
TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

CSC 7203

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

Exceptions(in Java)

…/~gibson/Teaching/CSC7203/CSC7203-AdvancedOO-L6-Exceptions.pdf

1

2TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions

“When certain concepts of TeX are introduced informally, general rules will be
stated; afterwards you will find that the rules aren't strictly true. In general, the
later chapters contain more reliable information than the earlier ones do. The
author feels that this technique of deliberate lying will actually make it easier
for you to learn the ideas. Once you understand a simple but false rule, it will
not be hard to supplement that rule with its exceptions.”, Donald Knuth

3TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions – General History

The control of exceptional conditions in PL/I object programs
JM Noble - Proc. IFIP Congress, 1968.

Exception Handling: Issues and a Proposed Notation
John B. Goodenough Commun. ACM, 1975

Software reliability: The role of programmed exception handling, Melliar-Smith, P.
M. and Randell, B, SIGSOFT Softw. Eng. Notes, 1977

Exception Handling in CLU, Liskov, B.H.; Snyder, A.; Software Engineering,
IEEE Transactions, 1979
 
 A modular verifiable exception handling mechanism, Shaula Yemini and Daniel M.
Berry. 1985.. ACM Trans. Program. Lang. Syst

Software exception handling developed in Lisp in the 60s, where exceptions were
caught by the ERRSET keyword, which returned NIL in case of an error -
LISP 1.5 programmer's manual, McCarthy, John, MIT press, 1965

4TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

2. Exceptions – Further Reading (C++ and Java)

Exception Handling for C++, A. R. Koenig and B. Stroustrup: Journal of Object
Oriented Programming, 1990

Analyzing exception flow in Java programs. Martin P. Robillard and Gail C.
Murphy. In Proceedings of the 7th European software engineering conference
held jointly with the 7th ACM SIGSOFT international symposium on
Foundations of software engineering. 1999

Analysis and testing of programs with exception handling constructs , Sinha, S.;
Harrold, M.J.; Software Engineering, IEEE Transactions Sep 2000

A comparative study of exception handling mechanisms for building dependable
object-oriented software, Alessandro F. Garcia, Cecilia M. F. Rubira, Alexander
Romanovsky, Jie Xu, Journal of Systems and Software, Volume 59, Issue 2, 15
November 2001

5TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java

When a method encounters an abnormal condition (an exception condition) that it
can't handle itself, it may throw an exception.

Exceptions are caught by handlers positioned along the thread's method invocation
stack. If the calling method isn't prepared to catch the exception, it throws the
exception up to its calling method, and so on.

When you program in Java, you must position catchers (the exception handlers)
strategically, so your program will catch and handle all exceptions from which you
want your program to recover.

NOTE: If one of the threads of your program throws an exception that isn't caught by
any method along the method invocation stack, that thread will expire. (We will come
back to this when we look at threads)

6TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java

http://www.ntu.edu.sg/home/ehchua/programming/java/J5a_ExceptionAssert.html

7TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java

In Java, exceptions are objects. When you throw an exception, you
throw an object.

You can't throw just any object as an exception, however -- only
those objects whose classes descend from Throwable.

Throwable serves as the base class for an entire family of classes,
declared in java.lang, that your program can instantiate and throw.

QUESTION: Have you seen
Errors?

8TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions (and errors) in Java

Exceptions (members of the Exception family) are thrown to signal abnormal
conditions that can often be handled by some catcher, though it's possible they may
not be caught and therefore could result in a dead thread.

Errors (members of the Error family) are usually thrown for more serious
problems, such as OutOfMemoryError, that may not be so easy to handle.

In general, code you write should throw only exceptions, not errors. Errors are
usually thrown by the methods of the Java API, or by the Java virtual machine
itself.

In addition to throwing objects whose classes are declared in java.lang, you can
throw objects of your own design. To create your own class of throwable objects,
you need only declare it as a subclass of some member of the Throwable family. In
general, however, the throwable classes you define should extend class Exception.

9TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java

Whether you use an existing exception class from java.lang or create
one of your own depends upon the situation. In some cases, a class
from java.lang will do just fine.

For example, if one of your methods is invoked with an invalid
argument, you could throw IllegalArgumentException, a subclass of
RuntimeException in java.lang.

Sometimes you will want to indicate that a
method encountered an abnormal condition
that isn't represented by a class in the
Throwable family of java.lang.
For example, in a coffee machine:

NOTE: Exceptional conditions are not necessarily rare, just outside the
normal flow of events.

10TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: Example Coffee Cup

public void drinkCoffee(CoffeeCup cup) throws TooColdException,
TooHotException {

 int temperature = cup.getTemperature();

 if (temperature <= TOOCOLD) throw new TooColdException();
 else if (temperature >= TOOHOT) throw new TooHotException();
 else cup.sip();

}

…

try {
customer.drinkCoffee(cup); System.out.println("Coffee is just right.");
}
catch (TooColdException e) { System.out.println("Coffee is too cold."); }
catch (TooHotException e) { System.out.println("Coffee is too hot."); }
 }

11TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: Example Coffee Cup

try {
customer.drinkCoffee(cup);
System.out.println("Coffee is just right.");
}
catch (TemperatureException e) {
System.out.println("Coffee is too cold or too hot.");
}

You can also group catches:

try {
customer.drinkCoffee(cup);
System.out.println("Coffee is just right.");
}
catch (TooHotException | TooColdException e) {
System.out.println("Coffee is too cold or too hot.");
}

12TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: Example Coffee Cup

try {
customer.drinkCoffee(cup);
System.out.println("Coffee is just right.");
}
catch (TemperatureException e) {
System.out.println("Coffee is too cold or too hot.");
}

You can also group catches:

QUESTION: What about throwing exceptions inside the catch?
Does Java allow this? What are the semantics/rules?

TO DO: Write some experimental code to find the answers to these questions.

13TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: Embedding information in an exception object

When you throw an exception, you are performing a kind of
structured go-to from the place in your program where an abnormal
condition was detected to a place where it can be handled.

The Java virtual machine uses the class of the exception object you
throw to decide which catch clause, if any, should be allowed to
handle the exception.

But an exception doesn't just transfer control from one part of your
program to another, it also transmits information. Because the
exception is a full-fledged object that you can define yourself, you
can embed information about the abnormal condition in the object
before you throw it. The catch clause can then get the information by
querying the exception object directly.

14TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: Example Coffee Cup

class UnusualTasteException extends Exception
{ UnusualTasteException() { }
UnusualTasteException(String msg) { super(msg);}
}

new UnusualTasteException("This coffee tastes like tea.")

try {
 cust.drinkCoffee(cup);
 System.out.println("Coffee ok.");
}
catch (UnusualTasteException e) {
System.out.println("Customer is complaining of unusual taste.");
String s = e.getMessage();
if (s != null) System.out.println(s);
}

NOTE: here the info passed is a String explaining the strange taste, for
TOOHOT or TOOCOLD we could pass the temperature value

15TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: Checked vs. unchecked exceptions

 
There are two kinds of exceptions in Java, checked and unchecked, and only checked
exceptions need appear in throws clauses.

The general rule is: Any checked exceptions that may be thrown in a method must
either be caught or declared in the method's throws clause.

Checked exceptions are so called because both the Java compiler and the Java virtual
machine check to make sure this rule is obeyed.

16TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: finally block
Once a Java virtual machine has begun to execute a block of code -- the statements
between two matching curly braces -- it can exit that block in any of several ways.

It could, for example, simply execute past the closing curly brace. It could encounter a
break, continue, or return statement that causes it to jump out of the block from
somewhere in the middle. Or, if an exception is thrown that isn't caught inside the
block, it could exit the block while searching for a catch clause.

Given that a block can be exited in many ways, it is important to be able to ensure that
something happens upon exiting a block, no matter how the block is exited. For
example, if you open a file in a method, you may want to ensure the file gets closed no
matter how the method completes. In Java, you express such a desire with a finally
clause.

try { // Block of code with multiple exit points }
 finally {
 /* Block of code that must always be executed when the try
block exited, no matter how the try block is exited */
}

17TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Exceptions in Java: good habits

throw IllegalArgumentException when an argument to
a method call is never valid

throw IllegalStateException when a method call (with
the given argument values) is not valid in the current
state

throw “InvariantBrokenException” when a method call
(with the given argument values) breaks the invariant of
the object executing the method

catch IllegalAccessException (when using reflexion to
access private/protected attributes/methods)

Document exceptions that are thrown/handled by your own code

18TSP: Advanced OO Programming -
Exceptions

2017: J Paul Gibson

Java: Overriding methods that throw exceptions
TO DO: Write some experimental code to see if you can
identify the rules for overriding methods that throw exceptions.

QUESTION: Can the new method (in the subclass)

•Add a new exception?
•Specialise/Generalise an exception thrown by the base class
•Ignore an exception thrown by the base class?

Try to understand the test code provided:

Exceptions.zip

http://www.javatpoint.com/exception-handling-with-method-overriding

http://www.javatpoint.com/exception-handling-with-method-overriding

