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Factory Pattern

See -  http://sourcemaking.com/design_patterns/factory_method

•Intent 

•Define an interface for creating an object, but let subclasses decide which 
class to instantiate. Factory Method lets a class defer instantiation 
to subclasses. 
•Defining a “virtual” constructor. 

•Problem 

•A framework needs to standardize the architectural model for a range of 
applications, but allow for individual applications to define their own domain 
objects and provide for their instantiation.

NOTE: The implementation of Factory Method discussed in the largely overlaps 
with that of Abstract Factory.
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Factory Pattern
See -  http://sourcemaking.com/design_patterns/factory_method

Relation to other patterns 

Abstract Factory classes are often implemented with Factory Methods, but they can be 
implemented using Prototype.  

Factory Methods are usually called within Template Methods.  

Factory Method: creation through inheritance. Prototype: creation through delegation.  

Often, designs start out using Factory Method (less complicated, more customizable, 
subclasses proliferate) and evolve toward Abstract Factory, Prototype, or Builder (more 
flexible, more complex) as the designer discovers where more flexibility is needed.  

Prototype doesn’t require subclassing, but it does require an Initialize operation. Factory 
Method requires subclassing, but doesn’t require Initialize. 

The advantage of a Factory Method is that it can return the same instance multiple times, or 
can return a subclass rather than an object of that exact type.
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Factories: Additional Motivation

See:  

Software Factories Assembling Applications with Patterns, 
Models, Frameworks and Tools, Greenfield and Short, 
OOPSLA, 2003. 

Factories are key to Software Product Lines
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Patron: Factory (Fabrique): UML (generic)

Can be generalised to:  
•multiple products (by subclassing) 
•multiple clients (by association)
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Factory UML: concrete example – 

GUIFactory

WindowsFactory

Button

WindowsButton

WindowsButtonFactory

You can find the files in the Patterns folder in the p_factory package
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Factory package
NOTE: I have not 
added any package 
structure – I suggest 
you restructure the 
Factory into separate 
dossiers: 

•by OS or 
•by components 

Also, you may wish to 
have a package for the 
abstract classes, and 
for tests

Download from the web site - Code/Factory.zip
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Factory - Windows GUI in Java

NOTE: Factories are often defined as Singletons.
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Factory - Windows GUI in Java

public class WindowsButtonFactory { 

    public static void main(String[] args){ 

        GUIFactory aFactory = GUIFactory.getFactory(); 
        System.out.println("Using factory "+ aFactory+" to construct aButton"); 
        Button aButton = aFactory.createButton(); 
        aButton.setCaption("Push a"); 
        aButton.paint(); 

        GUIFactory bFactory = GUIFactory.getFactory(); 
        System.out.println("Using factory "+ bFactory+" to construct bButton"); 
        Button bButton = bFactory.createButton(); 
        bButton.setCaption("Push b"); 
        bButton.paint(); 
    } 

}

TO DO: Compile and execute to test for expected output
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Factory - Windows GUI in Java

abstract class Button 

{ 

    private String caption; 

    public abstract void paint(); 

    public String getCaption() {return caption;} 

  

    public void setCaption(String caption){ 

        this.caption = caption; 

    } 

} 

public class WindowsButton extends Button 
{ 
    public void paint(){ 
        System.out.println("WindowsButton: "+ getCaption()); 
    } 
}
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Factory - Windows GUI in Java

abstract class GUIFactory{  

    public static GUIFactory getFactory(){ 

          return WindowsFactory.getInstance(); 

    } 

public abstract Button createButton(); 

} 

class WindowsFactory extends GUIFactory{ 

private static WindowsFactory factory = new WindowsFactory(); 

    public static WindowsFactory getInstance () {return factory;};     

    public Button createButton(){ 

        return(new WindowsButton()); 

    } 

}
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GUIFactoryChoice

OSXFactory or Win Factory

Button

OSXButton or Win Button

OSXorWindowsFactoryFactory « UML »:

TO DO: Write code for OSXButton and OSXFactory
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Factory OSX  and Win GUI Buttons in Java

abstract class GUIFactoryChoice{ 
    public enum OS_Type {Win, OSX} 

    protected static OS_Type readFromConfigFile(String param){ 
     if (Math.random() > 0.5) return OS_Type.Win;  
        else return OS_Type.OSX; 
    } 

 public static GUIFactory getFactory(){ 
        OS_Type sys = readFromConfigFile("OS_TYPE"); 
        switch (sys) { 
            case Win: 
                return WindowsFactory.getInstance(); 
            case OSX: 
                return  OSXFactory.getInstance(); 
        } 
 throw new IllegalArgumentException("The OS type " + sys + " is not recognized."); 
     } 

    public abstract Button createButton(); 
}

Use this more complex factory in your test code



TSP: MSc CCN2017: J Paul Gibson 15

Factory OSX  and Win GUI Buttons in Java

public class OSXorWindowsFactory { 

 public static void main(String[] args){ 
     
        GUIFactory aFactory = GUIFactoryChoice.getFactory(); 
        System.out.println("Using factory "+ aFactory+" to construct aButton"); 
        Button aButton = aFactory.createButton(); 
        aButton.setCaption("Push a"); 
        aButton.paint(); 

        GUIFactory bFactory = GUIFactoryChoice.getFactory(); 
        System.out.println("Using factory "+ bFactory+" to construct bButton"); 
        Button bButton = bFactory.createButton(); 
        bButton.setCaption("Push b"); 
        bButton.paint(); 
         
        GUIFactory cFactory = GUIFactoryChoice.getFactory(); 
        System.out.println("Using factory "+ cFactory+" to construct cButton"); 
        Button cButton = cFactory.createButton(); 
        cButton.setCaption("Push c"); 
        cButton.paint(); 
    } 
  
}

TO DO: Compile and execute this code
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Factory OSX  and Win GUI Buttons in Java
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Abstract Factory

Combining Product Lines

Factory1 Factory2
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Abstract Factory: UML class diagram (2 products 2 factory types)

Can be generalised to multiple factories with multiple products
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Abstract Factory: UML (sequence diagram)

Can be generalised to multiple factories with multiple products



TSP: MSc CCN2017: J Paul Gibson 20

Abstract Factory: UML - Buttons and Menus for Win and OSX

Win OSX

Button

Menu
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Abstract Factory – GUIFactoryChoice2

TP - TO DO: Compile and execute this code in order to test 
it against expected behaviour
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Abstract Factory – OSXorWindowsFactory2

public class OSXorWindowsFactory2 { 

public static void main(String[] args){ 

        GUIFactory2 aFactory = GUIFactoryChoice2.getFactory(); 

        System.out.println("Using factory "+ aFactory+" to construct aButton"); 

        Button aButton = aFactory.createButton(); 

        aButton.setCaption("Push a"); 

        aButton.paint(); 

        System.out.println("Using factory "+ aFactory+" to construct aMenu"); 

        Menu aMenu = aFactory.createMenu(); 

        aMenu.setCaption("Menu a"); 

        aMenu.display(); 

        GUIFactory2 bFactory = GUIFactoryChoice2.getFactory(); 

        System.out.println("Using factory "+ bFactory+" to construct bButton"); 

        Button bButton = bFactory.createButton(); 

        bButton.setCaption("Push b"); 

        bButton.paint(); 

        System.out.println("Using factory "+ bFactory+" to construct bMenu"); 

        Menu bMenu = bFactory.createMenu(); 

        bMenu.setCaption("Menu b"); 

        bMenu.display(); 

    } 

 }
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Abstract Factory – OSXorWindowsFactory2

Note that we  had to extend the behaviour of classes in order to 
include buttons and menus (but we kept to the same design pattern): 

public abstract class GUIFactory2 extends GUIFactory{ 

 public abstract Menu createMenu(); 

} 

class WindowsFactory2 extends GUIFactory2 … 

class OSXFactory2 extends GUIFactory2  … 

class GUIFactoryChoice2 extends GUIFactoryChoice … 

TO DO: Look at code and try to understand how it works
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Problem – add an OS (linux) and a Component (slider)

Win OSX

Button

Menu

Construct a linux product with button and slider components: test the behaviour of your product (code) 

TO DO: Test the new factory and new factory component


