Service Oriented Development/Engineering

Service Oriented (Everything!):
* Architecture

e Analysis and Design Services are not:

* Requirements

* Modelling Components

e Software Engineering eFeatures

* Business Logic/Process *Objects/Classes

*Procedures/Functions

Web services: Are they?
*Remote Procedure Call
Middleware
*(Simple Object Access Protocol)
*Web Service Description Language
*Service Discovery
*Representational state transfer
*Semantic Web
*Ontologies and service taxonomies

January 2013 MSc SAI - Service Oriented Development (J Paul Gibson)

Implementing Remote Procedure Calls Andrew D. Birrell and Bruce Jay Nelson,
ACM Trans. Comput. Syst. 2, 1

(February 1984), 39-59

Cailer machine Network Calles machine
User User-stub RPCRuntime RPCRuntime Server-stub Server
) Call packet

tocal pack transmit) receive npack call

call ment \l/ ument]/
wait work

local npack \l/ Resuit packet pack \l/

urn result ﬁ receive (transmit result return
importer exporter importer exporter
interface interface

January 2013 IMSc SAI - Service Oriented Development (J Paul Gibson)

Middleware: a model for distributed system services

Development
Environment

Philip A. Bernstein, Commun. ACM 39, 2
(February 1996), 86-98.

Framework

| Tool
]

n Application I
1

API veneer

User -
interface Mapping to

Application client Application server

procedure L, Fy ¥ procedure
Language-specific Language-specific

call interface

call interface
| Client stubs |-.|. II-I Server stubs |

X S
RPC AP RPC AFI
RPC run-time __Z——____——S__ RPC nin-iime

service library \ / service library

RPC Architecture

January 2013

Application

Middleware Services

Framework
Private Service

APIs

Middleware
{distributed system services)

—

Platform interface

Platform
=5
* Hardware

—

Platform interface

Platform
= (5
* Hardware

Middleware Architecture

MSc SAIl - Service Oriented Development (J Paul Gibson)

Web Services Are Not Distributed Objects

Werner Vogels, IEEE Internet Computing
7, 6 (November 2003), 59-66

Any communications

SOAP
sender

/ protocol \
SOAP Ultimate

E ; ;I ’ node E ; ;I ’ SRR

Client

January 2013

¥ receiver
\ Intermediary / End point
f"/ﬁ

SOAP message

SOAP’s transport independence:
Web service documents encapsulated in a SOAP message can be delivered

directly to a destination over a single transport or via a collection of
intermediaries over a variety of transports

MSc SAI - Service Oriented Development (J Paul Gibson) 4

January 2013

WSDL

WSDL 1.0 (Sept. 2000) has been developed by
IBM, Microsoft and Ariba to describe Web
Services for their SOAP toolkit.

WSDL 1.1 (March 2001) is the formalization of
WSDL 1.0.

WSDL 1.2 (June 2003) attempts to remove
non-interoperable features and also defined
the better HTTP 1.1 binding, but is not
supported by most of the SOAP
servers/vendors.

WSDL 2.0 (June 2007) A simple renaming of
1.2 became a W3C recommendation

WspDL 1.1 WsDL 2.0
definitions | description
[types |
types
message]
Al A
portType interface
operation operation
input input
output — output —
4 =t
| | |
binding binding
Hlm'_f seﬂlﬂm_,_f
port endpoint

MSc SAI - Service Oriented Development (J Paul Gibson)

Abstract
Section

Concrete
Section

What are Web Services?

Christopher Ferris and Joel Farrell,
Commun. ACM 46, 6 (June 2003), 31

Discovery

A web service, as defined by
Agencies

the W3C Web Services
Architecture Working

Group, is “a software
application identified by a URI,
whose interfaces

and bindings are capable of
being defined, described, and
discovered as

XML artifacts. A Web service
supports direct interactions
with other software

agents using XML-based
messages exchanged via
Internet-based protocols”

Publish

Find

Interacat

January 2013 MSc SAI - Service Oriented Development (J Paul Gibson) 6

Roger Sessions
Queue 2, 9 (December
2004), 40-47

Fuzzy Boundaries: Objects, Components, and Web Services

There was still much
confusion so Roger Sessions
tried to explain simply!

Location and Environment

‘l’ - P Y
- - . ‘
Objects, Components, and Web Services Object ' SpeakToMe -
Relationship ! :
s “woof” -
L] []
‘ |
"h l\' l,
rr;;m;---------'m—u-n\“
|]
Component ! SpeakToMe !
Relationship 1 |
: “woof” 1
|]
]
Catpomnt . iy LR S’
or Web Service {f ! : |
Web Service | 1SpeakToMe :
Generic Template Relationship ! ¥ = E i
key \ | : :
I i I
(] =) J
ey
" | = environment
| ™ oo
- Specific Instances
MSc SAl - Service Oriented Development (J Paul Gibson) 7

January 2013

Web service modeling ontology

Move towards semantics and formal models/methods

Capability

(the functionality of the Web service)

How the Web service
achieves it's capability
by means of
interactions with it's
users

{ communication)

Dumitru Roman et al,

Appl. Ontol. 1, 1
(January 2005), 77-106

logic |
1
i

{ not of interest in Wl_eb
service de5criptir::nli]

==t
-

% Service internal
*——
— >

>

*

Choreography

January 2013

Orchestration

| by making use of other

MSc SAI - Service Oriented Development (J Paul Gibson)

\
.
Web service |
\

Web service

Bl Web service

How the Web service
achieves it's capability

Web services

{ coordination) !

,\‘
\

Dealing with change: components versus services Ahmed Elfatatry, Commun. ACM
50, 8 (August 2007), 35-39

Component-based Service-based model. Composite service.
development.

There was then a move towards service composition, and self* services
This is now, perhaps, the most challenging research area in service provision

January 2013 MSc SAI - Service Oriented Development (J Paul Gibson) 9

d Michael P. Papazoglou, Paolo Traverso,
Schahram Dustdar, and Frank Leymann.
Computer 40, 11 (November 2007), 38-45.

and ; e
Metiice operator
State management
Load balancing '
Role actions Change management .
Performs =i

Publishes ==m==i> Semantics
Uses o _ Monfunctional characteristics
BECOMES m— Composition QoS

Service-Oriented Computing: State of the Art an
Research Challenges

Coordination
_ Conformance
Service provider., Transactions
Foindalion

(service-oriented

middleware and ' - .I
basic functions) W Capability B Db lication ey
Interface Discovery
Behavior Selaction
¥

Service client

b3

Service aggregator <

SOC research road map.The architectural layers provide a logical separation of
functionality, while the perpendicular axis indicates service characteristics that cut
across all three planes.

January 2013 MSc SAI - Service Oriented Development (J Paul Gibson) 10

Note: there are lots of web service protocols

*BEEP - Blocks Extensible Exchange Protocol

*E-Business XML

*Hessian

*JSON-RPC

*Qworum

*REST (Representational State Transfer)

*SOAP

eUniversal Description, Discovery, and Integration (UDDI)
*Web Processing Service (WPS)

*Web Services Description Language (WSDL)

*WSFL - Web Services Flow Language (superseded by BPEL)
*WSCL - Web Services Conversation Language

*XINS Standard Calling Convention - HTTP parameters in (GET/POST/HEAD), POX out
*XLANG - XLANG-Specification (superseded by BPEL)
*XML-RPC - XML Remote Procedure Call

HINT: you should, for now, focus on SOAP and REST

January 2013 IMSc SAI - Service Oriented Development (J Paul Gibson)

11

Developing web services choreography standards—the case of REST vs. SOAP

Michael zur Muehlen, Jeffrey V. Nickerson, and Keith D. Swenson, Decis.
Support Syst. 40, 1 (July 2005), 9-29.

REST

SOAP

Characteristics

Operations are defined in the
messages

Unique address for every process
instance

Each object supports the defined
(standard) operations

Loose coupling of components

Operations are defined as WSDL
ports

Unique address for every operation
Multiple process instances share the
same operation

Tight coupling of components

Self-declared

Late binding is possible

Debugging is possible

disadvantages

Managing the URI namespace can
become cumbersome

advantages Process instances are created Complex operations can be hidden
explicitly behind facade
Client needs no routing information Wrapping existing APIs is
beyond the initial process factory URI straightforward
Client can have one generic listener Increased privacy
interface for notifications
Possible Large number of objects Client needs to know operations and

their semantics beforehand
Client needs dedicated ports for
different types of notification
Process instances are created
implicitly

January 2013

MSc SAI - Service Oriented Development (J Paul Gibson)

12

The simplest (?) web service: read a web page contents from its url

http://ww. vogel | a. de/articl es/ JavaNet wor ki ng/article. htni

package de.vogella.web.html;

import java

.1o.BufferedReader;
import java.
import java.
import java.

i0.I0Exception;
10.InputStreamReader ;
net.URL;

public class ReadWebPage {
public static void main(String[] args) throws IOException {

String urltext = "http://www.vogella.de";

URL url = mew URL(urltext);

BufferedrReader in = new BufferedReader (new InputStreamReader (url
.openStream()));

String inputLine;

while ((inputLine = in.readLine()) != null) {
A Process each [ine.
System.out.println(inputLine);

h

in.close();

QUESTION: (how) does this work?

January 2013

MSc SAIl - Service Oriented Development (J Paul Gibson)

13

What about get services?

http://ww. vogel | a. de/articl es/ JavaNet wor ki ng/article. htni

Several websites offer services via Http get calls. For example your can send a get request

to "http://tinyurl" or http://tr.im" and receive a short version of the Url you pass as
parameter.

package de.vogella.web.get;

import java

import java

.io.BufferedReader;
import java.
import java.
.net .URL;

10.I0Exception;
io.InputStreamReader;

public class TinyURL {
private static fimal String tinyurl = "http://tinyurl.com/api-create.php?url=";

public String shorter(String url) throws IOException {

String tinyUrlLookup = tinyUrl + url;

BufferedReader reader = new BufferedReader (new InputStreamReader (new URL (tinyurlLookup).openstream()));
String tinyUr]l = reader.readLine();
return tinyurl;

QUESTION: (how) does this work?

January 2013

MSc SAIl - Service Oriented Development (J Paul Gibson) 14

Problem Based Learning: Composing Web Services

Using Java, you are to build a simple program that illustrates how to use the web
to provide re-usable functionality:

*The architecture is a simple pipeline

*The user inputs a string.

*The Java program outputs a string

*There must be at least 2 « web components/services » used in the internal

processing:

String
Input

I

Preprocessing

January 2013

— Web ~ JE
Service/Site

MSc SAI - Service Oriented Development (J Paul Gibson)

Post/Preprocessing

> Web e
Service/Site

Postprocessing

/

String
Output

15

