
Advanced OO: Generics2017 J Paul Gibson 1

CSC7203 : Advanced Object Oriented Development

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7203/

Generics (in Java)

…/~gibson/Teaching/CSC7203/CSC7203-AdvanceOO-L5-Generics.pdf

Advanced OO: Generics2017 J Paul Gibson 2

1 Generics - Some History

M.D. McIlroy: Mass-Produced Software Components, Proceedings of the 1st
International Conference on Software Engineering, Garmisch Pattenkirchen,
Germany, 1968

Joseph A. Goguen: Parameterized Programming. IEEE Trans. Software Eng.
10(5) 1984

David R. Musser, Alexander A. Stepanov: Generic Programming. ISSAC 1988

Charles W Kreuger, Software Reuse, ACM Computing Surveys, 1992

Ronald Garcia et al, A Comparative Study of Language Support for Generic
Programming, OOPSLA03, 2003

Advanced OO: Generics2017 J Paul Gibson 3

1 Generics - Some Java History

Martin Odersky and Philip Wadler. Pizza into Java: translating theory
into practice. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL '97).

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: adding genericity to the Java
programming language. SIGPLAN Not. 33, 10 (October 1998),

May 1999 - Sun proposes to Add Generics to Java, based on GJ. The
activity (named JSR 14) is headed by Gilad Bracha

JSR-000014 Adding Generics to the JavaTM Programming Language (Close
of Public Review: 01 August 2001)
http://jcp.org/aboutJava/communityprocess/review/jsr014/index.html

Mads Torgersen et al., Adding wildcards to the Java programming
language, Proceedings of the 2004 ACM symposium on Applied
computing.

Pizza

GJ

JSR-000014

JDK1.5

Recently : push for simplifying/eliminating wildcards!!!

Advanced OO: Generics2017 J Paul Gibson 4

1 Why are generics useful

Re-usable patterns (like higher order functions):

foldl (+) 0 [1..5] = 15
foldl (append) "" ["a", "b", "c"] = “ abc”

filter (odd) [1,3,5,2,4] = [1,3,5]
filter (animal) [cow, dog, cake] = [cow, dog]

map (double) [1,3,5,2,4] = [2,6,10,4,8]
map (capitalize) [“aBc”, “BBc”] = [“ABC”, “BBC”]

QUESTION: what are the types of these 3 functions?

Advanced OO: Generics2017 J Paul Gibson 5

1 Why are generics useful

Re-usable data structures, eg binary tree of things:

With generic algorithms/functions, eg depth

Advanced OO: Generics2017 J Paul Gibson 6

1 Why are generics useful

Re-usable classes, eg (ordered) list of things:

•Combines generic data and generic functions in a generic class

•Unconstrained genericity – no restriction on type/class of generic parameter

•Constrained genericity – the generic parameter must be a type/class which is a
subtype/subclass of a specified class

NOTE: Genericity is usually extended to allow multiple generic parameters (but
then they may/may not be mutually constrained)

Advanced OO: Generics2017 J Paul Gibson 7

1 Why are generics useful: a classic Java example

List myIntList = new LinkedList();
myIntList.add(new Integer(0));
Integer x = (Integer) myIntList.iterator().next();

List<Integer> myIntList = new LinkedList<Integer>();
myIntList.add(new Integer(0));
Integer x = myIntList.iterator().next();

QUESTION: Which code do you prefer, and why?

NOTE: The 2nd example uses the Java List collections class

Advanced OO: Generics2017 J Paul Gibson 8

Why are generics useful: Java List example, continued:

public interface List<E> {
void add(E x);
Iterator<E> iterator();
}

The declaration of the formal
type parameters of the
interface List

You might imagine that an IntegerList defined as List<Integer> stands for a
version of List where E has been uniformly replaced by Integer:

public interface IntegerList {
void add(Integer x)
Iterator<Integer> iterator();
}

This intuition may be
useful, but it may also
be misleading. (This is
closer to the type of
macro expansion in the
C++ STL)

Advanced OO: Generics2017 J Paul Gibson 9

Java generics implemented by erasure
Generics are implemented by the Java compiler as a front-end conversion
called erasure. You can (almost) think of it as a source-to-source translation
(syntactic sugar), whereby the generic version of code is converted to the non-
generic version.

As a result, the type safety and integrity of the Java virtual machine are
never at risk, even in the presence of unchecked warnings.

Basically, erasure gets rid of (or erases) all generic type information. All the
type information between angle brackets is thrown out, so, for example, a
parameterized type like List<String> is converted into List. All remaining uses
of type variables are replaced by the upper bound of the type variable (usually
Object). And, whenever the resulting code isn’t type-correct, a cast to the
appropriate type is inserted.

Advanced OO: Generics2017 J Paul Gibson 10

How To Implement Generics – many choices (see referenced papers)

While generics look like the C++ templates, it is important to note
that they are not (implemented) the same.

Java generics simply provide compile-time type safety and eliminate
the need for casts.

Generics use a technique known as type erasure as described above,
and the compiler keeps track of the generics internally, and all
instances use the same class file at compile/run time.

A C++ template on the other hand is just a fancy macro processor;
whenever a template class is instantiated with a new class, the entire
code for the class is reproduced and recompiled for the new class.

Advanced OO: Generics2017 J Paul Gibson 11

Some Java “Details” : all instances of a generic class have the same
run-time class

What does the following code fragment print?

List <String> l1 = new ArrayList<String>();
List <Integer> l2 = new ArrayList<Integer>();
System.out.println(l1.getClass() ==
l2.getClass());

Advanced OO: Generics2017 J Paul Gibson 12

Some Java “Details” : all instances of a generic class have the same
run-time class

What does the following code fragment print?

List <String> l1 = new ArrayList<String>();
List <Integer> l2 = new ArrayList<Integer>();
System.out.println(l1.getClass() ==
l2.getClass());

It prints true, because all instances of a generic class have the same run-time
class, regardless of their actual type parameters.

As consequence, the static variables and methods of a class are also shared
among all the instances.

Advanced OO: Generics2017 J Paul Gibson 13

Generics and Subtyping
QUESTION: What does the following code output?

 class Animal{}
 class Dog extends Animal{ }

public class InheritanceTester {
private static void message(Collection<Animal> animals)
{ System.out.println("You gave me a collection of
animals."); }

private static void message(Object object)
{ System.out.println("You gave me an object.");
}

public static void main(String[] args) {
 List<Dog> animals1 = new ArrayList<Dog>();
 message(animals1);

 List<Amnimals> animals2 = new ArrayList<Dog>();
 message(animals2);
}}

14

Dog

Animal

Dog is subclass of Animal, List is subclass of Collection
Is a List of Dogs a subclass of a Collection of Animals???

Advanced OO: Generics2017 J Paul Gibson 15

Generics and Subtyping

In general, if Foo is a subtype (subclass or subinterface) of Bar, and
G is some generic type declaration, it is not the case that G<Foo> is
a subtype of G<Bar>.

All OO languages handle the integration of genericity and
subclassing differently

This is probably the hardest thing you need to learn about (Java)
generics … and how it relates to the concept of wildcards

TEST: What are contravariance and covariance??

Advanced OO: Generics2017 J Paul Gibson 16

Example: drawing shapes in a canvas

Typically , a drawing will contain a number of shapes.

Assuming that the shapes are stored in a list, it would be convenient to have a
method in Canvas that draws them all:

public void drawAll(List<Shape> shapes) {
 for (Shape s: shapes) { s.draw(this); }
}

Now, the type rules (as we saw on previous slide) say that drawAll() can only be
called on lists of exactly Shape: it cannot, for instance, be called on a List<Circle>.

That is unfortunate, since all the method does is read shapes from the list, so it
could just as well be called on a List<Circle>…

Java wildcards were introduced to overcome this problem.

Generics and Subtyping

Advanced OO: Generics2017 J Paul Gibson 17

Wildcards – drawing shapes in a canvas

What we really want is for the method to accept a list of any kind of shape:

public void drawAll(List<? extends Shape> shapes)
{ ... }

There is a small but very important difference here: we have replaced the type
List<Shape> with List<? extends Shape>.

Now drawAll() will accept lists of any subclass of Shape (or Shape itself), so
we can now call it on a List<Circle> if we want.

List<? extends Shape> is an example of a bounded wildcard.

 We say that Shape is the upper bound of the wildcard.

Advanced OO: Generics2017 J Paul Gibson 18

Java Wildcards

There are three types of wildcards in Java:

1. "? extends Type": Denotes a family of subtypes of type Type.
This is the most useful wildcard

2. "? super Type": Denotes a family of supertypes of type Type.

3. "?": Denotes the set of all types or any

Question: can you think of a use of the second wildcard type?

Advanced OO: Generics2017 J Paul Gibson 19

Java Wildcards PECS: Producer Extends, Consumer Super

public class Collections {
 public static <T> void
 copy(List<? super T> dest, List<? extends T> src)
 {
 for (int i=0; i<src.size(); i++)
 dest.set(i,src.get(i));
 }
}
"Producer Extends" - If you need a List to produce T values (you want to read Ts
from the list), you need to declare it with ? extends T, e.g. List<? extends Integer>.
But you cannot add to this list.

"Consumer Super" - If you need a List to consume T values (you want to write Ts
into the list), you need to declare it with ? super T, e.g. List<? super Integer>. But
there are no guarantees what type of object you may read from this list.

If you need to both read from and write to a list, you need to declare it exactly with
no wildcards, e.g. List<Integer>.

Advanced OO: Generics2017 J Paul Gibson 20

Problem: Implement a Pair Of Things in Java

You are to code the class GenericPair, such that it passes the tests written in
JUnit_GenericPairTest (which can be downloaded from the module web
site). It is a good idea to put this generic class in a package reserved for generic
behaviour - eg a templates package. I have provided JUnit tests for this class.

Advanced OO: Generics2017 J Paul Gibson 21

Problem: Implement a Pair Of Things in Java

The test variables

The variable initialisation: setup

Advanced OO: Generics2017 J Paul Gibson 22

Problem: Implement a Pair Of Things in Java

The tests:

testToString
Tests method GenericPair.toString()

testSwap_static
Tests method GenericPair.swap(GenericPair)

testSwap
Tests method GenericPair.swap()

testCopyConstructor
Tests method GenericPair.GenericPair(GenericPair)

testEquals
Tests method GenericPair.equals(java.lang.Object)

Advanced OO: Generics2017 J Paul Gibson 23

Problem: Implement a Pair Of Things in Java

TO DO: Write the GenericPair so that the tests are successful

Advanced OO: Generics2017 J Paul Gibson 24

Problem: Implement a Pair Of Things in Java

TO DO: Write the GenericPair so that the tests are successful

You should consider the test code to specify the requirements.

For example, you can deduce that you need constructors:

Advanced OO: Generics2017 J Paul Gibson 25

Problem: Implement a Pair Of Things in Java (using generics)

TO DO: Write the GenericPair so that the tests are successful

For example, you can also deduce that you need 2 swap methods:

QUESTION: What other methods do you need?

26

Dominoes Revisited

Would it be a good idea to implement a domino as a pair of integers,
re-using our generic pair behaviour?

TO DO: Implement a pair of integers,
and its Unit tests, as an instantiation
of our generic pair.

Advanced OO: Generics2017 J Paul Gibson 26

27

Problem : Implement a generic randomly iterable class

Advanced OO: Generics2017 J Paul Gibson 27

