate the sum of m/n

numbers on each, and the sum of these partial sums gives the result … easy?

NOTE: Comparative analysis between distributed, shared and hybrid architectures 

can be more difficult than this simple example.



Sum using shared memory

global-sum := 0

For every Pi process in the process set P1 … Pn, run the following code:

local-sum:=0; calculate partial local sum of m/n numbers

LOCK global-sum:=global-sum + local-sum UNLOCK

Lock and unlock ---- correspond to the mutual exclusion over the shared 
variable Global-sum

Question: what is the algorithm time complexity??
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Question: where is the simplification/abstraction in the algorithm and is it a 

reasonable one to be made?

Hint: Later we look at classification of shared memory systems

Question: what is the algorithm time complexity??

Answer: Theta ( (m/n) + n) +s,  where s is additional synchronisation time due to 

processes waiting for mutual exclusion zone to become free.



Sum using distributed memory

We have to map onto a particular communication architecture to be able to 

control/program the synchronisation. 

For simplicity, we chose a 3*3 array of processors in a square mesh architecture:

P11

P21

P12

P22

P13

P23

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 108

P31 P32 P33

Algorithm --- each processor finds the sum of its m/n numbers. Then it passes this

value to another processor which sums all its input (see the solid lines

in the diagram), until finally P11 contains the result.

NOTE: we studied this – including complexity analysis - previously



Classification of Parallel Machines (Flynn 1966)

Single Multiple

Instruction stream

Data stream
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Single Data Stream     SISD      MISD

Multiple Data Stream  SIMD     MIMD

Single

Note: These are hardware paradigms

Instruction Stream Instruction Stream

Multiple



SISD --- Standard Sequential Computer

Examples:  

Instructions

Data Stream
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Examples:  

•1 Sum n numbers a1…an -- n memory reads, n-1 additions  => O(n)

•2 Sort n numbers a1… an -- O(??)

•3 Sort n numbers a1…an and m numbers b1…bm -- O(??)



MISD (n processors)

IS1

Single DS
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Parallelism: Processors do different things at the same time on the same datum

Example: check if Z is prime,  if n=Z-2 then what can we do?

Answer: Each Pm checks if m-2 divides evenly into Z

ISn



SIMD Computers (n identical processors)

•1 instruction stream --> ‘as if’ each processor holds the same program

•n data streams --> 1 per processor

DS1
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Processes are (usually) synchronous

Global clock => lockstep operation

Same tick ---> same instruction on each processor on different data

MOST ARRAY PROCESSORS are SIMD

Single IS DSn



SIMD continued ..

Example:  add 2 matrices (2*2) A+B =C on a 4 

processor SIMD

•A11 + B11 = C11

•A12 + B12 = C12
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•A12 + B12 = C12

•A21 + B21 = C21

•A22 + B22 = C22

+ corresponds to operation in each Processor



MIMD Computers (Multi-Processors)

N processors, N input streams, N data streams

--- most general classification?

What about N processors, M input streams, L data streams?

Is this too complicated?

Most H/W experts consider this to be a distributed program 
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Most H/W experts consider this to be a distributed program 

problem --- not a parallel problem

Question: what is the difference between parallel and 

distributed?

Answer: in a distributed system we cannot assume that we 

have some sort of ‘global clock’



MIMD continued

IS1

ISn

DS1

DSn
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•Processes are typically asynchronous

•MIMDs with shared memory are tightly coupled machines

•MIMDs on an interconnection network are loosely coupled machines

ISn
DSn



MIMD continued ...

Architecture with most potential

Example: Calculate (A+B)-(C*D) for 2*2 matrices A,B,C and D

With the following number of processors:

3, 8, 12 and n.
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Question: What about this 3 Processor Architecture?

A+B C*D
??



Shared memory computer classification

Depending on whether 2 or more processors are allowed to simultaneously read 

from or write to the same location simultaneously, we have 4 classes of shared 

memory computers: 

•Exclusive Read, Exclusive Write (EREW) SM --- access to memory is exclusive, so 

that no two processors are allowed to simultaneously read or write to same 

location.
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location.

•Concurrent Read, Exclusive Write (CREW) --- multiple processors are allowed to 

read simultaneously.

•Exclusive Read, Concurrent Write (ERCW) --- read remain exclusive but writes can 

be concurrent

•Concurrent Read, Concurrent Write (CRCW) --- both reading and writing can be 

done simultaneously.



Write Conflicts in shared memory 

If several processors are trying to simultaneously store (potentially different) data at the 

same address, which of them should succeed? … We need a deterministic way of 

specifying the contents of a memory location after a concurrent write:

•Assign priorities to the processors

•All processors can write, provided they attempt to write the same thing, 
otherwise all access is denied
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•The max/min/sum/average of the value is stored (for numeric data)

•The closest/best result is stored (depending on problem to be solved)

But, it is only feasible (on a fast bus) for P processors to write simultaneously for small P 

(<30, eg). Usually the cost of communication hardware is too high.



Shared memory consequences 

on multiple data machines 

Generally, SIMD machines typically need a large number of processors. 

Question: why?? 

Answer: because there is no control unit, and each of the processors is very simple
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In MIMD machines, which use much more powerful processors, shared memory 

systems are found with small numbers of processors



Example:   comparing shared memory machines

We have M processors to search a list L = l1,…ln for a given element x and return an 

index where this x is found. Assume that x appears at least once and any index will 

do.

ALGORITHM (in parallel)

Procedure SM search (L,x,k)

For I = 1 to M do in parallel

read x

Endfor
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Endfor

For I 1 to M do in parallel

Li takes the value of the ith (sub) list in L

perform sequential search in Li … return Ki = -1 if not found or index if found

Endfor

For I =1 to M do in parallel

if Ki >0 then k = Ki 

Endfor



Comparing shared memory machines continued...

•EREW 

•ERCW

•O(M) for M  reads 

•O(n/M) for reading list and sequential search

•O(M) for M writes

•O(M)

Question: what are the time complexities of the algorithm on each of our 4 shared memory 

computers (EREW,ERCW,CREW,CRCW)??
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•CREW

•CRCW

•O(n/M)

•Constant time

•Constant time

•O(n/M)

•O(N) time

•Constant time

•O(n/M) time

•Constant time



Parallel Architectures – Further Reading

Michael J. Flynn. 1972. Some computer organizations and their effectiveness. 

IEEE Trans. Comput. 21, 9 (September 1972), 948-960

Ralph Duncan. 1990. A Survey of Parallel Computer Architectures. Computer 23, 

2 (February 1990), 5-16.
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John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for scalable 

synchronization on shared-memory multiprocessors. ACM Trans. Comput. Syst. 9, 1 

(February 1991), 21-65. 



An Introduction to MPI

• Message Passing Interface (MPI)

• Computation is made of:

– One or more processes

– Communicate by calling 
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– Communicate by calling 

library routines

• MIMD programming model

• SPMD most common.



An Introduction to MPI

•Processes use point-to-point communication operations

•Collective communication operations are also available.

•Communication can be modularized by the use of 
communicators.

�MPI_COMM_WORLD is the base.
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�MPI_COMM_WORLD is the base.

�Used to identify subsets of processors



An Introduction to MPI

•Complex, but most problems can be solved 
using the 6 basic functions.

�MPI_Init

�MPI_Finalize

MPI_Comm_size
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�MPI_Comm_size

�MPI_Comm_rank

�MPI_Send

�MPI_Recv



An Introduction to MPI

Most calls require a communicator handle as an 
argument.

�MPI_COMM_WORLD

MPI_Init and MPI_Finalize

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 126

�don’t require a communicator handle

�used to begin and end an MPI program

�MUST be called to begin and end



An Introduction to MPI

MPI_Comm_size

�determines the number of processors in the 
communicator group
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MPI_Comm_rank

�determines the integer identifier assigned 
to the current process



An Introduction to MPI

// MPI1.cc

#include "mpi.h"

#include <stdio.h>

int main( argc, argv )

int argc;

char **argv;
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char **argv;

{

MPI_Init( &argc, &argv );

printf( "Hello world\n" );

MPI_Finalize();

return 0;

}



An Introduction to MPI

// MPI2.cc

#include <stdio.h>

#include <mpi.h>

main(int argc, char *argv[])

{

int iproc, nproc;
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int iproc, nproc;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

MPI_Comm_rank(MPI_COMM_WORLD, &iproc);

printf("I am processor %d of %d\n", iproc, nproc);

MPI_Finalize();

}



An Introduction to MPI

MPI Communication

• MPI_Send

– Sends an array of a given type

– Requires a destination node, size, and type

• MPI_Recv
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• MPI_Recv

– Receives an array of a given type

– Same requirements as MPI_Send

– Extra parameter 

• MPI_Status variable.



An Introduction to MPI

• Made originally  for both FORTRAN and C (and C++)

• Standards for C

– MPI_ prefix to all calls

– First letter of function name is capitalized

– Returns MPI_SUCCESS or error code
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– Returns MPI_SUCCESS or error code

– MPI_Status structure

– MPI data types for each C type

There is also mpiJava: http://www.hpjava.org/mpiJava.html

Also take a look at Open MPI http://www.open-mpi.org/



An Introduction to MPI

• Message Passing programs are non-deterministic because 

of concurrency

– Consider 2 processes sending messages to third

• MPI does guarantee that 2 messages sent from a single 
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• MPI does guarantee that 2 messages sent from a single 

process to another will arrive in order.

• It is the programmer's responsibility to ensure 

computation determinism



An Introduction to MPI

• MPI & Determinism

– A Process may specify the source of the message

– A Process may specify the type of message

• Non-Determinism
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• Non-Determinism

– MPI_ANY_SOURCE  or   MPI_ANY_TAG



An Introduction to MPI

Global Operations

• Coordinated communication involving multiple processes.

• Can be implemented by the programmer using sends and 
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• Can be implemented by the programmer using sends and 

receives

• For convenience, MPI provides a suite of collective 

communication functions.



An Introduction to MPI

Collective Communication

• Barrier

– Synchronize all processes

• Broadcast

• Gather
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• Gather

– Gather data from all processes to one process

• Scatter

• Reduction

– Global sums, products, etc.



An Introduction to MPI
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An Introduction to MPI

Other MPI Features

• Asynchronous Communication

– MPI_ISend

– MPI_Wait and MPI_Test

– MPI_Probe and MPI_Get_count
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– MPI_Probe and MPI_Get_count

• Modularity

– Communicator creation routines

• Derived Datatypes



An Introduction to MPI

Getting to compile, execute and profile/analyse 

programs using MPI on any ‘parallel’ computer seems 

to require a very steep learning curve:

•Non-standard installs

•Architecture issues
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•OS issues

•Support issues

NOTE: There are alternatives like PVM - http://www.csm.ornl.gov/pvm/



How to Use  MPI on a Unix cluster

Login to the cluster using a secure shell

Make a suitable directory in which to put your code examples –

$HOME/MPI/examples

Check the number of processors/nodes available for use:

more /etc/lam/lam-bhost.def 
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We see something like:

pinky1 cpu2

pinky2 cpu2 …

pinky9 cpu2

thebrain cpu4

pinky10 cpu2 …

pinky1024 cpu2



How to Use  MPI on our cluster

Create a hosts file for ‘compiling onto’ –

Example: a 6 node/processor –

In file ‘lamhosts2’ – 2 for 2 additional pinkys!!
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thebrain

pinky1

pinky2



How to Use  MPI on our cluster

$ recon -v lamhosts2

recon: -- testing n0 (thebrain)

--------------------------------------------------

Woo hoo!

Use the recon tool to verify that the cluster is bootable:
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recon: -- testing n0 (thebrain)

recon: -- testing n1 (pinky1)

pgibson@pinky1's password: 

recon: -- testing n2 (pinky2)

pgibson@pinky2's password: 

$

recon has completed successfully.  This 

means that you will most likelybe able to 

boot LAM successfully with the lamboot" 

command (but this is not a guarantee).  

See the lamboot(1) manual page for 

more Information on the lamboot

command….



How to Use  MPI on our cluster

LAM (Local Area Multicomputer) is an MPI programming environment and 

development system for heterogeneous computers on a network. With LAM, a 

dedicated cluster or an existing network computing infrastructure can act as one 

parallel computer solving one problem. 

LAM features extensive debugging support in the application development cycle and 

peak performance for production applications. LAM features a full implementation of 

the MPI communication standard. 
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Use the lamboot tool to 

start  LAM on the specified 

cluster

$ lamboot -v lamhosts2

Executing hboot on n0 (thebrain - 1 CPU)...

Executing hboot on n1 (pinky1 - 1 CPU)...

pgibson@pinky1's password: 

pgibson@pinky1's password: 

Executing hboot on n2 (pinky2 - 1 CPU)...

pgibson@pinky2's password: 

pgibson@pinky2's password: 

topology done      



How to Use  MPI on a cluster

// MPI1.cc

#include "mpi.h“// or include <mpi.h>

#include <stdio.h>

int main( int argc, char** argv )

{

Compiling and running MPI1.cc

$ mpicc -o mpi1 mpi1.cc

$ ls

lamhosts2  mpi1  mpi1.cc
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{

MPI_Init( &argc, &argv );

printf( "Hello world\n" );

MPI_Finalize();

return 0;

}

$ mpirun -v -np 1 mpi1

343 mpi1 running on n0 (o)

Hello world



How to Use  MPI on a cluster

Compiling and running the same code on multiple ‘processors’:
$mpirun –v –np 10 mpi1

395 mpi1 running on n0 (o)

10659 mpi1 running on n1

10908 mpi1 running on n2

396 mpi1 running on n0 (o)

10660 mpi1 running on n1

10909 mpi1 running on n2

397 mpi1 running on n0 (o)

10661 mpi1 running on n1

10910 mpi1 running on n2
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10910 mpi1 running on n2

398 mpi1 running on n0 (o)

Hello world

Hello world

Hello world

Hello world

Hello world

Hello world

Hello world

Hello world

Hello world

Hello world



How to Use  MPI on a cluster

OTHER IMPORTANT TOOLS –

mpitask - for monitoring mpi applications

lamclean – for cleaning LAM

lamhalt – for terminating LAM

wipe – when lamhalt hangs and you need to pull the plug!!
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wipe – when lamhalt hangs and you need to pull the plug!!



How to Use  MPI on a cluster

#include <stdio.h>

#include <mpi.h>

main(int argc, char *argv[])

{

int iproc, nproc;

How do we run this 

on a number of 

different processors?
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MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

MPI_Comm_rank(MPI_COMM_WORLD, &iproc);

printf("I am processor %d of %d\n", iproc, nproc);

MPI_Finalize();

}



How to Use  MPI on the cluster

[pgibson@TheBrain examples]$ mpirun -np 1 mpi2

I am processor 0 of 1

[pgibson@TheBrain examples]$ mpirun -np 2 mpi2

I am processor 0 of 2

I am processor 1 of 2

[pgibson@TheBrain examples]$ mpirun -np 3 mpi2

I am processor 0 of 3

I am processor 1 of 3
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I am processor 1 of 3

I am processor 2 of 3

[pgibson@TheBrain examples]$ mpirun -np 4 mpi2

I am processor 0 of 4

I am processor 3 of 4

I am processor 1 of 4

I am processor 2 of 4



How to Use  MPI on the cluster

[pgibson@TheBrain examples]$ mpirun -np 20 mpi2

I am processor 0 of 20

I am processor 6 of 20

I am processor 12 of 20

I am processor 9 of 20

I am processor 3 of 20

I am processor 15 of 20

I am processor 18 of 20

I am processor 1 of 20

I am processor 4 of 20
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I am processor 4 of 20

I am processor 2 of 20

I am processor 16 of 20

I am processor 5 of 20

I am processor 8 of 20

I am processor 13 of 20

I am processor 10 of 20

I am processor 7 of 20

I am processor 19 of 20

I am processor 14 of 20

I am processor 17 of 20

I am processor 11 of 20



MPI – further reading

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 

1996. A high-performance, portable implementation of the MPI 

message passing interface standard. Parallel Comput. 22, 6 

(September 1996), 789-828.

Edgar Gabriel and Graham E. Fagg and George Bosilca and Thara

Angskun and Jack Dongarra and Jeffrey M. Squyres and Vishal

Sahay and Prabhanjan Kambadur and Brian Barrett and Andrew 

Lumsdaine and Ralph H. Castain and David J. Daniel and Richard L. 

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 149

Lumsdaine and Ralph H. Castain and David J. Daniel and Richard L. 

Graham and Timothy S. Woodall , Open MPI: Goals, Concept, and 

Design of a Next Generation MPI Implementation. In Recent 

Advances in Parallel Virtual Machine and Message Passing 

Interface, 11th European PVM/MPI Users' Group Meeting, 

Budapest, Hungary, September 19-22, 2004, Proceedings 

PVM/MPI 2004



Sequential to parallel ---specification to implementation

Often a piece of sequential code defines the functional requirements of a system

However, these functional requirements do not address resource issues:

•speed requirements

•space requirements

•cost requirements

•efficiency requirements, etc …

A lot of work may have gone into proving the functional requirements correct ---
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•validation

•verification

How can we re-use this work when developing a system which meets the functional 

and non-functional needs?

We transform the sequential code to make it parallel. This  parallel code can

•automatically meet functional requirements if the transformation is correct

•be shown to meet the non-functional requirements using  analysis techniques



Sequential to parallel ---

specification to implementation

static int fun1(int  value){

int X = 0;

int Y [];

Y = new int [value];

for (int i=0; i<value;i++) Y[i] = i;

QUESTION 1: Consider the following piece of sequential (Java) code:
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for (int i=0; i<value;i++) Y[i] = i;

for (int i=0; i<value;i++) X = X + Y[i];

return X;

}

(Trick) Question:

What transformations can we do to speed up the code on a (parallel) machine?



static int fun1(int  value){

int X = 0;

int Y [];

Y = new int [value];

for (int i=0; i<value;i++) Y[i] = i;

for (int i=0; i<value;i++) X = X + Y[i];

Need to first ask – what 

is it doing … ?

class example1 {

public static void main(String [] args){

for (int i=0; i< 6;i++)

System.out.println("fun1("+i+") = " + 

fun1(i) );

}

Sequential to parallel 
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for (int i=0; i<value;i++) X = X + Y[i];

return X;

} Write some 

test code !!fun1(0) = 0

fun1(1) = 0

fun1(2) = 1

fun1(3) = 3

fun1(4) = 6

fun1(5) = 10

And 

examine 

output



static int fun1(int  value){

// int X = 0;

//int Y [];

//Y = new int [value];

// for (int i=0; i<value;i++) Y[i] = i;

//for (int i=0; i<value;i++) X = X + i;

Need to then ask – how is it 

doing it … ‘foolishly’?

class example1 {

public static void main(String [] args){

for (int i=0; i< 6;i++)

System.out.println("fun1("+i+") = " + 

fun1(i) );

}

Sequential to parallel 
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//for (int i=0; i<value;i++) X = X + i;

return (value*(value-1)/2);  

}
Transform

original 

function
fun1(0) = 0

fun1(1) = 0

fun1(2) = 1

fun1(3) = 3

fun1(4) = 6

fun1(5) = 10

And 

examine 

output



static int fun1(int  value){

int X = 0;

int Y [];

Y = new int [value];

// for (int i=0; i<value;i++) Y[i] = i;

for (int i=0; i<value;i++) X = X + i;

Need to then ask – how 

is it doing it… ?

class example1 {

public static void main(String [] args){

for (int i=0; i< 6;i++)

System.out.println("fun1("+i+") = " + 

fun1(i) );

}

Sequential to parallel 
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for (int i=0; i<value;i++) X = X + i;

return X;

}
Transform

original 

function
fun1(0) = 0

fun1(1) = 0

fun1(2) = 1

fun1(3) = 3

fun1(4) = 6

fun1(5) = 10

And 

examine 

output



Lessons to learn

• Sometimes ‘transforming out’ the poor sequential code –

without thinking about a parallel implementation – is all 

that is required to improve performance

•Do not underestimate the poor quality of the original 

code

•Be careful not to change the behaviour

Sequential to parallel 
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•Be careful not to change the behaviour

•Reason in small (incremental) steps that functional 

behaviour is maintained

•Sometimes simple mathematical analysis is enough – in 

example1 a simple proof by induction 

•Sometimes testing is easier than a fully formal proof … but 

beware that testing is usually incomplete.



What about example2?

static void fun2(int n, int[]  x, int[] y){

int i = -1;

while (i<n-1){

int temp;

What does this (Java) code do and how does it do it?

Sequential to parallel 
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int temp;

i++;

temp = x[i]; x[i] = y[i]; y[i] = temp;

}

}



static void fun2(int n, int[]  x, int[] y){

int i = -1;

while (i<n-1){

int temp;

i++;

temp = x[i]; x[i] = y[i]; y[i] = temp;

If in doubt, run some tests

class example2 {

public static void main(String [] args){

int []  a= new int[5];

int []  b = new int[5];

for (int i = 0; i<5; i++){

a  [i] = 1+i*2;

Sequential to parallel 
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temp = x[i]; x[i] = y[i]; y[i] = temp;

}

}

a  [i] = 1+i*2;

b  [i] = 2+i*2;}

printarray("a", a, 5);

printarray("b", b, 5);

fun2(5,a,b);

printarray("a", a, 5);

printarray("b", b, 5); }

static void printarray(String name, int [] a, int 

length){    System.out.print(name + " = ");

for (int i = 0; i<length; i++)

System.out.print(a[i]+ " ");

System.out.println();}; 



Examine/Analyse results of test(s)

a = 1 3 5 7 9

b = 2 4 6 8 10

a = 2 4 6 8 10

b = 1 3 5 7 9

Attempt to find/ reverse engineer a statement of the functional behaviour –

It appears to swap elements between arrays

Sequential to parallel 
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It appears to swap elements between arrays

Verify model by running more tests and/or formal reasoning …

Transform code to make it more efficient:

1) Change the data structure to ‘pointers’ and swapping whole array means just 

swapping 2 pointers!, or

2) Identify that swaps can be done in parallel (any arbitrary interleaving is correct!)



A parallel version of the array swap

First, some reasonable assumptions:

•Let the number of processors = m

•Let the size of the arrays to be swapped = n

•Let m be a factor of n

Now the pseudo-

parallel code:
static void fun2(int n, int m, int[]  x, int[] y){

PARALLEL forall Processors Pk[1..m] {

int temp;

Sequential to parallel 
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int temp;

int o = k*n/m; // the offset

for int (I=0;I<n/m;I++){

temp = x[i+o]; x[i+o] = y[i+o]; 

y[i+o] = temp;} }

}



A parallel version of the array swap

static void fun2(int n, int m, int[]  x, int[] y){

PARALLEL forall Processors Pk[1..m] {

int temp;

int o = k*n/m; // the offset

for int (I=0;I<n/m;I++){

temp = x[i+o]; x[i+o] = y[i+o]; 

Correctness ??

Easy proof/ formal 

reasoning –

because the two arrays 

are strongly partitioned 

so that there is no 

shared data between 

Sequential to parallel 
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temp = x[i+o]; x[i+o] = y[i+o]; 

y[i+o] = temp;} }

}

Complexity Analysis –

1) When m = 1 this should reduce to the original code … check it yourself

2) When m = n this should run in constant time … check it yourself

shared data between 

processors



What about example3?

What does this (Java) code do and how does it do it?

static int fun3(int n, int [] X){

int sum, mid;

sum = 0;

for (int i = 0; i<n; i++) sum = X[i]+sum;
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for (int i = 0; i<n; i++) sum = X[i]+sum;

mid = sum/2;

sum = 0;

int i =0;

do{sum = sum+X[i];i++; } while (sum<mid);

return i;

}



If in doubt, run some tests

class example3 {

public static void main(String [] args){

int []  a= new int[15];

int []  b = new int[15];

for (int i = 0; i<15; i++){

a  [i] = 10/(i+1);

QUESTION: What is the 

output?

Can you
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a  [i] = 10/(i+1);

b  [i] = i*i*i;}

printarray("a", a, 15); \\ see defn before

System.out.println( fun3(15,a) );   

printarray("b", b, 15); \\ see defn before

System.out.println( fun3(15,b) );   

}

Can you

reverse engineer a 

statement of the 

functional behaviour?



If in doubt, run some tests

class example3 {

public static void main(String [] args){

int []  a= new int[15];

int []  b = new int[15];

for (int i = 0; i<15; i++){

a  [i] = 10/(i+1);

b  [i] = i*i*i;}

a = 10 5 3 2 2 1 1 1 1 1 0 0 0 0 0

2

b = 0 1 8 27 64 125 216 343 512 729 1000 

1331 1728 2197 2744

13

OUTPUT-
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b  [i] = i*i*i;}

printarray("a", a, 15); \\ see defn before

System.out.println( fun3(15,a) );   

printarray("b", b, 15); \\ see defn 

before

System.out.println( fun3(15,b) );   

}

FUNCTIONAL SPEC:

Finds the ‘pivot’ of an array

TASK: Transform into 

parallel pseudo code and do the 

complexity analysis



For I := 1 to n do

begin

For J := 1 to n do

begin

if (X[ I ] = Y [ J ]) and (X[I]!= 0) then 

begin

X[I] = 0; Y[J] = 0;

What to do if original code is not in your target ‘parallel’ 

language? … example 4

There is an additional step –

First, transform the code into 

a sequential implementation 

in your target parallel 

programming language
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X[I] = 0; Y[J] = 0;

end

end

end

count = 0;

For I:= 1 to n do begin if X[I] = 0 then count++ end

return count

TASK: Can you do this 

step (and all others, for 

this example)



QUESTION  5: A classic parallelisation example

For I := 1 to n do

begin

temp := X[ I ]

X[ I ] := X  [ n+1- I  ]; X [n+1 - I ] := temp

Sequential to parallel 

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 165

end



QUESTION  6: A more difficult classic parallelisation example

Int big = X[1];

Int smallest = Y[1];

For j := 1 to n do

begin

For I := j to n do

begin
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begin

if X[I] > big then begin big = X[I]; swap (X[j], X[I]) end

if Y[I] < smallest then  begin smallest = Y[I]; swap (Y[j], Y[I]) end

end

X[j] = biggest+smallest

end



Mathematical Models for Analysing 

Parallel Systems 

A parallel algorithm is an algorithm for the execution of a 

program which involves the running of two or more processes 

on two or more processors simultaneously.

Two important measures of the quality of parallelism are:

•speedup, and 
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•efficiency

If Ts is the time taken to run the fastest serial algorithm on one 

process and if Tp is the time taken by the parallel algorithm on 

N processors then:

Speedup = S(N) = Ts/Tp, and 

Efficiency = E(N) = S(N)/N



Speed up and efficiency continued ...

Care should be taken when deciding on the value of Ts … we have to decide on which 

single processor the time should be judged. Two possibilities are: 

•the fastest processor available, or 

•one processor of the parallel machine (again, if the processors are different, 

which do we take?).

… but, be careful ...
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Question: which method is best/fairest/normally taken?

Answer:  the one which best reflects your product ;-)

A slightly different definition of speedup also exists: 

the time taken for the parallel algorithm on one processor divided by the time 

taken by  the parallel algorithm on N processors.

Question: is this a good/bad definition?



We are going to see that throwing more and more processors at a problem does not 
always yield more and more speed-up.

Today, we will look at the formal reasoning which explains why …

Speed-up has its limits!

PREVIOUS LIMIT EXAMPLES FROM REAL DATA ANALYSIS
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Fibonacci 0.90 1.35 1.35 1.35 1.35

Pyramid 0.90 1.32 1.30 1.30 1.30

Mat Mult 1.21 1.76 1.80 1.77 1.62

Dual Dag 1.94 1.65 1.45 1.45 1.45

Whetstone 1.37 1.40 1.67 1.47 1.47

FFT 1.69 2.56 2.52 2.55 2.55



Factors that limit speedup

The ideal is to produce linear speedup, i.e produce a speedup of N 
using N processors, and thus have an efficiency of 1 (100%).However, 
in practice the speedup is reduced from its ideal because of:

•Software Overhead --- Even with a completely equivalent algorithm, 
software overhead arises in the concurrent implementation (e.g. an 
additional index calculation required for splitting up data). In general, 
the parallel code will contain more lines of code!

•Load Balancing  ---Speedup is generally limited by the speed of the 
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•Load Balancing  ---Speedup is generally limited by the speed of the 
slowest node. Thus we try to ensure that each node performs the 
same amount of work, i.e. is load balanced.

•Communication Overhead ---Assuming that communication and 
calculation cannot be overlapped, then any time spent 
communicating the data between processors directly degrades the 
speedup. Goal --- make the grain size (relative amount of work done 
between synchronisation-communication) as large as possible, whilst 
keeping the processors busy.



Amdahl’s Law

The speedup of a parallel algorithm is effectively limited by the 

number of operations which must be performed sequentially, i.e. its 

Serial Fraction

Let

S be the amount of time spent (by 1 processor) on serial parts of 

the program, and

P be the amount of time spent (by 1 processor) on parts that 

could be done in parallel. 
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could be done in parallel. 

Then:

Tseq = S+P, and 

Tpar = S + P/N, where N = number of processors.

Thus, speedup = Tseq/Tpar

= (S+P) / (S+P/N)



Amdahl’s Law continued...

Example:

A program with 100 operations, each taking 1 time unit.

80 operations in parallel => P =80

20 operations in sequence => S = 20

Mathematical Models 

October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 172

Then, using 80 processors, we have: 

Speedup = 100/(20+80/80) = 100/21 <5 

Thus, a speedup of only 5 is possible no matter how many 

processors N !!



Amdahl’s Law continued ...

If we define the serial fraction F to be:

F = S/Tseq => P = (1-F)Tseq

Tseq = S+P, and 

Tpar = S + P/N

speedup = Tseq/Tpar

= (S+P) / (S+P/N)
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F = S/Tseq => P = (1-F)Tseq

then we can re-write the speedup as:

speedup = 1/(F+(1-F) /N)

So, if F = 0, then we have ideal speedup = N

if F =1, then we have (no) speedup = 1 (for any N)



Amdahl’s Law continued

Consider the effect of the serial fraction on the speedup produced for

•N = 10, and 

•N = 1024

10
1024

9 N=10 N=1024
Speed-up

Speed-up
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0.01        0.02                    0. 1

Serial fraction f
Serial fraction f

0.01   0.02  0.03 0.1

10

8

6

4

2

0

5

8
9 N=10

91

48 31



Amdahl’s Law continued…

Amdahl’s law tells us that the serial fraction F places a severe constraint on the 

From the graphs on the previous slide we see that:

•If 1% of a parallel program involves serial code, the maximum speedup that can be 

obtained is  9 using 10 processors, but only 91 using 1024 processors.
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Amdahl’s law tells us that the serial fraction F places a severe constraint on the 

speedup as the number of processors increase.

Since most parallel programs contain a certain amount of sequential code, a 

possible conclusion of Amdahl’s Law is that it is not cost effective to build 

systems with large numbers of processors

However, most of the important applications that need to be parallelised contain 

very small fractions (<0.001)



Using the serial fraction to measure performance

Given the idealised serial fraction f, and N processors, we can calculate predicted speedup

speedup = 1/f +(1-f)/N

So, if we run the program and find the actual speedup,

Speedup =(Tseq/Tpar), then we can calculate

the actual serial fraction:
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the actual serial fraction:

F = (1/Speedup -1/N)/ (1-1/N)

This F value is useful because it is not idealised. The idealised f assumes that all processors 

compute for the same amount of time (i.e. are perfectly load balanced). Furthermore, the 

idealised value does ignores communication and synchronisation overheads.

Note: load balancing effects are likely to result in irregular changes in F as N increases.



Measuring Performance (Example)

Say we have 12 tasks each requiring the same time. We have perfect load balancing for 

N = 2,3,4,6 and 12; but not for N = 5,7,8,9,10,11

Since a larger load imbalance results in a larger F, problems can be identified not 

apparent from speedup or efficiency.

Communication and synchronisation overhead tends to increase as N increases
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Communication and synchronisation overhead tends to increase as N increases

Since increased overhead => decreased speedup, the value of F increases smoothly as 

N increases.

Note: a smoothly increasing F is a warning that grain size is too small. … think about 

this … we will come back to it!!



Measuring Performance (Example)

N Speed-Up EfficiencyF

2 1.95 97 0.024

3 2.88 96 0.021

4 3.76 94 0.021

Consider the following table of measurements:
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4 3.76 94 0.021

8 6.96 87 0.021

Without looking at the serial fraction we cannot tell if the results are good. For 

example,why does the efficiency decrease? Since F is almost constant, we can 

conclude it is due to limited parallelism of the program. 



Grain Size and Speedup (Example)

Consider adding m numbers using N processors. Processors 1…N-1 compute the 

partial sum of m/N-1 numbers. These are passed on to processor Pn to calculate the 

final sum.

P1 P2 Pn-1
Assumptions
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Pn

There are N-1 communications

Each + takes 1 unit 

100 units to pass partial sums

Question: what is speed-up (in terms of m and N)?



Grain Size and Speedup (Example)

P1 P2 Pn-1

Pn

There are N-1 communications

Each + takes 1 unit 

100 units to pass partial sums

Assumptions

Parallel time = (M/(N-1))+(100)+(N-1)
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We re-write as TP = (M+N*N+98N-99)/(N-1)

Sequential time TS = m ;  thus speedup = Ts/Tp …= 

(MN-M)/(M+N^2+98N-99)

Consider now the grain size … the amount of work done in each processor between 

synchronisations, in this case the size of M.

Question: what happens if M = 1000?



Grain Size and Speedup (Example) continued ...

If M = 1000 and we use 10 processors then

speedup = (10,000-1000)/(1000+100+980-99) =… = 4.54, and

efficiency = 4.54 /10 = 45%

If m =10,000 and we use 10 processors then

speedup = …. = 8.20

efficiency = 82%
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efficiency = 82%

Thus, increasing grain size increases speedup and improves efficiency

Question: how would we take into account that some machines are better at 
calculating whilst others are better at data transfer?

Answer: use the machine dependent ratio in our analysis



Using the machine dependent ratio

The machine dependent ratio is defined as Tcomm/Tcalc, where:

•Tcomm is the time to transfer a single word between nodes, and

•Tcalc is the time to perform some floating point calculation.

We can now generalise the example to obtain:

Tp = ((m/N-1)+N-1)Tcalc + Tcomm

Ts = m Tcalc
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Ts = m Tcalc

We can re-arrange to calculate the grain size required (size of m) for different 

machines (with different machine dependent ratios) in order to meet a certain 

level of efficiency.

For example, we require 80% efficiency (at least) on

•machine A with md ratio = 1 --- thus we need m>720

•machine B with md ratio = 10 --- thus we need m >1368



Amdahl’s Law : Further Reading

Gene M. Amdahl. 1967. Validity of the single processor 

approach to achieving large scale computing capabilities. 

In Proceedings of the April 18-20, 1967, spring joint 

computer conference (AFIPS '67 (Spring)). ACM, New York, 

NY, USA, 483-485. 

John L. Gustafson. 1988. Reevaluating Amdahl's law. 
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John L. Gustafson. 1988. Reevaluating Amdahl's law. 

Commun. ACM 31, 5 (May 1988), 532-533.

Mark D. Hill and Michael R. Marty. 2008. Amdahl's Law in 

the Multicore Era. Computer 41, 7 (July 2008), 33-38



Compiler Techniques for

Scheduling Programs on

Asynchronous Multiprocessors
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Based on work by:

Brian Malloy et. al. (1999)



Compiler phases: front end

source

Intermediate
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Lexical

analysis

Semantic 

analysis

Intermediate

code

parser



Compiler phases:  back end

Intermediate

code
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code



Asynchronous multiprocessors

• processors proceed at their own rate;

• lightweight threads;
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• lightweight threads;

• > 1 processor;

• shared memory.



Scheduling Programs:

(1)  sum = 0;

(2)  index = 1;

(3)  while (index < MAX) {

(4)      x = index;

(5)      y = 3;

(6)      z = x + y;
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(6)      z = x + y;

(7)      sum = sum + z;

(8)      a = 0;

(9)      b = 1;

(10)    c = a + b;        }

(11) cout << c << z << endl;



Scheduling straight-line code for asynchronous 

execution is NP-Complete:

• First proven by B. Malloy

– reduction from 3-SAT

– 10 pages

• improved by E. Lloyd
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– reduction from 3-SAT

– 5 pages

• reviewer

– reduction from knapsack

– 1 1/2 pages



Previous approaches used list scheduling:

• T. Rodeheffer, CMU

– level scheduling

• Kasahara & Narita, Illinois
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October 2013 MSc SAI - Parallel & Concurrent (J Paul Gibson) 190

• Kasahara & Narita, Illinois

– CP/MISF

• V. Sarkar, Stanford

– pre-pass approach



Use a DAG to represent the code:

(4)      x = index;

(5)      y = 3;

(6)      z = x + y;

(7)      sum = sum + z;

(8)      a = 0;

+
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(8)      a = 0;

(9)      b = 1;

(10)    c = a + b;

= = sum

+

= =

+



DAG: just the operations

(4)      x = index;

(5)      y = 3;

(6)      z = x + y;

(7)      sum = sum + z;

7.1
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(7)      sum = sum + z;

(8)      a = 0;

(9)      b = 1;

(10)    c = a + b; 4 5 7.2

6

8 9

10



Previous approaches used 

list scheduling:

• put all nodes into a list

• schedule the list
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• list construction



List schedule the DAG;

use level scheduling:

7.1

6 10
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4 5 7.2

6

8 9

10



level scheduling: 

put all the ready nodes in the list

7.1
List = {4,5,7.2,8,9
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4 5 7.2

6

8 9

10



level scheduling:

assume the nodes in the list have executed

7.1List = {4,5,7.2,8,9,6,10
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4 5 7.2

6

8 9

10



level scheduling: get the last node

7.1

List = {4,5,7.2,8,9,6,10,7.1}
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4 5 7.2

6

8 9

10



assign nodes to processors:

List = {4,5,7.2,8,9,6,10,7.1}

p1 ={4,7.2,9,10}
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p2 = {5,8,6,7.1}



Assuming UET, construct schedule:

7.1

6 10

p1 ={4,7.2,9,10}

p2 = {5,8,6,7.1}
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4 5 7.2 8 9

5        8      S8 W4 6      W7.2 7.1 

4    S4 7.2       S7.2 9      W8 10



Brian’s approach: use PPS

(NO LISTS):

Start at highest point in DAG 

with unscheduled nodes

Schedule p1

7.1
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4 5 7.2

6

8 9

10



PPS: choose a second 

preferred path

Schedule  p2

Start at highest point 

in DAG with 

unscheduled nodes
7.1
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Schedule  p2

4 5 7.2

6

8 9

10



PPS: keep marking preferred paths

Prefer a node with no parent, 

or a parent scheduled on this 

processor

Schedule p17.1
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4 5 7.2

6

8 9

10



PPS: keep marking preferred paths

Prefer a node with no parent, 

or a parent scheduled on this 

processor

Schedule p27.1
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4 5 7.2

6

8 9

10



PPS: keep marking preferred paths

Prefer a node with no parent, 

or a parent scheduled on this 

processor

Schedule p17.1
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4 5 7.2

6

8 9

10



PPS: traverse DAG, build schedule;

insert signal/wait if necessary:

7.1

6 10
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4 5 7.2

6

8 9

10

4      5        7.2    6        7.1

8       9        10 Results show technique 

scales reasonably well up to 

8-16 processors/cores.



Compiler Techniques: Further Reading 

B. A. Malloy, E. L. Lloyd, and M. L. Soffa. 1994. Scheduling DAG's for 

Asynchronous Multiprocessor Execution. IEEE Trans. Parallel Distrib. Syst.

5, 5 (May 1994)

Georgios Tournavitis, Zheng Wang, Bjorn Franke, and Michael F.P. 

O'Boyle. 2009. Towards a holistic approach to auto-parallelization: 
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O'Boyle. 2009. Towards a holistic approach to auto-parallelization: 

integrating profile-driven parallelism detection and machine-learning

based mapping. SIGPLAN Not. 44, 6 (June 2009), 177-187



Map Reduce

Dean, Jeffrey, and 

Sanjay Ghemawat. 

"MapReduce: 

simplified data 

processing on large 

clusters." 

Communications of 

the ACM 51.1 (2008): 

107-113.
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http://hadoop.apache.org/docs/r0.18.3/mapr

ed_tutorial.html

http://www.gridgain.com/images/mapreduce_small.png

White, Tom. Hadoop: the definitive guide. O'Reilly, 2012.



Development Tools/Environments/Systems

Open MPI - http://www.open-mpi.org/

Open MP - http://openmp.org/wp/

mpiJava - http://aspen.ucs.indiana.edu/pss/HPJava/mpiJava.html

SWARM - http://multicore-swarm.sourceforge.net/
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See also: 

java.util.concurrent for Java 7
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html

The Caml Hump: System :: Distributed and parallel programming

http://caml.inria.fr/cgi-bin/hump.en.cgi?sort=0&browse=77


