
Iterator Pattern2017: J Paul Gibson 1

CSC7203 : Advanced Object Oriented Development

J Paul Gibson, D311

Iterator Design Pattern

…/~gibson/Teaching/CSC7203/CSC7203-AdvancedOO-L2-Iterator.pdf

Iterator Pattern2017: J Paul Gibson 2

Iterator

An iterator is an object that facilitates traversal of a container/
collection of objects

Various types of iterators are often provided via a container's
interface.

Though the interface and semantics of a given iterator are fixed,
iterators are tightly coupled to the container implementation in order
to enable the operational semantics of the iterator.

Note that an iterator performs traversal and also gives access to data
elements in a container, but does not perform iteration.

QUESTION: Have you already seen this in Java?

Iterator Pattern2017: J Paul Gibson 3

Iterator Pattern

See - http://sourcemaking.com/design_patterns/iterator

•Intent
•Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.
•The C++ and Java standard library abstraction that makes it possible to
decouple collection classes and algorithms.
•Promote to “full object status” the traversal of a collection.
•Polymorphic traversal

•Problem

Need to “abstract” the traversal of wildly different data structures so that algorithms
can be defined that are capable of interfacing with each transparently.

Iterator Pattern2017: J Paul Gibson 4

Iterator Pattern

See - http://sourcemaking.com/design_patterns/iterator

Relation to other patterns

•The abstract syntax tree of Interpreter is a Composite (therefore Iterator and Visitor
are also applicable).
•Iterator can traverse a Composite. Visitor can apply an operation over
a Composite.
•Polymorphic Iterators rely on Factory Methods to instantiate the appropriate
Iterator subclass.
•Memento is often used in conjunction with Iterator. An Iterator can use a Memento
to capture the state of an iteration. The Iterator stores the Memento internally.

Iterator Pattern2017: J Paul Gibson 5

Iterator Pattern - Contrasting with indexing

Although indexing may also be used with some object-oriented containers, the use of
iterators may have some advantages:

•Counting loops are not suitable to all data structures, in particular to data structures
with no or slow random access

•Iterators make the code more readable, reusable, and less sensitive to a change in the
data structure.

•An iterator can enforce additional restrictions on access, such as ensuring that elements
can not be skipped or that a previously visited element can not be accessed a second
time.

•An iterator may allow the container object to be modified without invalidating the
iterator. For instance, once an iterator has advanced beyond the first element it may be
possible to insert additional elements into the beginning of the container with predictable
results. With indexing this is problematic since the index numbers must change.

Iterator Pattern2017: J Paul Gibson 6

Iterators and collections in Java

There are multiple ways to iterate a collection in Java
Example:

 
ArrayList persons = new ArrayList();
 
Person p= new Person("john", "mith");  
persons.add(p);  
...
 
Iterator i = persons.iterator();
 
while(i.hasNext())  
{  
  
 Person p= (Person)i.next();  
 
  
 p.print();  
}

for(Person p : persons) 
{  
 p.print(); 
} // since java 1.5

Iterator Pattern2017: J Paul Gibson 7

Iterator in UML class diagram

Iterator Pattern2017: J Paul Gibson 8

Iterator in UML class diagram (linked list example in Java)

Notice that the Aggregate is an Iterable (in Java)

Iterator Pattern2017: J Paul Gibson 9

Java Iterable Example (in Iterator folder/package)
(~gibson/Teaching/CSC7203/Code/Iterator.zip)

TO DO

Iterator Pattern2017: J Paul Gibson 10

public class MyTableOfStrings implements Iterable<String>
{

protected String[] data;

public MyTableOfStrings(String [] data) {
this.data = data;
}

public int length(){return data.length;}

public Iterator<String> iterator() {
return new MyTableOfStrings_Iterator(this);
}

}

Java Iterable Example (in Iterator folder/package)
(~gibson/Teaching/CSC7203/Code/Iterator.zip)

Iterator Pattern2017: J Paul Gibson 11

public class MyTableOfStrings_Iterator implements Iterator<String> {

private int index;
private MyTableOfStrings table;

public MyTableOfStrings_Iterator(MyTableOfStrings tab) {
index = tab.length()-1;
table = tab;
}

public String next() {
index--;
return table.data[index +1];
}

public boolean hasNext() {
return index >= 0;
}

public void remove() {
throw new UnsupportedOperationException();
}

}

Iterator Pattern2017: J Paul Gibson 12

public class MyTableOfStrings_Test {

public static void main(String[] s) {

String [] data = {"one", "two", "three"};
MyTableOfStrings t = new MyTableOfStrings(data);

System.out.println("Iterate over original data array");
for (String value : data) {
System.out.println(" "+value);
}
System.out.println("\nIterate over same data in MyTableOfStrings");
for (String value : t) {
System.out.println(" "+value);
}
}

}

Iterator Pattern2017: J Paul Gibson 13

TO DO : Compile and execute the test class

Iterator Pattern2017: J Paul Gibson 14

In the previous example we saw how the Iterator code decides
the order in which to visit the elements.

By default Java iterates through arrays from the 1st to the last
elements. In the example we iterate through
MyTableOfStrings in reverse order.

TO DO:

Change the iterator code so that the elements are visited in random
order. Do not do this by shuffling the elements as this may be
expensive for a large number of elements.

Random Iteration: Reservoir Sampling

Iterator Pattern2017: J Paul Gibson 15

A more complex data structure: an urn/ballot box of bulletins/votes

TO DO: Your task is to iterate through the Strings in the Urn

Look at the Urn_Test Code and write the Urn and Urn_Iterator classes
appropriately.

Check that the test, executed on your code, produces the expected results

Iterator Pattern2017: J Paul Gibson 16

public class Urn_Test {

public static void main(String[] s) {

String [] preferences1 = {"gibson", "smyth", "hughes"};
MyTableOfStrings vote1 = new MyTableOfStrings(preferences1);

String [] preferences2 = {"jones", "bell"};
MyTableOfStrings vote2 = new MyTableOfStrings(preferences2);

String [] preferences3 = {"raffy", "lallet"};
MyTableOfStrings vote3 = new MyTableOfStrings(preferences3);

MyTableOfStrings [] votes = { vote1, vote2, vote3};

Urn urn = new Urn (votes);

System.out.println("\nIterate over strings on bulletins in Urn");
for (String value : urn) {System.out.println(" "+value);}
}
}

Iterator Pattern2017: J Paul Gibson 17

