
TSP: MSc CCN2017: J Paul Gibson 1

CSC 7203 : Advanced Object Oriented Development

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu
~gibson/Teaching/CSC7203/

Factory Pattern

…/~gibson/Teaching/CSC7203/CSC7203-AdvancedOO-L3-Factory.pdf

TSP: MSc CCN2017: J Paul Gibson 2

TSP: MSc CCN2017: J Paul Gibson 3

Factory Pattern

See - http://sourcemaking.com/design_patterns/factory_method

•Intent

•Define an interface for creating an object, but let subclasses decide which
class to instantiate. Factory Method lets a class defer instantiation
to subclasses.
•Defining a “virtual” constructor.

•Problem

•A framework needs to standardize the architectural model for a range of
applications, but allow for individual applications to define their own domain
objects and provide for their instantiation.

NOTE: The implementation of Factory Method discussed in the largely overlaps
with that of Abstract Factory.

TSP: MSc CCN2017: J Paul Gibson 4

Factory Pattern
See - http://sourcemaking.com/design_patterns/factory_method

Relation to other patterns

Abstract Factory classes are often implemented with Factory Methods, but they can be
implemented using Prototype.

Factory Methods are usually called within Template Methods.

Factory Method: creation through inheritance. Prototype: creation through delegation.

Often, designs start out using Factory Method (less complicated, more customizable,
subclasses proliferate) and evolve toward Abstract Factory, Prototype, or Builder (more
flexible, more complex) as the designer discovers where more flexibility is needed.

Prototype doesn’t require subclassing, but it does require an Initialize operation. Factory
Method requires subclassing, but doesn’t require Initialize.

The advantage of a Factory Method is that it can return the same instance multiple times, or
can return a subclass rather than an object of that exact type.

TSP: MSc CCN2017: J Paul Gibson 5

Factories: Additional Motivation

See:

Software Factories Assembling Applications with Patterns,
Models, Frameworks and Tools, Greenfield and Short,
OOPSLA, 2003.

Factories are key to Software Product Lines

TSP: MSc CCN2017: J Paul Gibson 6

Patron: Factory (Fabrique): UML (generic)

Can be generalised to:
•multiple products (by subclassing)
•multiple clients (by association)

TSP: MSc CCN2017: J Paul Gibson 7

Factory UML: concrete example –

GUIFactory

WindowsFactory

Button

WindowsButton

WindowsButtonFactory

You can find the files in the Patterns folder in the p_factory package

TSP: MSc CCN2017: J Paul Gibson 8

Factory package
NOTE: I have not
added any package
structure – I suggest
you restructure the
Factory into separate
dossiers:

•by OS or
•by components

Also, you may wish to
have a package for the
abstract classes, and
for tests

Download from the web site - Code/Factory.zip

TSP: MSc CCN2017: J Paul Gibson 9

Factory - Windows GUI in Java

NOTE: Factories are often defined as Singletons.

TSP: MSc CCN2017: J Paul Gibson 10

Factory - Windows GUI in Java

public class WindowsButtonFactory {

 public static void main(String[] args){

 GUIFactory aFactory = GUIFactory.getFactory();
 System.out.println("Using factory "+ aFactory+" to construct aButton");
 Button aButton = aFactory.createButton();
 aButton.setCaption("Push a");
 aButton.paint();

 GUIFactory bFactory = GUIFactory.getFactory();
 System.out.println("Using factory "+ bFactory+" to construct bButton");
 Button bButton = bFactory.createButton();
 bButton.setCaption("Push b");
 bButton.paint();
 }

}

TO DO: Compile and execute to test for expected output

TSP: MSc CCN2017: J Paul Gibson 11

Factory - Windows GUI in Java

abstract class Button

{

 private String caption;

 public abstract void paint();

 public String getCaption() {return caption;}

 public void setCaption(String caption){

 this.caption = caption;

 }

}

public class WindowsButton extends Button
{
 public void paint(){
 System.out.println("WindowsButton: "+ getCaption());
 }
}

TSP: MSc CCN2017: J Paul Gibson 12

Factory - Windows GUI in Java

abstract class GUIFactory{

 public static GUIFactory getFactory(){

 return WindowsFactory.getInstance();

 }

public abstract Button createButton();

}

class WindowsFactory extends GUIFactory{

private static WindowsFactory factory = new WindowsFactory();

 public static WindowsFactory getInstance () {return factory;};

 public Button createButton(){

 return(new WindowsButton());

 }

}

TSP: MSc CCN2017: J Paul Gibson 13

GUIFactoryChoice

OSXFactory or Win Factory

Button

OSXButton or Win Button

OSXorWindowsFactoryFactory « UML »:

TO DO: Write code for OSXButton and OSXFactory

TSP: MSc CCN2017: J Paul Gibson 14

Factory OSX and Win GUI Buttons in Java

abstract class GUIFactoryChoice{
 public enum OS_Type {Win, OSX}

 protected static OS_Type readFromConfigFile(String param){
 if (Math.random() > 0.5) return OS_Type.Win;
 else return OS_Type.OSX;
 }

 public static GUIFactory getFactory(){
 OS_Type sys = readFromConfigFile("OS_TYPE");
 switch (sys) {
 case Win:
 return WindowsFactory.getInstance();
 case OSX:
 return OSXFactory.getInstance();
 }
 throw new IllegalArgumentException("The OS type " + sys + " is not recognized.");
 }

 public abstract Button createButton();
}

Use this more complex factory in your test code

TSP: MSc CCN2017: J Paul Gibson 15

Factory OSX and Win GUI Buttons in Java

public class OSXorWindowsFactory {

 public static void main(String[] args){

 GUIFactory aFactory = GUIFactoryChoice.getFactory();
 System.out.println("Using factory "+ aFactory+" to construct aButton");
 Button aButton = aFactory.createButton();
 aButton.setCaption("Push a");
 aButton.paint();

 GUIFactory bFactory = GUIFactoryChoice.getFactory();
 System.out.println("Using factory "+ bFactory+" to construct bButton");
 Button bButton = bFactory.createButton();
 bButton.setCaption("Push b");
 bButton.paint();

 GUIFactory cFactory = GUIFactoryChoice.getFactory();
 System.out.println("Using factory "+ cFactory+" to construct cButton");
 Button cButton = cFactory.createButton();
 cButton.setCaption("Push c");
 cButton.paint();
 }

}

TO DO: Compile and execute this code

TSP: MSc CCN2017: J Paul Gibson 16

Factory OSX and Win GUI Buttons in Java

TSP: MSc CCN2017: J Paul Gibson 17

Abstract Factory

Combining Product Lines

Factory1 Factory2

TSP: MSc CCN2017: J Paul Gibson 18

Abstract Factory: UML class diagram (2 products 2 factory types)

Can be generalised to multiple factories with multiple products

TSP: MSc CCN2017: J Paul Gibson 19

Abstract Factory: UML (sequence diagram)

Can be generalised to multiple factories with multiple products

TSP: MSc CCN2017: J Paul Gibson 20

Abstract Factory: UML - Buttons and Menus for Win and OSX

Win OSX

Button

Menu

TSP: MSc CCN2017: J Paul Gibson 21

Abstract Factory – GUIFactoryChoice2

TP - TO DO: Compile and execute this code in order to test
it against expected behaviour

TSP: MSc CCN2017: J Paul Gibson 22

Abstract Factory – OSXorWindowsFactory2

public class OSXorWindowsFactory2 {

public static void main(String[] args){

 GUIFactory2 aFactory = GUIFactoryChoice2.getFactory();

 System.out.println("Using factory "+ aFactory+" to construct aButton");

 Button aButton = aFactory.createButton();

 aButton.setCaption("Push a");

 aButton.paint();

 System.out.println("Using factory "+ aFactory+" to construct aMenu");

 Menu aMenu = aFactory.createMenu();

 aMenu.setCaption("Menu a");

 aMenu.display();

 GUIFactory2 bFactory = GUIFactoryChoice2.getFactory();

 System.out.println("Using factory "+ bFactory+" to construct bButton");

 Button bButton = bFactory.createButton();

 bButton.setCaption("Push b");

 bButton.paint();

 System.out.println("Using factory "+ bFactory+" to construct bMenu");

 Menu bMenu = bFactory.createMenu();

 bMenu.setCaption("Menu b");

 bMenu.display();

 }

 }

TSP: MSc CCN2017: J Paul Gibson 23

Abstract Factory – OSXorWindowsFactory2

Note that we had to extend the behaviour of classes in order to
include buttons and menus (but we kept to the same design pattern):

public abstract class GUIFactory2 extends GUIFactory{

 public abstract Menu createMenu();

}

class WindowsFactory2 extends GUIFactory2 …

class OSXFactory2 extends GUIFactory2 …

class GUIFactoryChoice2 extends GUIFactoryChoice …

TO DO: Look at code and try to understand how it works

TSP: MSc CCN2017: J Paul Gibson 24

Problem – add an OS (linux) and a Component (slider)

Win OSX

Button

Menu

Construct a linux product with button and slider components: test the behaviour of your product (code)

TO DO: Test the new factory and new factory component

