
TSP: MSc CCN2017: J Paul Gibson 1

CSC 7203 : Advanced Object Oriented Development

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://www-public.it-sudparis.eu/~gibson/Teaching/CSC7203/

Visitor Pattern

…/~gibson/Teaching/CSC77203-AdvancedOO-L3-Visitor.pdf

TSP: MSc CCN2017: J Paul Gibson 2

TSP: MSc CCN2017: J Paul Gibson 3

The Visitor Pattern

See - http://sourcemaking.com/design_patterns/visitor

•Intent
•Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the
elements on which it operates.
•The classic technique for recovering lost type information.
•Do the right thing based on the type of two objects.
•Double dispatch

•Problem

Many distinct and unrelated operations need to be performed on node objects in a
heterogeneous aggregate structure. You want to avoid “polluting” the node classes
with these operations. And, you don’t want to have to query the type of each node
and cast the pointer to the correct type before performing the desired operation.

TSP: MSc CCN2017: J Paul Gibson 4

The Visitor Pattern

See - http://sourcemaking.com/design_patterns/visitor

Relation to other patterns

•The abstract syntax tree of Interpreter is a Composite (therefore Iterator and Visitor
are also applicable).
•Iterator can traverse a Composite. Visitor can apply an operation over
a Composite.
•The Visitor pattern is like a more powerful Command pattern because the visitor
may initiate whatever is appropriate for the kind of object it encounters.
•The Visitor pattern is the classic technique for recovering lost type information
without resorting to dynamic casts.

NOTE: Visitor is not good for the situation where “visited” classes are not stable.
Every time a new Composite hierarchy derived class is added, every Visitor derived
class must be amended.

TSP: MSc CCN2017: J Paul Gibson 5

UML Class Diagram Visitor

TSP: MSc CCN2017: J Paul Gibson 6

UML Class Diagram Visitor Example - Car

TSP: MSc CCN2017: J Paul Gibson 7

Download the visitor example from

~gibson/Teaching/CSC7203/Code/Visitor.zip

TSP: MSc CCN2017: J Paul Gibson 8

class Car implements CarElement{
 CarElement[] elements;

 public CarElement[] getElements() {
 return elements.clone(); // Return a copy of the array of references.
 }

 public Car() {
 this.elements = new CarElement[]
 { new Wheel("front left"), new Wheel("front right"),
 new Wheel("back left") , new Wheel("back right"),
 new Doors(), new Engine(8) };
 }

 public String toString(){ return "\n *** A Car *** \n“; }

 public boolean invariant (){ return (elements!=null && elements.length>0);}

 public void accept(CarElementVisitor visitor) {
 visitor.visit(this);
 for(CarElement element : this.getElements()) {
 element.accept(visitor);
 }

 }
}

An example visitable

TSP: MSc CCN2017: J Paul Gibson 9

class CarElementPrintVisitor implements CarElementVisitor {

 public void visit(Wheel wheel) {
 System.out.println(wheel);
 }

 public void visit(Engine engine) {
 System.out.println(engine);
 }

 public void visit(Doors doors) {
 System.out.println(doors);
 }

 public void visit(Car car) {
 System.out.println(car);
 }
}

An example visitor

TSP: MSc CCN2017: J Paul Gibson 10

public class Visitor_Test {
 static public void main(String[] args){
 Car car = new Car();
 car.accept(new CarElementPrintVisitor());
 car.accept(new CarElementCheckInvariantVisitor());
 }
}

Testing the example

 *** A Car ***

front left is not turning
front right is not turning
back left is not turning
back right is not turning
LeftDoorLocked is true and RightDoorLocked is true
Engine speed is 0 / 8

QUESTION: what is CarElementCheckInvariantVisitor doing?

TSP: MSc CCN2017: J Paul Gibson 11

UML Class Diagram Visitor Example - Car

TO DO: Add a visitor
(breakInvariantVisitor) which
changes the state of each
component of the car so that their
invariants are broken.

Update the test class to check that
this visitor is working as required

